Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Reagents
2.2. Ultrasound-Assisted Extraction of Flavonoids from Z. bungeanum Leaves
2.3. Determination of Flavonoids from Z. bungeanum Leaves
2.4. Metabolomics Determination of Flavonoids from Z. bungeanum Leaves
2.5. Optimization of Ultrasonic-Assisted Extraction of Total Flavonoids from Z. bungeanum Leaves
2.6. Microalgae Growth and Photosynthetic Inhibition Assay
2.7. Measurement of the Total Antioxidant Activity
2.8. Data Analysis
3. Results
3.1. Z. bungeanum Leaf Extracts Offer a Promising Application Prospect to Safely Control the Outbreak of Algal Blooms and the Identification of the Flavonoid Profile of Z. bungeanum Leaves
3.2. Optimized the Extraction Technique of TFs
3.2.1. Single Factor Experiment Results
Effects of the Liquid-to-Solid Ratio on Flavonoid Extraction Performance
Effects of Ethanol Concentration on Flavonoid Performance
Effects of Ultrasonic Time on Flavonoid Performance
Effects of Ultrasonic Temperature on Flavonoid Performance
3.2.2. Response Surface Analysis
Model Fitting
Response Surface Plots and Contour Plot Analysis
3.3. Inhibition of Photosynthetic Activity of T. obliquus by Z. bungeanum Leaf Extracts
3.4. Effect of Different Z. bungeanum Leaf Extract Concentrations on the Total Antioxidant Activity in T. obliquus
4. Discussion
4.1. Optimization of Total Flavonoid Extraction from Z. bungeanum Leaf
4.2. Evaluation of the Antimicrobial Properties of Z. bungeanum Leaf Extracts
4.3. Eco-Friendly Algicidal Potential of Z. bungeanum Leaf Extracts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, W.; Yang, H.; Lei, H.; Xiang, Z.; Duan, Y.; Xin, H.; Han, T.; Su, J. Phytochemistry and health functions of Zanthoxylum bungeanum Maxim and Zanthoxylum schinifolium Sieb. et Zucc as pharma-foods: A systematic review. Trends Food Sci. Technol. 2024, 143, 104225–104237. [Google Scholar] [CrossRef]
- Tian, J.; Tian, L.; Chen, M.; Chen, Y.; Wei, A. Low temperature affects fatty acids profiling and key synthesis genes expression patterns in Zanthoxylum bungeanum Maxim. Int. J. Mol. Sci. 2022, 23, 2319. [Google Scholar] [CrossRef]
- Sun, L.; Yu, D.; Wu, Z.; Wang, C.; Yu, L.; Wei, A.; Wang, D. Comparative transcriptome analysis and expression of genes reveal the biosynthesis and accumulation patterns of key flavonoids in different varieties of Zanthoxylum bungeanum Leaves. J. Agric. Food Chem. 2019, 67, 13258–13268. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhou, R.; Jia, W.W.; Li, Z.; Li, J.; Zhang, P.; Xiao, T. Zanthoxylum bungeanum essential oil induces apoptosis of HaCaT human keratinocytes. J. Ethnopharmacol. 2016, 186, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, D.; Zhao, L.; Shi, B.; Xiao, J.; Liu, X.; Zekruman, M.; Hu, Y.; Ngouana, A.; Shi, J.; et al. Antagonistic interaction of phenols and alkaloids in Sichuan pepper (Zanthoxylum bungeanum) pericarp. Ind. Crop. Prod. 2020, 152, 112551. [Google Scholar] [CrossRef]
- Yang, L.C.; Li, R.; Tan, J.; Jiang, Z.T. Polyphenolics composition of the leaves of Zanthoxylum bungeanum Maxim. grown in Hebei, China, and their radical scavenging activities. J. Agric. Food Chem. 2013, 61, 1772–1778. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, Y.; Zhou, L.; Shi, X.; Guo, Z.; Wang, M.; Jiang, W. Chemical composition and antifungal activity of the fruit oil of Zanthoxylum bungeanum Maxim. (Rutaceae) from China. J. Eeesnt. Oil Res. 2009, 21, 174–178. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Dong, H.; Yu, X.; Zhang, J. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. Int. J. Mol. Med. 2017, 41, 77–86. [Google Scholar] [CrossRef]
- Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A.; Krueler, V.; Winkelmueller, T.M.; Wang, Y.M.; Mine, A.; et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, C.; Wang, M.; Fu, F.; El-Kassaby, Y.A.; Wang, T.; Wang, G. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions. Ind. Crop. Prod. 2020, 158, 112963–112973. [Google Scholar] [CrossRef]
- Hu, H.; Fei, X.; He, B.; Luo, Y.; Qi, Y.; Wei, A. Integrated analysis of metabolome and transcriptome data for uncovering flavonoid components of Zanthoxylum bungeanum Maxim. leaves under drought stress. Front. Nutr. 2022, 8, 801244–801259. [Google Scholar] [CrossRef]
- Yang, J.; Ma, L.; Jiang, W.; Yao, Y.; Tang, Y.; Pang, Y. Comprehensive identification and characterization of abiotic stress and hormone responsive glycosyl hydrolase family 1 genes in Medicago truncatula. Plant Physiol. Biochem. 2021, 158, 21–33. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Lu, K.; Bhat, M.; Basu, S. Plants and their active compounds: Natural molecules to target angiogenesis. Angiogenesis 2016, 19, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Gomez, L.P.; Alvarez, C.; Zhao, M.; Tiwari, U.; Curtin, J.; Garcia-Vaquero, M.; Tiwari, B.K. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr. Polym. 2020, 248, 116784–116797. [Google Scholar] [CrossRef]
- Lu, Z.X.; Wu, Z.G.; Fan, L.W.; Zhang, H.; Liao, Y.Q.; Zheng, D.Y.; Wang, S.Q. Rapid and solvent-saving liquefaction of woody biomass using microwave-ultrasonic assisted technology. Bioresour. Technol. 2016, 199, 423–426. [Google Scholar] [CrossRef]
- Khalid, S.; Chaudhary, K.; Amin, S.; Raana, S.; Zahid, M.; Naeem, M.; Khaneghah, A.M.; Aadil, R.M. Recent advances in the implementation of ultrasound technology for the extraction of essential oils from terrestrial plant materials: A comprehensive review. Ultrason. Sonochem. 2024, 107, 106914–106928. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021–105030. [Google Scholar] [CrossRef]
- Fikry, M.; Jafari, S.; Shiekh, K.A.; Kijpatanasilp, I.; Khongtongsang, S.; Khojah, E.; Aljumayi, H.; Assatarakul, K. Ultrasound-assisted extraction of bioactive compounds from longan seeds powder: Kinetic modelling and process optimization. Ultrason. Sonochem. 2024, 108, 106949–106959. [Google Scholar] [CrossRef]
- Coelho, T.L.S.; Braga, F.M.S.; Silva, N.M.C.; Dantas, C.; Junior, C.A.L.; de Sousa, S.A.A.; Vieira, E.C. Optimization of the protein extraction method of goat meat using factorial design and response surface methodology. Food Chem. 2019, 281, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.L.C.; Junior, M.M.S.; Felix, C.S.A.; da Silva, D.L.F.; Santos, A.S.; Neto, J.H.S.; de Souza, C.T.; Junior, R.A.C.; Souza, A.S. Multivariate optimization techniques in food analysis—A review. Food Chem. 2019, 273, 3–8. [Google Scholar] [CrossRef]
- Loiselle, S.A.; Gokul, E.A.; Raitsos, D.E.; Gittings, J.A.; Alkawri, A.; Hoteit, I. Remotely sensing harmful algal blooms in the Red Sea. PLoS ONE 2019, 14, e0215463. [Google Scholar] [CrossRef]
- Zhang, F.; Ye, Q.; Chen, Q.; Yang, K.; Zhang, D.; Chen, Z.; Lu, S.; Shao, X.; Fan, Y.; Yao, L.; et al. Algicidal activity of novel marine bacterium Paracoccus sp. Strain Y42 against a harmful algal-bloom-causing dinoflagellate, Prorocentrum donghaiense. Appl. Environ. Microb. 2018, 84, e01015-18. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, Y.Z.; Zhang, W.; Yang, X.Z.; Zhang, Z.; Ren, B.Z.; Zhu, G.C.; Zhou, S.J. Current status and prospects of algal bloom early warning technologies: A Review. J. Environ. Manag. 2024, 349, 119510–119527. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Hou, X.J.; Qin, B.Q.; Kuster, T.; Qu, F.; Chen, N.W.; Paerl, H.; Zheng, C.M. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 2024, 5, 631–644. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, C.S.; Sun, Y.; Yu, Q.H.; Ding, S.; Wang, Y.C.; Wei, W.X.; Xu, W.; Zhang, C.B.; Gong, D.H. Ultrasonic-assisted extraction of total flavonoids from Zanthoxylum bungeanum residue and their allelopathic mechanism on Microcystis aeruginosa. Sci. Rep. 2024, 14, 13192–13203. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 2021, 401, 123403–123413. [Google Scholar] [CrossRef]
- Patiño, R.; Rashel, R.H.; Rubio, A.; Longing, S. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga. Harmful Algae 2018, 71, 1–9. [Google Scholar] [CrossRef]
- Xu, C.C.; Ge, Z.W.; Li, C.; Wan, F.H.; Xiao, X. Inhibition of harmful algae Phaeocystis globosa and Prorocentrum donghaiense by extracts of coastal invasive plant Spartina alterniflora. Sci. Total Environ. 2019, 696, 133930. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, H. Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. Environ. Sci. Pollut. Res. 2023, 30, 105084–105098. [Google Scholar] [CrossRef]
- Chen, Y.W.; Qin, B.Q.; Teubner, K.; Dokulil, M.T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 2003, 4, 445–453. [Google Scholar] [CrossRef]
- Cheng, K.; Zhao, K.; Zhang, R.; Guo, J.F. Progress on control of harmful algae by sustained-release technology of allelochemical: A review. Sci. Total Environ. 2024, 918, 170364–170379. [Google Scholar] [CrossRef]
- Qian, Y.P.; Li, X.T.; Tian, R.N. Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species. Ecotoxicol. Environ. Saf. 2019, 168, 401–407. [Google Scholar] [CrossRef]
- Amorim, C.A.; do Nascimento Moura, A. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 2021, 758, 143605. [Google Scholar] [CrossRef]
- Liu, J.; Yin, J.; Ge, Y.; Han, H.; Liu, M.; Gao, F. Improved lipid productivity of Scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual municipal wastewater. Chemosphere 2021, 285, 131475–131481. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging: Effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Zhang, G.W.; He, L.; Hu, M.M. Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov. Food Sci. Emerg. 2011, 12, 18–25. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014–117024. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, X.; Si, J.; Gong, X.; Wang, S. Studies on cellulase-ultrasonic assisted extraction technology for flavonoids from Illicium verum residues. Chem. Cent. J. 2016, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.B.; Wang, M.; Gan, R.Y.; Ling, W.H. Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 2011, 12, 3006–3017. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef]
- Hadidi, M.; Ibarz, A.; Pagan, J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chem. 2020, 309, 125786–125793. [Google Scholar] [CrossRef]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Optimisation of pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 2017, 231, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Laabir, M.; Grignon-Dubois, M.; Masseret, E.; Rezzonico, B.; Soteras, G.; Rouquette, M.; Rieuvilleneuve, F.; Cecchi, P. Algicidal effects of Zostera marina L. and Zostera noltii hornem. extracts on the neuro-toxic bloom-forming dinoflagellate Alexandrium catenella. Aquat. Bot. 2013, 111, 16–25. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Liu, S.; Liu, B.; Gao, Y.; Wu, Z. Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes. Chemosphere 2011, 85, 977–982. [Google Scholar] [CrossRef]
- Ji, X.; Cheng, J.; Gong, D.H.; Zhao, X.J.; Qi, Y.; Su, Y.N.; Ma, W.C. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci. Total Environ. 2018, 633, 593–599. [Google Scholar] [CrossRef]
- Wang, G.; Deng, S.; Liu, J.; Ye, C.; Zhou, X.; Chen, L. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process. Ecotoxicol. Environ. Saf. 2017, 144, 315–320. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, M.; Chen, J.; Zhang, Y.; Wei, S.; Ma, X.; Xiao, L.; Chen, L. UV-B radiation induces DEHP degradation and their combined toxicological effects on Scenedesmus acuminatus. Aquat. Toxicol. 2018, 203, 172–178. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, X.; Ghadouani, A.; Wu, J.; Nie, Z.; Peng, C.; Xu, X.; Shi, J. Effects of Natural Flavonoids on Photosynthetic Activity and Cell Integrity in Microcystis aeruginosa. Toxins 2015, 7, 66–80. [Google Scholar] [CrossRef]
- Moreland, D.E.; Novitzky, W.P. Interference by luteolin, quercetin, and taxifolin with chloroplast-mediated electron transport and phosphorylation. Plant Soil. 1987, 98, 145–159. [Google Scholar] [CrossRef]
- Lopes, F.N.C.; da Cunha, N.V.; de Campos, B.H.; Fattori, V.; Panis, C.; Cecchini, R.; Verri, W.A., Jr.; Pinge-Filho, P.; Martins-Pinge, M.C. Antioxidant therapy reverses sympathetic dysfunction, oxidative stress, and hypertension in male hyperadipose rats. Life Sci. 2022, 295, 120405–120414. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674–101682. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Han, C.; Wu, Y.; Sun, Q.; Ma, M.; Xie, Z.; Sun, R.; Pei, H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. Sci. Total Environ. 2024, 931, 172567–172577. [Google Scholar] [CrossRef] [PubMed]
- Hayford, R.K.; Serba, D.D.; Xie, S.; Ayyappan, V.; Thimmapuram, J.; Saha, M.C.; Wu, C.H.; Kalavacharla, V.K. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC Plant Biol. 2022, 22, 107. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, G.; Mao, F.J.; Li, W.X.; He, Y.L.; Yew-Hoong Gin, K.; Ong, C.N. Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J. Hazard. Mater. 2019, 367, 120–127. [Google Scholar] [CrossRef]
- Wang, Z.K.; Yu, S.M.; Nie, Y.F.; Zhang, Y.; Liu, Y.P.; Li, S.S.; Xiang, W.S.; Diao, J.L. Effects of acetochlor on the interaction between Scenedesmus and Microcystis: Integrated perspectives on toxicity, biotransformation, and competition strategies. J. Hazard. Mater. 2025, 481, 136470. [Google Scholar] [CrossRef]
- Chalifour, A.; LeBlanc, A.; Sleno, L.; Juneau, P. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: Effects of acclimation and mixed cultures, and their removal ability. Ecotoxicology 2016, 25, 1822–1831. [Google Scholar] [CrossRef]
- Kurbatova, S.; Berezina, N.; Sharov, A.; Chernova, E.; Kurashov, E.; Krylova, Y.; Yershov, I.; Mavrin, A.; Otyukova, N.; Borisovskaya, E.; et al. Effects of algicidal macrophyte metabolites on cyanobacteria, microcystins, other plankton, and fish in microcosms. Toxins 2023, 15, 529. [Google Scholar] [CrossRef]
- Zerrifi, S.E.A.; El Khalloufi, F.; Oudra, B.; Vasconcelos, V. Seaweed bioactive compounds against pathogens and microalgae: Potential uses on pharmacology and harmful algae bloom control. Mar. Drugs 2018, 16, 55. [Google Scholar] [CrossRef] [PubMed]
Run Order | Ethanol Concentration | Ultrasonic Time | Liquid-to-Solid Ratio | Response Value |
---|---|---|---|---|
1 | 80 | 20 | 20 | 6.989 |
2 | 100 | 20 | 25 | 2.400 |
3 | 100 | 30 | 20 | 1.397 |
4 | 80 | 20 | 20 | 6.847 |
5 | 80 | 20 | 20 | 6.845 |
6 | 80 | 30 | 15 | 5.242 |
7 | 80 | 10 | 25 | 5.003 |
8 | 100 | 10 | 20 | 2.713 |
9 | 80 | 20 | 15 | 5.598 |
10 | 80 | 10 | 20 | 6.154 |
11 | 60 | 30 | 20 | 4.315 |
12 | 60 | 30 | 20 | 2.118 |
13 | 100 | 20 | 15 | 3.140 |
14 | 80 | 20 | 20 | 6.818 |
15 | 60 | 20 | 15 | 3.989 |
16 | 60 | 20 | 25 | 4.842 |
17 | 80 | 30 | 25 | 5.667 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 50.71 | 9 | 5.63 | 16.53 | 0.0006 | Significant |
A-Ethanol concentration | 3.94 | 1 | 3.94 | 11.56 | 0.0114 | * |
B-Ultrasonic time | 1.28 | 1 | 1.28 | 3.77 | 0.0934 | |
C-Liquid-to-solid ratio | 0.0004 | 1 | 0.0004 | 0.0012 | 0.9734 | |
AB | 0.1940 | 1 | 0.1940 | 0.5694 | 0.4751 | |
AC | 0.6344 | 1 | 0.6344 | 1.86 | 0.2147 | |
BC | 0.2601 | 1 | 0.2601 | 0.7632 | 0.4113 | |
A2 | 36.39 | 1 | 36.39 | 106.77 | <0.0001 | * |
B2 | 5.62 | 1 | 5.62 | 16.48 | 0.0048 | * |
C2 | 0.1652 | 1 | 0.1652 | 0.4846 | 0.5088 | |
Residual | 2.39 | 7 | 0.3408 | |||
Lack of Fit | 1.95 | 3 | 0.6507 | 6.00 | 0.0580 | Not significant |
Pure Error | 0.4335 | 4 | ||||
Cor Total | 53.10 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Tan, L.; Han, Y.; Hou, M.; Zhu, Z.; Zhang, X.; Guo, Q.; Zhang, K.; Li, J.; Zhang, Y.; et al. Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth. Microorganisms 2025, 13, 760. https://doi.org/10.3390/microorganisms13040760
Cheng J, Tan L, Han Y, Hou M, Zhu Z, Zhang X, Guo Q, Zhang K, Li J, Zhang Y, et al. Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth. Microorganisms. 2025; 13(4):760. https://doi.org/10.3390/microorganisms13040760
Chicago/Turabian StyleCheng, Jie, Long Tan, Yaxin Han, Mengya Hou, Zhenxia Zhu, Xiu Zhang, Qing Guo, Kaidian Zhang, Jiashun Li, Yang Zhang, and et al. 2025. "Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth" Microorganisms 13, no. 4: 760. https://doi.org/10.3390/microorganisms13040760
APA StyleCheng, J., Tan, L., Han, Y., Hou, M., Zhu, Z., Zhang, X., Guo, Q., Zhang, K., Li, J., Zhang, Y., & Zhang, C. (2025). Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth. Microorganisms, 13(4), 760. https://doi.org/10.3390/microorganisms13040760