Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Determination of Physicochemical Properties During Piggery Slurry Treatment
2.4. Determination of Spectroscopy Characteristics of Padding Materials from the MNS
2.5. DNA Extraction and High-Throughput Sequencing
2.6. Data Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Compost in the MNS
3.2. Spectral Analysis During the Microbial Nest Pile Fermentation Process
3.3. Analysis of Bacterial Community Structure During the MNP Fermentation Process
3.3.1. Diversity of Bacterial Communities
3.3.2. Bacterial Taxonomy Composition
3.3.3. Relationship Between the Bacterial Community and Physicochemical Properties
3.4. Analysis of Fungal Community Structure During the MNP Fermentation Process
3.4.1. Diversity of Fungal Communities
3.4.2. Fungal Taxonomy Composition
3.4.3. Relationship Between the Fungal Community and Physicochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.-J. Resource utilization of agricultural solid waste. J. Integr. Agr. 2021, 20, 1119–1120. [Google Scholar] [CrossRef]
- Liu, J.; Yu, S.; Sangeetha, T.; Shi, C.; Ju, Y.; Yang, C.-X.; Liu, B.; Tu, B.; Liu, C.; Wang, T. Nutrients Removal and its Relation to the Functional Microbes in Algae-Assisted Sequencing Batch Air-Lift Bioreactor Treating Raw Piggery Wastewater; SSRN: Atlanta, GA, USA, 2023. [Google Scholar] [CrossRef]
- Guo, H.; Geng, B.; Liu, X.; Ye, J.; Zhao, Y.; Zhu, C.; Yuan, H. Characterization of bacterial consortium and its application in an ectopic fermentation system. Bioresour. Technol. 2013, 139, 28–33. [Google Scholar] [CrossRef]
- Yang, X.; Geng, B.; Zhu, C.; Li, H.; He, B.; Guo, H. Fermentation performance optimization in an ectopic fermentation system. Bioresour. Technol. 2018, 260, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Liu, X.; Li, J.; Ye, J.; Chen, Z.; Zhu, C.; Geng, B. Treatment of piggery waste in an ectopic microbial fermentation system and safety evaluation of generated organic fertilizer. J. Chem. Technol. Biot. 2022, 97, 1336–1344. [Google Scholar] [CrossRef]
- Zhao, S.; Chang, Y.; Liu, J.; Sangeetha, T.; Feng, Y.; Liu, D.; Xu, C. Removal of antibiotic resistance genes and mobile genetic elements in a three-stage pig manure management system: The implications of microbial community structure. J. Environ. Manag. 2022, 323, 116185. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Kim, H.H.M.; Gates, R.S.; Wang, K. Optimal design of manure management for intensive swine feeding operation: A modeling method based on analytical target cascading. J. Clean. Prod. 2021, 282, 124550. [Google Scholar] [CrossRef]
- Goncalves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res. 2012, 46, 1684–1692. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, C.; Geng, B.; Liu, X.; Ye, J.; Tian, Y.; Peng, X. Improved fermentation performance in an expanded ectopic fermentation system inoculated with thermophilic bacteria. Bioresour. Technol. 2015, 198, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Rawoteea, S.A.; Mudhoo, A.; Kumar, S. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations. Bioresour. Technol. 2017, 227, 171–178. [Google Scholar] [CrossRef]
- Cui, M.-H.; Chen, L.; Sangeetha, T.; Yan, W.-M.; Zhang, C.; Zhang, X.-D.; Niu, S.-M.; Liu, H.; Liu, W.-Z. Impact and migration behavior of triclosan on waste-activated sludge anaerobic digestion. Bioresour. Technol. 2024, 407, 131094. [Google Scholar] [CrossRef]
- Gao, L.; Sangeetha, T.; Wang, L.; Cui, M.-H.; Guo, Z.-C.; Yan, W.-M.; Liu, W.-Z.; Wang, A.-J. The regulating role of applied voltage on methanogenesis in an up-flow single-chamber microbial electrolysis assisted reactor. J. Water Process Eng. 2023, 53, 103799. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Zhu, J.; Luo, A. Stratification of solids, nitrogen and phosphorus in swine manure in deep pits under slatted floors. Bioresour. Technol. 2002, 83, 203–211. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, J.; Zhang, H.; Shi, H.; Liu, G.; Che, J.; Liu, B. Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting. Bioresour. Technol. 2021, 319, 124155. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Huang, Z.; Feng, X.; Memon, F.U.; Cui, Y.; Duan, X.; Zhu, J.; Tettamanti, G.; Hu, W.; Tian, L. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. Waste Manag. 2024, 177, 252–265. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Liu, S.; Wei, M.; Hou, X.; Jiao, H. Microbial nest treatment technology for livestock manure. China Anim. Indu. 2018, 16, 53–54. (In Chinese) [Google Scholar]
- Deng, B.; Luo, J.; Xu, C.; Zhang, X.; Li, J.; Yuan, Q.; Cao, H. Biotransformation of Pb and As from sewage sludge and food waste by black soldier fly larvae: Migration mechanism of bacterial community and metalloregulatory protein scales. Water Res. 2024, 254, 121405. [Google Scholar] [CrossRef]
- Hui, Q.; Niu, S.; Li, Y.; Bo, Y. Application of microbial nest technology in livestock and poultry manure wastewater treatment. Anim. Breed. feed 2020, 19, 44–47. [Google Scholar]
- Niu, S.-M.; Zhang, Q.; Sangeetha, T.; Chen, L.; Liu, L.-Y.; Wu, P.; Zhang, C.; Yan, W.-M.; Liu, H.; Cui, M.-H.; et al. Evaluation of the effect of biofilm formation on the reductive transformation of triclosan in cathode-modified electrolytic systems. Sci. Total Environ. 2023, 865, 161308. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Sangeetha, T.; Yan, W.M.; Sun, F.; Li, Z.; Wang, X.; Pan, K.; Wang, A.; Bi, X.; et al. Integrated microbial electrolysis with high-alkali pretreated sludge digestion: Insight into the effect of voltage on methanogenesis and substrate metabolism. J. Environ. Manag. 2023, 341, 118007. [Google Scholar] [CrossRef]
- Taufek, N.M.; Mohamad Zulkifli, N.F.N.; Hamizah, A.N. Upcycling of food waste generated from the fresh market by utilising black soldier fly larvae: Influence on growth, bioconversion, and nutritional composition. J. Environ. Manag. 2024, 349, 119467. [Google Scholar] [CrossRef]
- Li, Y.; Feng, T.; Bo, Y. Research and application of microbial nest technology in the utilization of fecal pollution resources. Acta Ecol. Anim. Domastici 2018, 39, 74–79. (In Chinese) [Google Scholar]
- Shen, Q.; Sun, H.; Yao, X.; Wu, Y.; Wang, X.; Chen, Y.; Tang, J. A comparative study of pig manure with different waste straws in an ectopic fermentation system with thermophilic bacteria during the aerobic process: Performance and microbial community dynamics. Bioresour. Technol. 2019, 281, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhao, Y.; Pan, D.; Wang, S.; Wu, D.; Wang, L.; Hao, J.; Wei, Z. Heavy metals passivation driven by the interaction of organic fractions and functional bacteria during biochar/montmorillonite-amended composting. Bioresour. Technol. 2021, 329, 124923. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Pan, D.; Lin, H.; Ren, Y.; Zhang, J.; Zhou, B.; Lin, J.; Lin, J. Heterotrophic nitrification and related functional gene expression characteristics of Alcaligenes faecalis SDU20 with the potential use in swine wastewater treatment. Bioprocess. Biosyst. Eng. 2021, 44, 2035–2050. [Google Scholar] [CrossRef]
- Shen, Q.; Tang, J.; Sun, H.; Yao, X.; Wu, Y.; Wang, X.; Ye, S. Straw waste promotes microbial functional diversity and lignocellulose degradation during the aerobic process of pig manure in an ectopic fermentation system via metagenomic analysis. Sci. Total Environ. 2022, 838, 155637. [Google Scholar] [CrossRef]
- Tian, W.; Li, L.; Liu, F.; Zhang, Z.; Yu, G.; Shen, Q.; Shen, B. Assessment of the maturity and biological parameters of compost produced from dairy manure and rice chaff by excitation-emission matrix fluorescence spectroscopy. Bioresour. Technol. 2012, 110, 330–337. [Google Scholar] [CrossRef]
- Tessier, L.; Cote, O.; Bienzle, D. Sequence variant analysis of RNA sequences in severe equine asthma. PeerJ 2018, 6, e5759. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Sha, G.; Liu, C.; Wang, Z.; Wang, L. Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes: An integrated meta-omics study. J. Hazard. Mater. 2020, 386, 121895. [Google Scholar] [CrossRef]
- Zhu, P.; Li, Y.; Gao, Y.; Yin, M.; Wu, Y.; Liu, L.; Du, N.; Liu, J.; Yu, X.; Wang, L.; et al. Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting. Bioresour. Technol. 2021, 319, 124111. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kalamdhad, A.S. Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol. Eng. 2013, 52, 59–69. [Google Scholar] [CrossRef]
- Droussi, Z.; D’Orazio, V.; Provenzano, M.R.; Hafidi, M.; Ouatmane, A. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 2009, 164, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Shen, Y.; Ding, J.; Meng, H.; Zhou, H.; Zhou, J.; Cheng, H.; Zhang, X.; Wang, J.; Wang, H.; et al. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresour. Technol. 2022, 344, 126236. [Google Scholar] [CrossRef] [PubMed]
- Jolanun, B.; Towprayoon, S. Novel bulking agent from clay residue for food waste composting. Bioresour. Technol. 2010, 101, 4484–4490. [Google Scholar] [CrossRef]
- Ren, G.; Xu, X.; Qu, J.; Zhu, L.; Wang, T. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J. Microbiol. Biotechnol. 2016, 32, 101. [Google Scholar] [CrossRef]
- Abid, N.; Sayadi, S. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Manag. 2006, 26, 1099–1107. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef]
- Gu, W.; Zhang, F.; Xu, P.; Tang, S.; Xie, K.; Huang, X.; Huang, Q. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting. Bioresour. Technol. 2011, 102, 6529–6535. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Zhang, D.; Chen, Y.; Dai, L. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio. Bioresour. Technol. 2016, 216, 323–330. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Y. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 2018, 248, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.J.; Kim, K.Y.; Kim, H.T.; Kim, C.N.; Umeda, M. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manag. 2008, 28, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, G.; Liu, D.; Xu, D.; Shen, Q. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity. Chemosphere 2011, 82, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, X.; Zhao, X.; Xi, B.; Wei, Y.; Zhang, X.; Zhao, Y. Fluorescence characteristics of molecular weight fractions of dissolved organic matter derived from composts. Int. Biodeter. Biodegr. 2016, 113, 187–194. [Google Scholar] [CrossRef]
- Carballo, T.; Gil, M.V.; Gomez, X.; Gonzalez-Andres, F.; Moran, A. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 2008, 19, 815–830. [Google Scholar] [CrossRef]
- Chatterjee, N.; Flury, M.; Hinman, C.; Cogger, C.G. Chemical and Physical Characteristics of Compost Leachates. A Review Report Prepared for the Washington State Department of Transportation; Washington State University: Pullman, WA, USA, 2013. [Google Scholar]
- Wang, K.; Li, X.; He, C.; Chen, C.L.; Bai, J.; Ren, N.; Wang, J.Y. Transformation of dissolved organic matters in swine, cow and chicken manures during composting. Bioresour. Technol. 2014, 168, 222–228. [Google Scholar] [CrossRef]
- Fialho, L.L.; Lopes da Silva, W.T.; Milori, D.M.; Simoes, M.L.; Martin-Neto, L. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresour. Technol. 2010, 101, 1927–1934. [Google Scholar] [CrossRef]
- Farah Nadia, O.; Xiang, L.Y.; Lie, L.Y.; Chairil Anuar, D.; Mohd Afandi, M.P.; Azhari Baharuddin, S. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process. J. Environ. Sci. 2015, 28, 81–94. [Google Scholar] [CrossRef]
- Chang, D.; Gao, S.; Zhou, G.; Cao, W. Spectroscopic characteristics of water-extractable organic matter from different green manures. Environ. Technol. 2021, 42, 3688–3697. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Chao, A.; Shen, T.-J. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ. Ecol. Stat. 2003, 10, 429–443. [Google Scholar] [CrossRef]
- Esty, W.W. The efficiency of Good’s nonparametric coverage estimator. Ann. Stat. 1986, 14, 1257–1260. [Google Scholar] [CrossRef]
- Wen, P.; Wang, Y.; Huang, W.; Wang, W.; Chen, T.; Yu, Z. Linking Microbial Community Succession with Substance Transformation in a Thermophilic Ectopic Fermentation System. Front. Microbiol. 2022, 13, 886161. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Zhu, C.; Song, T.; Chen, Z.; Jin, S.; Geng, B. Bacterial dynamics and functions driven by biomass wastes to promote rural toilet blackwater absorption and recycling in an ectopic fermentation system. Chemosphere 2023, 316, 137804. [Google Scholar] [CrossRef]
- Wang, S.P.; Gao, Y.; Sun, Z.Y.; Peng, X.Y.; Xie, C.Y.; Tang, Y.Q. Thermophilic semi-continuous composting of kitchen waste: Performance evaluation and microbial community characteristics. Bioresour. Technol. 2022, 363, 127952. [Google Scholar] [CrossRef]
- Wang, J.M.; Gan, X.M.; Pu, F.J.; Wang, W.X.; Ma, M.; Sun, L.L.; Hu, J.W.; Hu, B.; Zhang, R.P.; Bai, L.L.; et al. Effect of fermentation bed on bacterial growth in the fermentation mattress material and cecum of ducks. Arch. Microbiol. 2021, 203, 1489–1497. [Google Scholar] [CrossRef]
Material | C/N | pH | Moisture Content (%) | EC (μs/cm) | NH4+-N/NO3−-N |
---|---|---|---|---|---|
Piggery slurry | 7.32 ± 1.10 | 8.80 ± 0.21 | 92.12 ± 3.12 | 7520.54 ± 86.26 | 54.98 ± 6.24 |
Rice husk | 77.66 ± 5.23 | 5.01 ± 0.13 | 10.43 ± 1.39 | 105.65 ± 14.21 | 1.46 ± 0.98 |
Sawdust | 270.25 ± 10.34 | 6.21 ± 0.43 | 7.79 ± 0.32 | 54.12 ± 4.29 | 1.24 ± 0.24 |
Mixed material | 55.23 ± 5.94 | 6.48 ± 0.18 | 19.87 ± 3.82 | 426.33 ± 16.29 | 14.29 ± 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, L.; Wang, G.; Xu, M.; Xin, Y.; Song, H.; Liu, J.; Fu, J.; Yang, Q.; Tian, Q.; et al. Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater. Microorganisms 2025, 13, 685. https://doi.org/10.3390/microorganisms13030685
Chen L, Li L, Wang G, Xu M, Xin Y, Song H, Liu J, Fu J, Yang Q, Tian Q, et al. Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater. Microorganisms. 2025; 13(3):685. https://doi.org/10.3390/microorganisms13030685
Chicago/Turabian StyleChen, Lifei, Lusheng Li, Guiying Wang, Meng Xu, Yizhen Xin, Hanhan Song, Jiale Liu, Jiani Fu, Qi Yang, Qile Tian, and et al. 2025. "Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater" Microorganisms 13, no. 3: 685. https://doi.org/10.3390/microorganisms13030685
APA StyleChen, L., Li, L., Wang, G., Xu, M., Xin, Y., Song, H., Liu, J., Fu, J., Yang, Q., Tian, Q., Wang, Y., Sun, H., Lin, J., Chen, L., Zhang, J., & Lin, J. (2025). Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater. Microorganisms, 13(3), 685. https://doi.org/10.3390/microorganisms13030685