Putting Laccase Gene Differences on Genomic Level into Context: An Analysis of Botrytis cinerea Strains from Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Strain Differentiation
2.2. Laccase Activity Assay
2.2.1. Inducement of Laccase Activity
2.2.2. Determination of Laccase Activity
2.3. Bioinformatics
2.3.1. Mapping and Alignment
2.3.2. Coverage Report and Distribution
2.3.3. Variant Call Reports
2.3.4. BLAST
2.3.5. Construction of Phylogenetic Tree
3. Results
3.1. Bioinformatic Results
Phylogenetic Tree
3.2. Laccase Activity
3.3. Strain Assessment
4. Discussion
4.1. Conserved Laccase Regions
4.2. Comparison of Strains
4.3. Regionality
4.4. Vintages
4.5. Is There a Predictor for Laccase Activity?
4.6. SSR-PCR as a Tool for Laccase Gene Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
SSR | Simple Sequence Repeat |
PCR | Polymerase Chain Reaction |
qPCR | Quantitative Polymerase Chain Reaction |
ENA | European Nucleotide Archive |
NGS | Next Generation Sequencing |
SNP | Single Nucleotid Polymorphism |
InDel | Inserts and/or Deletion |
Appendix A
Effect | S6R4V4 | S8R5V4 | S4R3V2 | S2V2R4 | S7R5V4 | S5R4V3 | S3R3V1 | S1R1V4 |
---|---|---|---|---|---|---|---|---|
3_prime_UTR_variant | 14,625 | 13,610 | 176 | 17,713 | 16,295 | 17,666 | 254 | 25,939 |
5_prime_UTR_premature_start_codon_gain_variant | 640 | 297 | 4 | 435 | 381 | 407 | 6 | 611 |
5_prime_UTR_variant | 11,533 | 10,240 | 125 | 13,594 | 12,214 | 13,655 | 160 | 19,569 |
bidirectional_gene_fusion | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
conservative_inframe_deletion | 43 | 72 | 1 | 75 | 64 | 61 | 3 | 110 |
conservative_inframe_insertion | 51 | 68 | 0 | 83 | 80 | 69 | 4 | 141 |
disruptive_inframe_deletion | 95 | 120 | 1 | 136 | 147 | 125 | 2 | 223 |
disruptive_inframe_insertion | 91 | 82 | 0 | 105 | 111 | 125 | 2 | 209 |
frameshift_variant | 456 | 426 | 4 | 456 | 455 | 460 | 32 | 719 |
intergenic_region | 51,531 | 47,836 | 499 | 64,783 | 61,069 | 66,123 | 1190 | 108,732 |
intron_variant | 8333 | 7584 | 3 | 10,303 | 9123 | 9694 | 24 | 13,820 |
missense_variant | 16,599 | 15,857 | 82 | 19,850 | 17,985 | 18,832 | 282 | 25,943 |
non_coding_transcript_variant | 41 | 40 | 0 | 38 | 44 | 44 | 0 | 0 |
splice_acceptor_variant | 23 | 25 | 0 | 27 | 19 | 25 | 0 | 53 |
splice_donor_variant | 23 | 26 | 0 | 27 | 19 | 25 | 0 | 66 |
splice_region_variant | 400 | 380 | 1 | 2037 | 1799 | 1990 | 2 | 2655 |
start_lost | 36 | 29 | 0 | 36 | 29 | 41 | 4 | 58 |
stop_gained | 155 | 164 | 0 | 155 | 164 | 155 | 6 | 248 |
stop_lost | 44 | 44 | 0 | 68 | 64 | 57 | 0 | 82 |
stop_retained_variant | 43 | 35 | 0 | 43 | 35 | 38 | 0 | 63 |
synonymous_variant | 22,541 | 21,191 | 134 | 27,444 | 24,312 | 25,852 | 327 | 34,406 |
exon_loss_variant | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
References
- Rodríguez-García, C.; Medina, V.; Alonso, A.; Ayllón, M.A. Mycoviruses of Botrytis cinerea isolates from different hosts. Ann. Appl. Biol. 2014, 164, 46–61. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Barquero, M.; González-Andrés, F. Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy 2020, 10, 1822. [Google Scholar] [CrossRef]
- Wan, R.; Hou, X.; Wang, X.; Qu, J.; Singer, S.D.; Wang, Y.; Wang, X. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front. Plant Sci. 2015, 6, 854. [Google Scholar] [CrossRef]
- Amselem, J.; Cuomo, C.A.; Van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; De Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Shen, F.; Wu, W.; Han, X.; Wang, J.; Li, Y.; Liu, D. Study on the occurrence law and green control of grape gray mold from the perspective of ecological balance. Bioengineered 2021, 12, 779–790. [Google Scholar] [CrossRef]
- Leroux, P. Chemical control of Botrytis and its resistance to chemical fungicides. Botrytis Biol. Pathol. Control 2007, 1, 195–222. [Google Scholar] [CrossRef]
- Lorenzini, M.; Azzolini, M.; Tosi, E.; Zapparoli, G. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. J. Appl. Microbiol. 2013, 114, 762–770. [Google Scholar] [CrossRef]
- Scholthof, K.B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis spp. In Botrytis–the Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–425. [Google Scholar] [CrossRef]
- Steel, C.C.; Greer, L.A.; Savocchia, S.; Samuelian, S. Effect of temperature on Botrytis cinerea, Colletotrichum acutatum, and Greeneria uvicola mixed fungal infection of Vitis vinifera grape berries. Vitis 2011, 50, 69–71. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Schena, L.; De Cicco, V.; Ippolito, A. Early detection of Botrytis cinerea latent infections as a tool to improve postharvest quality of table grapes. Postharvest Biol. Technol. 2012, 68, 64–71. [Google Scholar] [CrossRef]
- Jarvis, W.R. The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Ann. Appl. Biol. 1962, 50, 569–575. [Google Scholar] [CrossRef]
- Armijo, G.; Schlechter, R.; Agurto, M.; Muñoz, D.; Nuñez, C.; Arce-Johnson, P. Grapevine pathogenic microorganisms: Understanding infection strategies and host response scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef]
- Gil-ad, N.L.; Bar-Nun, N.; Mayer, A.M. The possible function of the glucan sheath of Botrytis cinerea: Effects on the distribution of enzyme activities. FEMS Microbiol. Lett. 2001, 199, 109–113. [Google Scholar] [CrossRef]
- Claus, H.; Sabel, A. Wine Phenols and Laccase: An Ambivalent Relationship. In Special Issues in Wine Microbiology; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–21. [Google Scholar]
- Favaron, F.; Luchetta, M.; Odorizzi, S.; Pais da Cunha, A.T.; Sella, L. The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J. Plant Pathol. 2009, 91, 579–588. [Google Scholar]
- Pezet, R.; Pont, V.; Hoang-Van, K. Evidence of oxidative detoxification of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol. Mol. Plant Pathol. 1991, 39, 441–450. [Google Scholar] [CrossRef]
- Mayer, A.M.; Staples, R.C. Laccase: New Functions for an Old Enzyme. Phytochemistry 2002, 60, 551–565. [Google Scholar] [CrossRef]
- Claus, H. Laccases of Botrytis cinerea. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, F., Fröhlich, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 215–238. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Rotolo, C.; Masiello, M.; Gerin, D.; Pollastro, S.; Faretra, F. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag. Sci. 2014, 70, 1218–1230. [Google Scholar] [CrossRef]
- Sofianos, G.; Samaras, A.; Karaoglanidis, G. Multiple and multidrug resistance in Botrytis cinerea: Molecular mechanisms of MLR/MDR strains in Greece and effects of co-existence of different resistance mechanisms on fungicide sensitivity. Front. Plant Sci. 2023, 14, 1273193. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Tian, L.; Liu, X.; Li, X. The Destructive Fungal Pathogen Botrytis cinerea—Insights from Genes Studied with Mutant Analysis. Pathogens 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, R. Global trends in the crop protection industry. J. Pestic. Sci. 2019, 44, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Altieri, V.; Rossi, V.; Fedele, G. Biocontrol of Botrytis cinerea as Influenced by Grapevine Growth Stages and Environmental Conditions. Plants 2023, 12, 3430. [Google Scholar] [CrossRef]
- Samaras, A.; Hadjipetrou, C.; Karaoglanidis, G. Bacillus amyloliquefaciens strain QST713 may contribute to the management of SDHIs resistance in Botrytis cinerea. Pest Manag. Sci. 2022, 77, 1316–1327. [Google Scholar] [CrossRef]
- Spada, M.; Pugliesi, C.; Fambrini, M.; Palpacelli, D.; Pecchia, S. Knockdown of Bmp1 and Pls1 Virulence Genes by Exogenous Application of RNAi-Inducing dsRNA in Botrytis cinerea. Int. J. Mol. Sci. 2023, 24, 4869. [Google Scholar] [CrossRef]
- Rupp, S.; Weber, R.W.S.; Rieger, D.; Detzel, P.; Hahn, M. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front. Microbiol. 2017, 7, 2075. [Google Scholar] [CrossRef]
- Jurgensen, C.W.; Madsen, A.M. Exposure to the airborne mould Botrytis and its health effects. Ann. Agric. Environ. Med. 2009, 16, 183–196. Available online: https://pubmed.ncbi.nlm.nih.gov/20047250/ (accessed on 30 November 2024).
- Hashimoto, S.; Tanaka, E.; Ueyama, M.; Terada, S.; Inao, T.; Kaji, Y.; Yasuda, T.; Hajiro, T.; Nakagawa, T.; Noma, S.; et al. A case report of pulmonary Botrytis sp. infection in an apparently healthy individual. BMC Infect. Dis. 2019, 19, 684. [Google Scholar] [CrossRef]
- Ahmad, T.; Khan, M.; Ali, R.; Hussain, Z.; Yaseen, S.; Iqbal, M.; Farooq, A. Pesticides: Impacts on human health and the environment. Environ. Adv. 2024, 10, 100385. [Google Scholar]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health, and its eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. How Pesticides Impact Human Health and Ecosystems in Europe. European Environment Agency Report. 2023. Available online: https://www.eea.europa.eu/en (accessed on 29 November 2024).
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Ployon, S.; Attina, A.; Vialaret, J.; Walker, A.S.; Hirtz, C.; Saucier, C. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Food Chem. 2020, 315, 126233. [Google Scholar] [CrossRef]
- Shi, L.; Liu, B.; Wei, Q.; Ge, B.; Zhang, K. Genome-wide transcriptomic analysis of the response of Botrytis cinerea to wuyiencin. PLoS ONE 2020, 15, e0224643. [Google Scholar] [CrossRef]
- Buddhika, U.V.A.; Savocchia, S.; Steel, C.C. Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea. Mycology 2021, 12, 48–57. [Google Scholar] [CrossRef]
- Atwell, S.; Corwin, J.A.; Soltis, N.E.; Subedy, A.; Denby, K.J.; Kliebenstein, D.J. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front. Microbiol. 2015, 6, 996. [Google Scholar] [CrossRef]
- Umberath, K.M.; Mischke, A.; Caspers-Weiffenbach, R.; Backmann, L.; Scharfenberger-Schmeer, M.; Wegmann-Herr, P.; Schieber, A.; Weber, F. Curse or blessing: Growth- and laccase-modulating properties of polyphenols and their oxidized derivatives on Botrytis cinerea. Food Res. Int. 2024, 192, 114782. [Google Scholar] [CrossRef]
- Fournier, E.; Giraud, T.; Loiseau, A.; Vautrin, D.; Estoup, A.; Solignac, M.; Cornuet, J.M.; Brygoo, Y. Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea. Mol. Ecol. Notes 2002, 2, 253–255. [Google Scholar] [CrossRef]
- Fournier, E.; Gladieux, P.; Giraud, T. The ‘Dr Jekyll and Mr Hyde fungus’: Noble rot versus gray mold symptoms of Botrytis cinerea on grapes. Evol. Appl. 2013, 6, 960–969. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child.-Educ. Pract. 2013, 98, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Khalafvand, M.; Tyler, S. Finding Structure in the Phylogeny Search Space. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2015. Available online: http://hdl.handle.net/10222/60796 (accessed on 30 November 2024).
- Felsenstein, J. Inferring Phylogenies; Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar] [CrossRef]
- Backmann, L.; Schmidtmann, K.; Wegmann-Herr, P.; Jürgens, A.; Scharfenberger-Schmeer, M. Molecular biological methods to assess different Botrytis cinerea strains on grapes. Microbiol. Res. 2024, 15, 567–581. [Google Scholar] [CrossRef]
- Huber, F.; Röckel, F.; Schwander, F.; Maul, E.; Eibach, R.; Cousins, P.; Töpfer, R. A view into American grapevine history: Vitis vinifera cv. ‘Sémillon’ is an ancestor of ‘Catawba’ and ‘Concord’. J. Grapevine Res. 2016, 55, 53–56. [Google Scholar] [CrossRef]
- Marbach, I.; Harel, E.; Mayer, A.M. Inducer and culture medium dependent properties of extracellular laccase from Botrytis cinerea. Phytochemistry 1983, 22, 1535–1538. [Google Scholar] [CrossRef]
- Grassin, C.; Dubourdieu, D. Quantitative determination of Botrytis laccase in musts and wines by the syringaldazine test. J. Sci. Food Agric. 1988, 48, 369–376. [Google Scholar] [CrossRef]
- Zimdars, S.; Hitschler, J.; Schieber, A.; Weber, F. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. J. Agric. Food Chem. 2017, 65, 10582–10590. [Google Scholar] [CrossRef]
- Suarez, M.B.; Walsh, K.; Boonham, N.; O’Neill, T.; Pearson, S.; Barker, I. Development of real-time PCR (TaqMan®) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol. Biochem. 2005, 43, 890–899. [Google Scholar] [CrossRef]
- Diguta, C.F.; Rousseaux, S.; Weidmann, S.; Bretin, N.; Vincent, B.; Guilloux-Benatier, M.; Alexandre, H. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol. Lett. 2010, 313, 81–87. [Google Scholar] [CrossRef]
- Botrytis cinerea B05.10 Assembly and Gene Annotation. Available online: https://fungi.ensembl.org/Botrytis_cinerea/Info/Annotation/ (accessed on 30 November 2024).
- ENA Assembly: GCA_000143535.4. Available online: https://www.ebi.ac.uk/ena/browser/view/GCA_000143535.4 (accessed on 30 November 2024).
- Tavaré, S. Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lect. Math. Life Sci. 1986, 17, 57–86. [Google Scholar]
- Liu, N.; Cao, Z.; Cao, K.; Ma, S.; Gong, X.; Jia, H.; Dai, D.; Dong, J. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. Eur. J. Plant Pathol. 2018, 151, 329–342. [Google Scholar] [CrossRef]
- Gagliano, S.A.; Sengupta, S.; Sidore, C.; Maschio, A.; Cucca, F.; Schlessinger, D.; Abecasis, G.R. Relative impact of indels versus SNPs on complex disease. Genet. Epidemiol. 2019, 43, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.Z.; Li, P.Q.; Fu, L.; Yu, X.M. Exploring laccase genes from plant pathogen genomes: A bioinformatic approach. Genet. Mol. Res. 2015, 14, 14019–14036. [Google Scholar] [CrossRef] [PubMed]
- Buddhika, A. Role of Laccase as a Virulence Factor in the Infection of Grapes by Botrytis cinerea. Ph.D. Thesis, Charles Sturt University, Bathurst, Australia, 2017. [Google Scholar]
- Quijada-Morin, N.; Garcia, F.; Lambert, K.; Walker, A.-S.; Tiers, L.; Viaud, M.; Sauvage, F.-X.; Hirtz, C.; Saucier, C. Strain effect on extracellular laccase activities from Botrytis cinerea. Aust. J. Grape Wine Res. 2017, 24, 241–251. [Google Scholar] [CrossRef]
- Alfonso, C.; Raposo, R.; Melgarejo, P. Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathol. 2003, 52, 243–251. [Google Scholar] [CrossRef]
- Siegmund, U.; Heller, J.; van Kann, J.A.L.; Tudzynski, P. The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1. PLoS ONE 2013, 8, e55879. [Google Scholar] [CrossRef]
- All About Sweet Wines: Wine Growing Region Sauternes. Available online: https://dessertwines.online/sauternes/wine-growing-region-sauternes/ (accessed on 30 November 2024).
- Rheinhessen: Climate. Available online: https://www.rheinhessen.de/en/climate (accessed on 30 November 2024).
- Botrytis cinerea: The Noble Rot. Available online: https://www.vinoble.org/en/blog/botrytis-cinerea-noble-rot (accessed on 30 November 2024).
- Carisse, O.L. Epidemiology and Aerobiology of Botrytis spp. In Botrytis–the Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 127–148. [Google Scholar] [CrossRef]
- Singh, R.; Caseys, C.; Kliebenstein, D.J. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. Mol. Plant Pathol. 2024, 25, e13404. [Google Scholar] [CrossRef]
- Shen, L.R.; Basilion, J.P.; Stanton, V.P., Jr. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl. Acad. Sci. USA 1999, 96, 7871–7876. [Google Scholar] [CrossRef]
- Wetterstation Heppenheim. Wetterdaten für das Jahr 2021 und 2022. Available online: https://asteroid7687-wetter.azurewebsites.net/year.php?year=2021 (accessed on 1 February 2025).
- Wu, Z.; Bi, Y.; Zhang, J.; Gao, T.; Li, X.; Hao, J.; Li, G.; Liu, P.; Liu, X. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. mBio 2024, 15, 2. [Google Scholar] [CrossRef]
- Plesken, C.; Pattar, P.; Reiss, B.; Noor, Z.N.; Zhang, L.; Klug, K.; Huettel, B.; Hahn, M. Genetic Diversity of Botrytis cinerea Revealed by Multilocus Sequencing, and Identification of B. cinerea Populations Showing Genetic Isolation and Distinct Host Adaptation. Front. Plant Sci. 2021, 12, 663027. [Google Scholar] [CrossRef]
Strain | Region | Vintage | Namecode |
---|---|---|---|
Strain 1 | Bonn | 2022 | S1R1V4 |
Strain 2 | Bordeaux | 2022 | S2R2V4 |
Strain 3 | Diedesfeld | 2017 | S3R3V1 |
Strain 4 | Diedesfeld | 2020 | S4R3V2 |
Strain 5 | Heppenheim | 2021 | S5R4V3 |
Strain 6 | Heppenheim | 2022 | S6R4V4 |
Strain 7 | Edenkoben | 2022 | S7R5V4 |
Strain 8 | Edenkoben | 2022 | S8R5V4 |
Software | Version | Description |
---|---|---|
BCFtools | 1.21 1 | BCFTools is a utility tool used to process and analyze data in the BCF (binary call format) and VCF (variant call format) formats. |
BWA | 0.7.17 | BWA is designed for mapping reads against a large genome, especially for low-divergent sequences. |
BLAST+ | 2.16.0+ | BLAST+ is a tool from NCBI used to find sequence targets in the genome. |
Cygwin | 3.5.4 | Cygwin provides a Linux-based environment under Windows to use bioinformatic tools. |
fastp | 0.20.0 | Fastp is used for the quality control and processing of FastaQ files. |
FastTree | 2.1.11 | FastTree provides a fast construction of phylogenetic trees, and is optimized for big datasets. |
GATK | 3.7 | GATK is a general toolkit for SAM/BAM/VCF files. |
JalView | 2.11.4.1 | JalView is an interactive tool used to visualize and analyze sequence alignments, as well as editing. |
Mafft | v7.490 | Mafft is a software package for the sequence alignment of datasets. |
MEGA | 11.0.13 | MEGA is a software tool used to visualize and analyze phylogenetic trees. |
Perl | 5.28.2 | Perl is a high-level, general-purpose programming language. |
Python | 3.9.16 | Python is an universal programming language, supporting the construction of bioinformatic tools. |
R | 4.1.3 | R is a programming language focused on statistical analysis and computing. |
sambamba | 0.6.8 | Sambamba is an analysis tool for the processing of SAM and BAM files as well as sequence alignments. |
samtools | 1.20 2 | Samtools is able to manipulate various data in the SAM format. |
Sentieon | 202308 | Sentieon is a bioinformatic software used to speed up GATK pipelines. It is used for variant detection and genome analysis. |
snpEff | 4.3 | snpEff is a tool for the annotation and interpretation of genetic variants. |
VCFtools | 0.1.17 3 | VCFtools is a program package for various analyses of VCF files. |
Name | GeneID | Chromosome | Position START | Position END |
---|---|---|---|---|
Bclcc1 | Bcin01g07950 | 1 | 2771031 | 2774287 |
Bclcc2 | Bcin14g02510 | 14 | 987192 | 989737 |
Bclcc3 | Bcin09g04830 | 9 | 1687129 | 1690028 |
Bclcc4 | Bcin05g03550 | 5 | 1286300 | 1288676 |
Bclcc5 | Bcin01g07190 | 1 | 2506945 | 2509587 |
Bclcc6 | Bcin15g03330 | 15 | 1163985 | 1167472 |
Bclcc7 | Bcin02g07640 | 2 | 2716773 | 2719282 |
Bclcc8 | Bcin01g00800 | 1 | 304243 | 307216 |
Bclcc9 | Bcin07g06780 | 7 | 2512424 | 2514895 |
Bclcc10 | Bcin09g02050 | 9 | 756270 | 759140 |
Bclcc11 | Bcin08g00050 | 8 | 18476 | 19138 |
Bclcc12A | Bcin09g04420 | 9 | 1549603 | 1554714 |
Bclcc12B | Bcin13g00110 | 13 | 45322 | 47416 |
Bclcc13 | Bcin02g02780 | 2 | 1014404 | 1016983 |
Strain | Total Raw Reads | Total HQ Reads | HQ Bases (Q30) | GC Content | HQ Reads % |
---|---|---|---|---|---|
S1R1V4 | 19.98 M | 19.68 M | 94.95% | 39.62% | 98.43% |
S2R2V4 | 13.94 M | 13.1 M | 94.13% | 42.83% | 98.26% |
S3R3V1 | 16.97 M | 16.65 M | 94.43% | 41.76% | 98.09% |
S4R3V2 | 9.5 M | 9.29 M | 93.26% | 49.37% | 97.82% |
S5R4V3 | 12.59 M | 12.41 M | 94.71% | 42.93% | 98.52% |
S6R4V4 | 11.78 M | 11.63 M | 94.06% | 42.57% | 98.33% |
S7R5V4 | 12.8 M | 12.55 M | 93.95% | 42.72% | 98.06% |
S8R5V4 | 14.26 M | 13.95 M | 93.07% | 42.99% | 97.84% |
Strain | Total HQ Reads | Mapped Reads | Unique Reads | Deduplicated Reads | Mean Coverage (w/o Duplicates) |
---|---|---|---|---|---|
S1R1V4 | 19.68 M | 15.39 M (78.19%) | 14.99 M (76.16%) | 13.04 M (87.00%) | 44.54× |
S2R2V4 | 13.10 M | 12.34 M (94.14%) | 11.91 M (90.89%) | 9.83 M (82.54%) | 33.86× |
S3R3V1 | 16.65 M | 5.55 M (33.33%) | 5.27 M (31.67%) | 4.61 M (87.51%) | 14.99× |
S4R3V2 | 9.29 M | 2.90 M (31.21%) | 2.77 M (29.77%) | 2.41 M (87.23%) | 7.96× |
S5R4V3 | 12.41 M | 11.26 M (90.72%) | 10.91 M (87.97%) | 9.57 M (87.71%) | 32.90× |
S6R4V4 | 11.63 M | 10.93 M (93.92%) | 10.59 M (91.01%) | 9.12 M (86.14%) | 31.31× |
S7R5V4 | 12.55 M | 11.92 M (95.01%) | 11.51 M (91.77%) | 9.39 M (81.56%) | 32.44× |
S8R5V4 | 13.95 M | 13.03 M (93.36%) | 12.54 M (89.84%) | 8.83 M (70.46%) | 30.58× |
Strain | Total | SNP | InDel |
---|---|---|---|
S1R1V4 | 210,020 | 190,776 | 19,244 |
S2V2R4 | 139,779 | 129,794 | 9985 |
S3R3V1 | 1970 | 1823 | 147 |
S4R3V2 | 839 | 782 | 57 |
S5R4V3 | 138,219 | 127,992 | 10,227 |
S6R4V4 | 113,218 | 105,636 | 7582 |
S7R5V4 | 128,434 | 119,012 | 9422 |
S8R5V4 | 105,804 | 98,347 | 7457 |
Strain | Total | SNP | InDel |
---|---|---|---|
S1R1V4 | 409 | 382 | 27 |
S2V2R4 | 441 | 413 | 28 |
S3R3V1 | 409 | 382 | 27 |
S4R3V2 | 421 | 397 | 24 |
S5R4V3 | 446 | 415 | 31 |
S6R4V4 | 452 | 421 | 31 |
S7R5V4 | 401 | 380 | 21 |
S8R5V4 | 403 | 379 | 24 |
CHROMOSOME | POSITION | REF BASE | OBS BASE | Bonn | HP2021 | HPP | PM21 | PM32 | Bordeaux |
---|---|---|---|---|---|---|---|---|---|
NC_037311.1 | 2718688 | G | A | p.Ser572Asn | p.Ser572Asn | - | p.Ser572Asn | p.Ser572Asn | p.Ser572Asn |
NC_037318.1 | 755110 | T | C | p.Ser777Ser | p.Ser777Ser | - | p.Ser777Ser | p.Ser777Ser | p.Ser777Ser |
NC_037318.1 | 755245 | G | A | p.Ser822Ser | p.Ser822Ser | - | p.Ser822Ser | p.Ser822Ser | p.Ser822Ser |
NC_037318.1 | 1685956 | T | C | p.Thr64Thr | p.Thr64Thr | - | p.Thr64Thr | p.Thr64Thr | p.Thr64Thr |
Strain | Laccase Activity [mU/ng DNA] | SD |
---|---|---|
S1R1V4 | n.d. | n.d. |
S2R4V2 | 8.19 | 0.05 |
S3R3V1 | 0.10 | 0.02 |
S4R3V2 | 0.15 | 0.14 |
S5R4V3 | 0.48 | 0.07 |
S6R4V4 | 57.50 | 3.18 |
S7R5V4 | 22.14 | 2.42 |
S8R5V4 | 14.94 | 0.02 |
Ref | 6.16 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Backmann, L.; Umberath, K.M.; Wegmann-Herr, P.; Weber, F.; Jürgens, A.; Scharfenberger-Schmeer, M. Putting Laccase Gene Differences on Genomic Level into Context: An Analysis of Botrytis cinerea Strains from Grapes. Microorganisms 2025, 13, 483. https://doi.org/10.3390/microorganisms13030483
Backmann L, Umberath KM, Wegmann-Herr P, Weber F, Jürgens A, Scharfenberger-Schmeer M. Putting Laccase Gene Differences on Genomic Level into Context: An Analysis of Botrytis cinerea Strains from Grapes. Microorganisms. 2025; 13(3):483. https://doi.org/10.3390/microorganisms13030483
Chicago/Turabian StyleBackmann, Louis, Kim Marie Umberath, Pascal Wegmann-Herr, Fabian Weber, Andreas Jürgens, and Maren Scharfenberger-Schmeer. 2025. "Putting Laccase Gene Differences on Genomic Level into Context: An Analysis of Botrytis cinerea Strains from Grapes" Microorganisms 13, no. 3: 483. https://doi.org/10.3390/microorganisms13030483
APA StyleBackmann, L., Umberath, K. M., Wegmann-Herr, P., Weber, F., Jürgens, A., & Scharfenberger-Schmeer, M. (2025). Putting Laccase Gene Differences on Genomic Level into Context: An Analysis of Botrytis cinerea Strains from Grapes. Microorganisms, 13(3), 483. https://doi.org/10.3390/microorganisms13030483