Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determining the Chemical Characteristics and Enzyme Activity of Soil
2.3. DNA Extraction and PCR Amplification
2.4. Illumina Novaseq Sequencing
2.5. Sequencing Data Processing
2.6. Statistical Analyses
3. Results
3.1. Comparative Analysis of the Physical and Chemical Properties of HR, R, and S
3.2. Analysis of Microbial Diversity and High-Throughput Sequencing Data in HR, R, and S
3.3. Cluster Analysis of Microbial Communities and Similarities and Differences in Their Structures in HR, R, and S
3.4. Community Composition and Abundance of Dominant Species in HR, R, and S
3.5. Functional Analysis of the HR, R, and S Microbial Communities
4. Discussion
4.1. Relationship Between Physical and Chemical Properties of Inter-Root Soil and Plant Health
4.2. Diversity and Community Composition of Inter-Root Soil Microorganisms in Relation to Plant Health
4.3. Relationship Between Inter-Root Soil Microbial Function and Plant Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Yang, S.; Dai, X.; Hu, B.; Xu, H.; Zhu, F.; Pei, S.; Yuan, F. The Rapid Development of China’s Chili Pepper Industry Over the Past 40 Years. Acta Hortic. Sin. 2025, 52, 247–258. [Google Scholar]
- Alice, C.; Francesca, N.; Riccardo, B.; Elena, B. Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. Plants 2022, 11, 1856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, B.; Cheng, C.; Fu, B.; Qi, M. Comparative Transcriptomics Analysis Reveals the Differences in Transcription between Resistant and Susceptible Pepper (Capsicum annuum L.) Varieties in Response to Anthracnose. Plants 2024, 13, 527. [Google Scholar] [CrossRef]
- Shen, H.; Yang, Q.; Xie, X.; Deng, H.; Chen, F.; Sun, D.; Jiang, S.; Lin, B. Study on Biological Characteristics of Colletotrichum acutatum in Pepper. Guangdong Agric. Sci. 2021, 48, 110–117. [Google Scholar]
- Ruangwong, O.U.; Pornsuriya, C.; Pitija, K.; Sunpapao, A. Biocontrol Mechanisms of Trichoderma koningiopsis PSU3-2 against Postharvest Anthracnose of Chili Pepper. J. Fungi 2021, 7, 276. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, H.; Xiao, Z.; Mo, W.; Cheng, H.; Peng, L.; Ding, H. Identification and fungicide sensitivity of pathogen causing anthracnose of pepper. J. South China Agric. Univ. 2023, 44, 430–437. [Google Scholar]
- Freeman, S. Management, survival strategies, and host range of colletotrichum acutatum on strawberry. HortScience 2008, 43, 66–68. [Google Scholar] [CrossRef]
- Fu, L.; Xiong, W.; Dini-Andreote, F.; Wang, B.; Tao, C.; Ruan, Y.; Shen, Z.; Li, R.; Shen, Q. Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease. Front. Agric. Sci. Eng. 2020, 7, 307–316. [Google Scholar] [CrossRef]
- Birt, H.W.; Tharp, C.L.; Custer, G.F.; Dini-Andreote, F. Root phenotypes as modulators of microbial microhabitats. Front. Plant Sci. 2022, 13, 1003868. [Google Scholar] [CrossRef]
- Stringlis, I.A.; Yu, K.E.; Feussner, K.; de Jonge, R.; Van Bentum, S.; Van Verk, M.C.; Berendsen, R.L.; Bakker, P.A.; Feussner, I.; Pieterse, C.M. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [Google Scholar] [CrossRef] [PubMed]
- Ge, A.H.; Liang, Z.H.; Xiao, J.L.; Zhang, Y.; Zeng, Q.; Xiong, C.; Han, L.L.; Wang, J.T.; Zhang, L.M. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agric. Ecosyst. Environ. 2021, 312, 107336. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Yang, N.; Wen, Z.; Sun, X.; Chai, Y.; Ma, Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 2018, 9, 3429. [Google Scholar] [CrossRef]
- Parratt, S.R.; Laine, A.L. Pathogen dynamics under both bottom-up host resistance and top-down hyperparasite attack. J. Appl. Ecol. 2018, 55, 2976–2985. [Google Scholar] [CrossRef]
- Aleksej, Z.; Sergej, A.; Olga, P.; Daniel, R.M.; Peer, B. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA 2015, 112, 6449–6454. [Google Scholar]
- Shi, B.; Xie, Y.; Guan, F.; Yang, X.; Zhang, J.; Wang, K.; Wan, X. Analysis on Population Fluctuation of Rhizosphere Microorganism of Resistant and Susceptible Bitter Gourd. Chin. Agric. Sci. Bull. 2024, 40, 118–124. [Google Scholar]
- Chengjian, W. Analysis of Tobacco Rhizosphere Microbiota and Construction of Biocontrol Microbial Community Against Bacterial Wilt Disease; Guangxi University: Nanning, China, 2024. [Google Scholar] [CrossRef]
- Sabu, R.; Aswani, R.; Prabhakaran, P.; Krishnakumar, B.; Radhakrishnan, E.K. Differential Modulation of Endophytic Microbiome of Ginger in the Presence of Beneficial Organisms, Pathogens and Both as Identified by DGGE Analysis. Curr. Microbiol. 2018, 75, 1033–1037. [Google Scholar] [CrossRef]
- Yin, J. Study on the Prevention and Control of Tomato Bacterial Wilt Using Microbiome; Huazhong Agricultural University: Wuhan, China, 2023. [Google Scholar]
- Zhang, Y.; Chen, Z.; Chen, F.; Yan, J.; Wu, J.; Xi, Q.; Ge, S. Investigation of Microbial Community Characteristics in Pepper Rhizosphere at Seedling Stage Under Varied Soil Conditions. Guangdong Agric. Sci. 2024, 51, 129–141. [Google Scholar]
- Warner, L.S. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. J. Am. Stat. Assoc. 2012, 60, 63–69. [Google Scholar] [CrossRef]
- Song, X.; Pan, Y.; Li, L.; Wu, X.; Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS ONE 2018, 13, e0193811. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kreller, C.R.; Greenberg, M.M. Preparation and analysis of oligonucleotides containing the c40 -oxidized abasic site and related mechanistic probes. J. Org. Chem. 2005, 70, 8122–8129. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Du, A.P.; Wang, Z.C.; Zhu, W.K.; Li, C.; Wu, L.C. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For. Ecol. Manag. 2020, 456, 117683. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Xiang, X.; Sun, R.; Yang, T.; He, D.; Zhang, K.; Ni, Y.; Zhu, Y.G.; Adams, J.M.; et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 2018, 6, 27. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Xu, J.D.; Huang, T.X.; Zhong, J.; Yu, H.; Qiu, J.P.; Guo, J.H. Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci. Nutr. 2020, 8, 5776–5784. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Alves, K.J.; da Silva, M.C.P.; Cotta, S.R.; Ottoni, J.R.; van Elsas, J.D.; de Oliveira, V.M.; Andreote, F.D. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz. J. Microbiol. 2020, 51, 217–228. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Klein, D.A.; Loh, T.C.; Goulding, R.L. A rapid procedure to evaluate dehydrogenase activity of soils low in organic matter. Soil Biol. Biochem. 1971, 3, 385–387. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Eissa, N.; Bernstein, C.N.; Khafipour, E.; Ghia, J.E. Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota. PLoS ONE 2015, 10, e0142536. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, H.; Liang, S.; Chang, G.; Ma, K.; Niu, L.; Mi, G.; Tang, Y.; Tian, B.; Shi, X. High-Throughput Sequencing Reveals the Effect of the South Root-Knot Nematode on Cucumber Rhizosphere Soil Microbial Community. Agronomy 2023, 13, 1726. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Shan, Q.; Wan, Y.; Liang, J.; He, W.; Zeng, J. HS–SPME combined with GC–MS and GC–O for characterization of key aroma-active compounds in fruity and grassy peppers (Capsicum chinense Jacq.). Food Chem. X 2024, 24, 101944. [Google Scholar] [CrossRef]
- Ma, S.; Dong, R.; Wang, S.; Zhang, Z.; Wang, J. Study on the current situation of anthracnose occurrence and control measures of pepper. World Trop. Agric. Inf. 2024, 11, 54–56. [Google Scholar]
- Yerken, G. Occurrence and control measures of anthracnose in chili peppers. Farmer’s Friend 2017, 2, 75. [Google Scholar]
- Youshi, Y.; Chunzhong, T. Causes of pepper anthracnose in Jinhu County, Jiangsu Province and comprehensive control measures. Agric. Eng. Technol. 2021, 41. [Google Scholar] [CrossRef]
- Ren, L.; Qin, N.; Ning, J.; Yin, H.; Lü, H. Capsicum Endophytic Bacterial Strain LY7 and Prochloraz Synergistically Control Chilli Anthracnose. J. Fungi 2024, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Fravel, D.R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Western Farm Press. How Soil Microbes Help Plants Resist Disease; Western Farm Press: St. Charles, IL, USA, 2020. [Google Scholar]
- Wanyu, L. Screening of Antagonistic Bacteria Against Stem Rot of Anoectochilus roxburghii and Study on Induction of Plant Resistance Mechanisms; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Mishra, A.; Pattnaik, T.M.; Das, D.; Das, M. Vertical Distribution of Available Plant Nutrients in Soils of Mid Central Valley at Odisha Zone, India. Am. J. Exp. Agric. 2015, 7, 214–221. [Google Scholar] [CrossRef]
- Fan, Y.; Chenqin, W.; Yongquan, K.; Renquan, Z. Effect of Soil Available Nutrient Content on Yield of Chili. Tillage Cultiv. 2018, 3, 009. [Google Scholar]
- Reitz, N.F.; Shackel, K.A.; Mitcham, E.J. Differential effects of excess calcium applied to whole plants vs. excised fruit tissue on blossom-end rot in tomato. Sci. Hortic. 2021, 290, 110514. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Cano, A.; Johnson, J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl. Soil Ecol. 2018, 126, 121–128. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, Y.; Jiang, S.; Wu, P.; Zhang, X.; Liu, Q. Response of Soil Enzymes Activities and Microbial Biomass Carbonand Nitrogen Characteristics to Planting Years of Aralia elata. Shandong Agric. Sci. 2024, 56, 114–120. [Google Scholar]
- Li, Y.; Xing, X.; Qiu, X.; Xu, S.; Ni, F.; Zhao, L.; Yang, X. Effects of Phosphorus Application Rate on Phosphohydrolase Activityand Distribution of Phosphate Solubilizing Bacteria in Paddy Soil. Shandong Agric. Sci. 2024, 56, 111–117. [Google Scholar]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2005, 38, 1451–1461. [Google Scholar] [CrossRef]
- Lacey, M.J.; Wilson, C.R. Relationship of Common Scab Incidence of Potatoes Grown in Tasmanian Ferrosol Soils with pH, Exchangeable Cations and other Chemical Properties of those Soils. J. Phytopathol. 2001, 149, 679–683. [Google Scholar] [CrossRef]
- Senechkin, I.V.; van Overbeek, L.S.; van Bruggen, A.H. Greater Fusarium wilt suppression after complex than after simple organic amendments as affected by soil pH, total carbon and ammonia-oxidizing bacteria. Appl. Soil Ecol. 2014, 73, 148–155. [Google Scholar] [CrossRef]
- Hiddink, G.A.; Bruggen, A.H.C.; Termorshuizen, A.J.; Raaijmakers, J.M. Effect of Organic Management of Soils on Suppressiveness to Gaeumannomyces graminis var. tritici and its Antagonist, Pseudomonas fluorescens. Eur. J. Plant Pathol. 2005, 113, 417–435. [Google Scholar] [CrossRef]
- Nam, M.H.; Lee, H.C.; Kim, T.I.; Lee, E.M.; Yoon, H.S. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture. Res. Plant Dis. 2018, 24, 26–32. [Google Scholar] [CrossRef]
- Retamales, J.B.; Mena, C.; Lobos, G.; Morales, y. A regression analysis on factors affecting yield of highbush blueberries. Sci. Hortic. 2015, 186, 7–14. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef]
- Van Elsas, J.D.; Chiurazzi, M.; Mallon, C.A.; Elhottovā, D.; Krištůfek, V.; Salles, J.F. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 2012, 109, 1159–1164. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Liu, F.; Liang, J.; Zhao, P.; Tsui, C.K.; Cai, L. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nat. Commun. 2022, 13, 7890. [Google Scholar] [CrossRef]
- Shujuan, C. Relationship Between Rhizosphere Soil Properties, Root Metabolome and Poor Plant Growth in North High-Bush Blueberry (Vaccinium corymbosum) and Its Mechanism; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2006, 39, 1–23. [Google Scholar] [CrossRef]
- Quaiser, A.; Ochsenreiter, T.; Lanz, C.; Schuster, S.C.; Treusch, A.H.; Eck, J.; Schleper, C. Acidobacteria form a coherent but highly diverse group within the bacterial domain: Evidence from environmental genomics. Mol. Microbiol. 2003, 50, 563–575. [Google Scholar] [CrossRef]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef]
- Jean, C.; Cheryl, K. Mobile genetic elements in the bacterial phylum Acidobacteria. Mob. Genet. Elem. 2012, 2, 179–183. [Google Scholar]
- de Castro, V.H.L.; Schroeder, L.F.; Quirino, B.F.; Kruger, R.H.; Barreto, C.C. Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can. J. Microbiol. 2013, 59, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Venturini, A.M.; Meyer, K.M.; Klein, A.M.; Tiedje, J.M.; Bohannan, B.J.; Nüsslein, K.; Tsai, S.M.; Rodrigues, J.L. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon. Front. Microbiol. 2015, 6, 1443. [Google Scholar] [CrossRef]
- Sanguin, H.; Sarniguet, A.; Gazengel, K.; Moënne-Loccoz, Y.; Grundmann, G.L. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol. 2009, 184, 694–707. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Trivedi, C.; Hamonts, K.; Anderson, C.; Singh, B.K. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol. Biochem. 2017, 111, 10–14. [Google Scholar] [CrossRef]
- Fajun, Y.; Weiqi, W.; Ziwei, W.; Hongda, X.; Maoquan, G.; Shaoying, L.; Xiande, L.; Yongxun, Z.; Chuanhui, W. Effects of Soil Nutrient and Measurement Ratioon Bacterial Community Structure in Fujian Tea Garden. J. Soil Water Conserv. 2023, 37, 209–218. [Google Scholar]
- Jing, W.; Huiping, Z.; Xiao, S.; Qiaojin, F.; Xuebang, L.; Fengqin, L.; Yizhen, S.; Yun, C.; Zhiliang, Y. Microbial diversity in rhizosphere soil of Anemone altaica. Guihaia 2023, 43, 1467–1477. [Google Scholar]
- Wang, H.; Zhu, W.; Cui, J.; Yang, P.; Du, J.; Sun, H.; Zhou, Y.; Jiang, S. Characteristics of Rhizosphere Soil Microbial Community Structure and Its Effects on Secondary Metabolites of Notopterygium incisum. J. Anhui Agric. Sci. 2023, 51, 173–178. [Google Scholar]
- Stone, B.W.; Li, J.; Koch, B.J.; Blazewicz, S.J.; Dijkstra, P.; Hayer, M.; Hofmockel, K.S.; Liu, X.J.A.; Mau, R.L.; Morrissey, E.M.; et al. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nat. Commun. 2021, 12, 3381. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.L.; Zhao, Y.Y.; Wang, D.X.; Xie, T.Q.; Lv, J.G.; Jin, D.F.; Shi, H.Z. Effects of Organic Fertilizers on Nitrogen Mineralization, Soil Enzyme Activities and Microbial Communities in Tobacco-planting Soil. Soils 2023, 55, 1025–1034. [Google Scholar]
- Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; et al. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand. Genom. Sci. 2013, 7, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, A.; Fu, W.; Peng, D.; Wang, G.; Ji, J.; Jin, C.; Guan, C. Tobacco-associated with Methylophilus sp. FP-6 enhances phytoremediation of benzophenone-3 through regulating soil microbial community, increasing photosynthetic capacity and maintaining redox homeostasis of plant. J. Hazard. Mater. 2022, 431, 128588. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhou, S.; Zhou, C.; Zhang, Z.; Chen, W.; Dong, Z.; Li, X.; Tao, Y.; Zou, X.; Li, X. Differences and associations of endophytic microbial communities in different ecological niches of chilli pepper. Acta Microbiol. Sin. 2025, 65, 169–181. [Google Scholar]
- Wang, H.; Guo, S.; Huang, M.; Thorsten, L.H.; Wei, J. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci. China Life Sci. 2010, 53, 1163–1169. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Ma, C.X.; Yu, Q.; Liu, Y.J.; Li, J.G.; Yu, X.; Zhao, Y.; Qu, L.Y. The characteristics of rhizosphere soil fungal community of restored vegetation inInner Mongolia open pit mine dump. Acta Ecol. Sin. 2025, 4, 1–13. [Google Scholar]
- Guo, J.; Liu, W.; Zhu, C.; Luo, G.; Kong, Y.L.; Ling, N.; Wang, M.; Dai, J.; Shen, Q.; Guo, S. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 2018, 424, 335–349. [Google Scholar] [CrossRef]
- Helgason, T.; Fitter, A.H. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J. Exp. Bot. 2009, 60, 2465–2480. [Google Scholar] [CrossRef]
- Wei, Y.; Dai, Y. Ecological function of wood-inhabiting fungi in forest ecosystem. Chin. J. Appl. Ecol. 2004, 10, 1935–1938. [Google Scholar]
- Chen, Y.Y.; Xia, W.Y.; Zhao, H.; Zeng, M. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land. Acta Ecol. Sin. 2022, 42, 5009–5021. [Google Scholar]
- Gibbons, S.M. Microbial community ecology: Function over phylogeny. Nat. Ecol. Evol. 2017, 1, 32. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.N.; Wang, H.X.; Lu, C.H.; Liu, Z.; Shen, Y.M. Ansamycins Produced by Streptomyces sp. LZ35. Chin. Pharm. J. 2011, 46, 1317–1320. [Google Scholar]
- Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 4028–4037. [Google Scholar] [CrossRef]
- Jana, F.; Simone, E.; Carsten, Z.; Andreas, K. Targeting heat-shock-protein 90 (Hsp90) by natural products: Geldanamycin, a show case in cancer therapy. Nat. Prod. Rep. 2013, 30, 1299–1323. [Google Scholar]
- Lounis, N.; Roscigno, G. In vitro and in vivo activities of new rifamycin derivatives against mycobacterial infections. Curr. Pharm. Des. 2004, 10, 3229–3238. [Google Scholar] [CrossRef]
- Bruce, D.; Elissa, R.M.; Jackson, S. Cost-benefit analysis comparing trough, two-level AUC, and Bayesian AUC dosing for vancomycin’ by V. Lee et al. Clin. Microbiol. Infect. 2021, 27, 927–928. [Google Scholar]
- Daniel, W.; Franziska, K.; Diederik, V.T.; Ghislaine, R.; Pierre-Emmanuel, C. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar]
- Zhang, M.; Che, R.; Cheng, Z.; Zhao, H.; Wu, C.; Hu, J.; Zhang, S.; Liu, D.; Cui, X.; Wu, Y. Decades of reforestation significantly change microbial necromass, glomalin, and their contributions to soil organic carbon. Agric. Ecosyst. Environ. 2023, 346, 108362. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, H.; Ai, Y.; Li, F.; Wu, Z. Research Progress on Effect of Arbuscular Mycorrhizal Fungi on Soil Carbon Balance. J. Agric. Sci. Technol. 2025, 1–14. [Google Scholar] [CrossRef]
- Chen, W.; Ye, T.; Sun, Q.; Niu, T.; Zhang, J. Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings. Front. Plant Sci. 2023, 13, 1058092. [Google Scholar] [CrossRef]
- Chen, W.; Ye, T.; Sun, Q.; Niu, T.; Zhang, J. The relationship between arbuscular mycorrhizal fungi (AMF) and anthracnose occurrence in Camellia oleifera. J. Biol. 2023, 40, 35–40. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, M.; Hong, Y.; Wang, Y.; Chang, X.; Shi, G.; Xiao, H.; Yao, Q.; Yang, F. Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers. Microorganisms 2025, 13, 661. https://doi.org/10.3390/microorganisms13030661
Ma Y, Liu M, Hong Y, Wang Y, Chang X, Shi G, Xiao H, Yao Q, Yang F. Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers. Microorganisms. 2025; 13(3):661. https://doi.org/10.3390/microorganisms13030661
Chicago/Turabian StyleMa, Yongbin, Miaomiao Liu, Yuting Hong, Yichao Wang, Xiaoke Chang, Gongyao Shi, Huaijuan Xiao, Qiuju Yao, and Fan Yang. 2025. "Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers" Microorganisms 13, no. 3: 661. https://doi.org/10.3390/microorganisms13030661
APA StyleMa, Y., Liu, M., Hong, Y., Wang, Y., Chang, X., Shi, G., Xiao, H., Yao, Q., & Yang, F. (2025). Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers. Microorganisms, 13(3), 661. https://doi.org/10.3390/microorganisms13030661