Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting, Selection Criteria and Definitions
2.2. Diagnosis of BSI and Microbiological Tests
2.3. Antimicrobial Susceptibility Testing (AST)
2.3.1. Screening and Confirmation of ESBLs
2.3.2. Screening and Confirmation of Carbapenemase Production
2.4. Molecular Mouse System
2.5. Data Analyses
2.6. Retrospective Analysis of Potential Clinical Impact
3. Results
3.1. Identification of Gram-Negative BSI Pathogens
3.2. Detection of Resistance Genes
3.3. Performance of MMS Identification and Resistance Gene Detection Assays for Each Target Compared to Reference Methods
3.4. Time to Results of MMS Testing and Preliminary Results of Reference Methods
3.5. Potential Impact of MMS Results on Empirical Antimicrobial Therapy
3.6. Hospital Wards with Positive BCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMS | Antimicrobial stewardship |
AST | Antimicrobial susceptibility testing |
BC | Blood culture |
BSI | Bloodstream infections |
CRAB | Carbapenem resistant Acinetobacter baumannii |
ESBL | Extended-spectrum beta-lactamases |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
GNB | Gram-negative bacteria |
ICU | Intensive Care Unit |
MDR | Multidrug-resistant |
MMS | Molecular Mouse System |
PCR | Polymerase chain reaction |
WHO | World Health Organization |
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Rhee, C.; Kadri, S.S.; Dekker, J.P.; Danner, R.L.; Chen, H.-C.; Fram, D.; Zhang, F.; Wang, R.; Klompas, M.; For The Cdc Prevention Epicenters Program. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated with Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw. Open 2020, 3, e202899. [Google Scholar] [CrossRef]
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; E Wool, E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2022–2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/healthcare-associated-point-prevalence-survey-acute-care-hospitals-2022-2023.pdf (accessed on 13 January 2025).
- The Croatian Academy of Medical Sciences. Antibiotic Resistance in Croatia, 2023. Available online: https://iskra.bfm.hr/wp-content/uploads/2024/11/Knjiga-2023_web.pdf (accessed on 13 January 2025).
- Bedenić, B.; Slade, M.; Starčević, L.Ž.; Sardelić, S.; Vranić-Ladavac, M.; Benčić, A. Epidemic spread of OXA-48 beta-lactamase in Croatia. J. Med. Microbiol. 2018, 67, 1031–1041. [Google Scholar] [CrossRef]
- Tićac, M.; Grubić Kezele, T.; Bubonja Šonje, M. Impact of Appropriate Empirical Antibiotic Treatment on the Clinical Response of Septic Patients in Intensive Care Unit: A Single-Center Observational Study. Antibiotics 2024, 13, 569. [Google Scholar] [CrossRef]
- Peri, A.M.; Chatfield, M.D.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Rapid Diagnostic Tests and Antimicrobial Stewardship Programs for the Management of Bloodstream Infection: What Is Their Relative Contribution to Improving Clinical Outcomes? A Systematic Review and Network Meta-analysis. Clin. Infect. Dis. 2024, 79, 502–515. [Google Scholar] [CrossRef]
- Liborio, M.P.; Harris, P.N.A.; Ravi, C.; Irwin, A.D. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024, 12, 1824. [Google Scholar] [CrossRef] [PubMed]
- Bandy, S.M.; Jackson, C.B.; Black, C.A.; Godinez, W.; Gawrys, G.W.; Lee, G.C. Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections. Antibiotics 2023, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Słabisz, N.; Leśnik, P.; Żybura-Wszoła, K.; Dudek-Wicher, R.; Nawrot, U.; Majda, J. Assessing the Interpretation of Molecular Test Results in the Diagnosis of Bloodstream Infections. Diagnostics 2024, 14, 915. [Google Scholar] [CrossRef]
- Molecular Mouse. Alifax. 2024. Available online: https://www.alifax.com/products/molecular-mouse/ (accessed on 20 December 2024).
- Bazzi, A.M.; Rabaan, A.A.; Fawarah, M.M.; Al-Tawfiq, J.A. Direct identification and susceptibility testing of positive blood cultures using high speed cold centrifugation and Vitek II system. J. Infect. Public Health 2017, 10, 299–307. [Google Scholar] [CrossRef]
- EUCAST, European Committee on Antimicrobial Susceptibility Testing. Methodology—EUCAST Rapid Antimicrobial Susceptibility Testing (RAST) Directly from Positive Blood Culture Bottles. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/2024/EUCAST_RAST_methodology_v5.0_final.pdf (accessed on 20 December 2024).
- EUCAST, European Committee on Antimicrobial Susceptibility Testing. Zone Diameter Breakpoint Tables for Rapid Antimicrobial Susceptibility Testing (RAST) Directly from Blood Culture Bottles. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/2024/EUCAST_RAST_Breakpoint_Table_v_7.2.pdf (accessed on 20 December 2024).
- EUCAST, European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. Available online: https://www.eucast.org./clinical_breakpoints (accessed on 20 December 2024).
- ECDC, European Centre for Disease Prevention and Control. ECDC Technical Report, Expert Consensus Protocol on Colistin Resistance Detection and Characterisation for the Survey of Carbapenem- and/or Colistin-Resistant Enterobacteriaceae. 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/expert-consensus-protocol-colistin-resistance-detection-and-characterisation (accessed on 20 December 2024).
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. Available online: http://www.eucast.org/resistance_mechanisms (accessed on 20 December 2024).
- The Croatian Academy of Medical Sciences. Antibiotic Resistance in Croatia, 2021. Available online: https://iskra.bfm.hr/wp-content/uploads/2022/11/Knjiga-2021-za-web-final.pdf (accessed on 13 January 2025).
- The Croatian Academy of Medical Sciences. Antibiotic Resistance in Croatia, 2022. Available online: https://iskra.bfm.hr/wp-content/uploads/2023/11/Knjiga-2022_1-za-web.pdf (accessed on 13 January 2025).
- Bassetti, M.; Vena, A.; Labate, L.; Giacobbe, D.R. Empirical antibiotic therapy for difficult-to-treat Gram-negative infections: When, how, and how long? Curr. Opin. Infect. Dis. 2022, 35, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lindsley, K.; Bleak, T.C.; Jiudice, S.; Uyei, J.; Gu, Y.; Wang, Y.; Timbrook, T.T.; Balada-Llasat, J.-M. Performance of molecular tests for diagnosis of bloodstream infections in the clinical setting: A systematic literature review and meta-analysis. Clin. Microbiol. Infect. 2024, 31, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report-EARS-Net-2023.pdf (accessed on 13 January 2025).
- Meštrović, T. Antimicrobial resistance in Klebsiella pneumoniae as an independent risk factor for bacteraemia-related mortality. Hong Kong Med. J. 2021, 27, 385. [Google Scholar] [CrossRef]
- Fiolić, Z.; Bosnjak, Z.; Bedenić, B.; Budimir, A.; Mareković, I.; Cetkovic, H.; Kalenić, S. Nationwide Survey of Klebsiella Pneumoniae Strains Producing CTX-M Extended-spectrum β-lactamases in Croatia. Coll. Antropol. 2015, 39, 947–951. [Google Scholar] [PubMed]
- Tot, T.; Kibel, S.; Sardelić, S.; Nemer, K.; Benčić, A.; Vraneš, J.; Krilanović, M.; Jelić, M.; Tripković, M.; Bubonja-Šonje, M.; et al. Polyclonal spread of colistin resistant Klebsiella pneumoniae in Croatian hospitals and outpatient setting. Germs 2021, 11, 163–178. [Google Scholar] [CrossRef]
- Car, H.; Dobrić, M.; Pospišil, M.; Nađ, M.; Luxner, J.; Zarfel, G.; Grisold, A.; Nikić-Hecer, A.; Vraneš, J.; Bedenić, B. Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms 2024, 12, 2224. [Google Scholar] [CrossRef]
- Bedenić, B.; Siroglavić, M.; Slade, M.; Šijak, D.; Dekić, S.; Musić, M.Š.; Godan-Hauptman, A.; Hrenović, J. Comparison of clinical and sewage isolates of Acinetobacter baumannii from two long-term care facilities in Zagreb; mechanisms and routes of spread. Arch. Microbiol. 2020, 202, 361–368. [Google Scholar] [CrossRef]
- Franjić, K.; Repac Antić, D.; Divjak, V.; Škrobonja, I.; Bubonja Šonje, M.; Abram, M. Colistin resistance in clinical strains of Acinetobacter baumannii. In Proceedings of the CROCMID 2022—13th Croatian Congress of Clinical Microbiology & 10th Croatian Congress on Infectious Diseases, Sibenik, Croatia, 20–23 October 2022. [Google Scholar]
- D’onofrio, V.; Conzemius, R.; Varda-Brkić, D.; Bogdan, M.; Grisold, A.; Gyssens, I.C.; Bedenić, B.; Barišić, I. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Croatia. Infect. Genet. Evol. 2020, 81, 104263. [Google Scholar] [CrossRef]
- Rhouma, M.; Madec, J.Y.; Laxminarayan, R. Colistin: From the shadows to a One Health approach for addressing antimicrobial resistance. Int. J. Antimicrob. Agents 2023, 61, 106713. [Google Scholar] [CrossRef]
- Sadyrbaeva-Dolgova, S.; Sánchez-Suárez, M.D.M.; Reguera Márquez, J.A.; Hidalgo-Tenorio, C. The Challenge of Bacteremia Treatment Due to Non-Fermenting Gram-Negative Bacteria. Microorganisms 2023, 11, 899. [Google Scholar] [CrossRef]
- Mauri, C.; Consonni, A.; Briozzo, E.; Giubbi, C.; Meroni, E.; Tonolo, S.; Luzzaro, F. The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically III Septic Patients. Antibiotics 2024, 13, 517. [Google Scholar] [CrossRef] [PubMed]
Molecular Mouse Result (n = 82) | Type of Blood Culture Bottles (n = 78) AER = 67, ANA = 11 | Ct Value (Mean ± SD) |
---|---|---|
Enterobacterales (n = 73) | ||
E. coli/Shigella spp. (n = 29) | AER = 24; ANA = 5 | 26.3 ± 2.3 |
K. pneumoniae (n = 22) | AER = 19; ANA = 3 | 26.9 ± 2.8 |
Proteus mirabilis (n = 8) | AER = 6; ANA = 2 | 24.5 ± 1.2 |
Enterobacter cloacae (n = 7) | AER = 6; ANA = 1 | 26.4 ± 3.7 |
Serratia marcescens (n = 3) | AER = 3; ANA = 0 | 26.5 ± 1.3 |
K. oxytoca (n = 2) | AER = 2; ANA = 0 | 29.5 ± 0.0 |
a Enterobacteriacae (n = 1) | AER = 1; ANA = 0 | 27.5 ± 2.4 |
K. aerogenes (n = 1) | AER = 1; ANA = 0 | 28.1 |
Non-Enterobacterales (n = 9) | ||
P. aeruginosa (n = 4) | AER = 4; ANA = 0 | 27.1 ± 2.4 |
b S. maltophilia (n = 2) | AER = 2; ANA = 0 | 30.4 ± 4.4 |
A. baumannii (n = 3) | AER = 3; ANA = 0 | 30.9 ± 1.0 |
Molecular Mouse System | Routine Culture Method |
---|---|
E. coli/Shigella spp., A. baumannii | E. coli, A. baumannii |
K. oxytoca, P. mirabilis, S. maltophilia | K. oxytoca, P. mirabilis |
K. pneumoniae, K. aerogenes | E. cloacae |
K. pneumoniae, E. coli | K. pneumoniae, E. coli |
Molecular Mouse Result (n = 20) | Routine Culture Method |
---|---|
E. coli/Shigella spp. SHV, CTX-M-1/9 groups (n = 1) | ESBL-producing E. coli |
E. coli/Shigella spp. CTX-M-1/9 groups (n = 3) | ESBL-producing E. coli |
K. pneumoniae SHV, CTX-M-1/9 groups (n = 3) | ESBL-producing K. pneumoniae |
K. pneumoniae SHV, CTX-M-1/9 groups, OXA-48 (n = 6) | Carbapenem-resistant K. pneumoniae (OXA-48 enzyme) |
K. pneumoniae SHV, CTX-M-1/9 groups, NDM (n = 1) | Carbapenem-resistant K. pneumoniae (NDM enzyme) |
K. pneumoniae SHV, CTX-M-1/9 groups, KPC (n = 1) | Carbapenem-resistant K. pneumoniae (KPC enzyme) |
A. baumannii OXA-23 (n = 1) | Carbapenem-resistant A. baumannii (OXA-23 enzyme) |
a A. baumannii (n = 1) | Carbapenem-resistant A. baumannii (unknown mechanism) |
E. coli mcr-1 (n = 1) | Colistin-resistant E. coli |
K. oxytoca CTX-M-1/9 groups (n = 1) | ESBL-producing K. oxytoca |
P. mirabilis CTX-M-1/9 groups, (n = 1) | ESBL-producing P. mirabilis |
Molecular Mouse Targets (n = 82) | Reference Methods | Sensitivity (%) [95% CI] | Specificity (%) [95% CI] |
---|---|---|---|
GNB identification | |||
E. coli/Shigella spp. | E. coli | 29/29 (100) [88.1–100] | 53/53 (100) [93.3–100] |
K. pneumoniae | K. pneumoniae | 22/22 (100) [84.6–100] | 60/60 (100) [94.0–100] |
P. mirabilis | P. mirabilis | 8/8 (100) [63.1–100] | 74/74 (100) [95.1–100] |
Proteus spp. | No other species | 8/8 (100) [63.1–100] | 74/74 (100) [95.1–100] |
E. cloacae | E. cloacae | 7/7 (100) [59.0–100] | 75/75 (100) [95.2–100] |
S. marcescens | S. marcescens | 3/3 (100) [29.2–100] | 79/79 (100) [95.4–100] |
K. oxytoca | K. oxytoca | 2/2 (100) [15.8–100] | 80/80 (100) [95.5–100] |
K. aerogenes | a K. aerogenes | 1/2 (50) [1.3–69.7] | 80/80 (100) [95.5–100] |
P. aeruginosa | P. aeruginosa | 4/4 (100) [39.8–100] | 78/78 (100) [95.4–100] |
S. maltophilia | b S. maltophilia | 2/2 (100) [15.8–100] | 80/80 (100) [95.5–100] |
A. baumannii | A. baumannii | 3/3 (100) [25.2–100] | 79/79 (100) [95.4–100] |
Haemophilus influenzae | None | 82/82 (100) [95.6–100] | |
Neisseria meningitidis | None | 82/82 (100) [95.6–100] | |
Salmonella typhi | None | 82/82 (100) [95.6–100] | |
GNB resistance | |||
SHV | K. pneumoniae (11), E. coli (1) | 12/12 (100) [73.5–100] | 8/8 (100) [63.1–100] |
CTX-M-1/9 | K. pneumoniae (11), E. coli (4), | 17/17 (100) [80.5–100] | 3/3 (100) [29.2–100] |
K. oxytoca (1), P. mirabilis (1) | |||
OXA-48 | K. pneumoniae (6) | 6/6 (100) [54.1–100] | 14/14 (100) [76.8–100] |
NDM | K. pneumoniae (1) | 1/1 (100) [2.5–100] | 19/19 (100) [82.4–100] |
KPC | K. pneumoniae (1) | 1/1 (100) [2.5–100] | 19/19 (100) [82.4–100] |
OXA-23 | A. baumannii (1) | 1/1 (100) [2.5–100] | 19/19 (100) [82.4–100] |
mcr-1 | E. coli (1) | 1/1 (100) [2.5–100] | 19/19 (100) [82.4–100] |
mcr-2, VIM, IMP, SHV-ESBL, | None | 20/20 (100) [83.2–100] | |
CTX-M-2/8, CMY-2 | None |
Conventional Method (n = 78) | MMS (n = 78) | p | |
---|---|---|---|
Time to results, mean (SD), hours | 16.0 (4.6) | 1 (0.0) | <0.001 |
Molecular Mouse Result | Appropriate Therapy—No Change Required (n = 11/26) | Potential Therapy Change (n = 15/26) | ||
---|---|---|---|---|
Therapy De-Escalation | Need to Expand the Antimicrobial Coverage | Therapy Change- Total | ||
Enterobacterales total (n = 18) | ||||
Enterobacterales ESBL/non-carbapenemase (n = 10) | 6 | 2 | 2 | 4 |
Enterobacterales ESBL + carbapenemase (n = 8) | 2 | 1 | 5 | 6 |
Non-Enterobacterales (n = 8) | ||||
A. baumannii OXA-23 (n = 1) | 0 | 0 | 1 | 1 |
A. baumannii (n = 1) | 1 | 0 | 0 | 0 |
P. aeruginosa (n = 4) | 2 | 0 | 2 | 2 |
S. maltophilia (n = 2) | 0 | 0 | 2 | 2 |
Total (n = 26) | 11 | 3 | 12 | 15 |
Number of Positive BC Samples from Clinical Wards (n = 78) | Species of Gram-Negative Bacteria | Resistance Genes |
---|---|---|
Emergency (n = 28) | E. coli, K. pneumoniae, K. oxytoca, E. cloacae, K. aerogenes, S. maltophilia, P. mirabilis, P. aeruginosa | SHV, CTX-M 1/9 |
ICU (n = 22) | E. coli, K. pneumoniae, E. cloacae, P. aeruginosa, A. baumannii | SHV, CTX-M 1/9, OXA-23, mcr-1, OXA-48, NDM, KPC |
Nephrology (n = 5) | P. aeruginosa, S. marcescens, P. mirabilis, K. pneumoniae | |
Cardiology (n = 4) | E. coli, S. marcescens | |
Pediatry (n = 4) | E. coli, P. aeruginosa, K. pneumoniae, E. cloacae | |
Urology (n = 3) | E. coli, K. pneumoniae | SHV, CTX-M 1/9, OXA-48 |
Gastroenterology (n = 3) | E. coli, K. pneumoniae | |
Infectology (n = 3) | E. coli | |
Cardiothoracic surgery (n = 3) | K. pneumoniae, E. cloacae | SHV, CTX-M 1/9, OXA-48 |
Neurology (n = 2) | K. pneumoniae, P. mirabilis | SHV, CTX-M 1/9, OXA-48 |
Haematology (n = 1) | E. coli |
Carbapenemase | 2021 n (%) | 2022 n (%) | 2023 n (%) |
---|---|---|---|
OXA-48 | 3092 (87.8%) | 3233 (91.2%) | 3248 (68.1%) |
KPC | 368 (10.5%) | 200 (5.6%) | 117 (2.4%) |
MBL | |||
NDM | 46 (1.3%) | 84 (2.4%) | 118 (2.5%) |
VIM | 14 (0.3%) | 28 (0.7%) | 1287 (26.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tićac, M.; Grubić Kezele, T.; Abram, M.; Bubonja-Šonje, M. Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Microorganisms 2025, 13, 616. https://doi.org/10.3390/microorganisms13030616
Tićac M, Grubić Kezele T, Abram M, Bubonja-Šonje M. Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Microorganisms. 2025; 13(3):616. https://doi.org/10.3390/microorganisms13030616
Chicago/Turabian StyleTićac, Mateo, Tanja Grubić Kezele, Maja Abram, and Marina Bubonja-Šonje. 2025. "Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections" Microorganisms 13, no. 3: 616. https://doi.org/10.3390/microorganisms13030616
APA StyleTićac, M., Grubić Kezele, T., Abram, M., & Bubonja-Šonje, M. (2025). Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Microorganisms, 13(3), 616. https://doi.org/10.3390/microorganisms13030616