Study on the Mechanism by Which Fe3+ Promotes Toluene Degradation by Rhodococcus sp. TG-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria and Culture Media
2.2. Bacterial Identification, Genome Sequencing, and Annotation
2.3. The Effects of Various Metal Ions on Toluene Degradation
2.4. Iron Ions’ Influence on Toluene Degradation
2.4.1. Extracellular and Intracellular Iron Contents
2.4.2. TEM and EDX Analysis
2.4.3. Enzyme Activity Assay
2.5. RNA Extraction, Transcriptome Assembly, and Analysis
2.6. Validation of RT-qPCR
3. Results and Discussion
3.1. Isolation and Characterization of Bacteria
3.2. Effect of Metal Ions on Toluene Degradation
3.3. Characterization of the Interaction Between Strain TG-1 and Fe3+
3.4. The Activity of C12O
3.5. Transcriptome Sequence Assembly and Analysis
3.6. Toluene-Degrading Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomatis, M.; Moreira, M.T.; Xu, H.; Deng, W.; He, J.; Parvez, A.M. Removal of VOCs from waste gases using various thermal oxidizers: A comparative study based on life cycle assessment and cost analysis in China. J. Clean. Prod. 2019, 233, 808–818. [Google Scholar] [CrossRef]
- Wu, D.; Ding, X.; Li, Q.; Sun, J.; Huang, C.; Yao, L.; Chen, J. Pollutants emitted from typical Chinese vessels: Potential contributions to ozone and secondary organic aerosols. J. Clean. Prod. 2019, 238, 117862. [Google Scholar] [CrossRef]
- Wei, Z.S.; He, Y.M.; Huang, Z.S.; Cheng, X.L. Photocatalytic membrane combined with biodegradation for toluene oxidation. Ecotoxicol. Environ. Saf. 2019, 184, 109618. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Lu, P.; Chen, X.; Fang, P.; Peng, Y.; Li, J.; Huang, H. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Appl. Catal. B. 2020, 277, 119257. [Google Scholar] [CrossRef]
- Drakou, E.M.; Koutinas, M.; Pantelides, I.; Tsolakidou, M.; Vyrides, I. Insights into the metabolic basis of the halotolerant Pseudomonas aeruginosa strain LVD-10 during toluene biodegradation. Int. Biodeterior. Biodegradation. 2015, 99, 85–94. [Google Scholar] [CrossRef]
- Espinoza Tofalos, A.; Daghio, M.; González, M.; Papacchini, M.; Franzetti, A.; Seeger, M. Toluene degradation by Cupriavidus metallidurans CH34 in nitrate-reducing conditions and in Bioelectrochemical Systems. FEMS Microbiol. Lett. 2018, 365, fny119. [Google Scholar] [CrossRef]
- Yue, X.; Ma, N.L.; Sonne, C.; Guan, R.; Lam, S.S.; Van Le, Q.; Cheng, X.; Yang, Y.; Gu, H.; Rinklebe, J.; et al. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. J. Hazard. Mater. 2021, 405, 124138. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gong, L.; Zhang, Y.; Tong, Y.; Zhang, H.; Zhu, D.; Huang, X.; Yang, H. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage. Bioresour. Technol. 2021, 320, 124329. [Google Scholar] [CrossRef] [PubMed]
- Bugg, T. Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron 2003, 36, 7075–7101. [Google Scholar] [CrossRef]
- Kałduńska, K.; Kozakiewicz, A.; Wujak, M.; Wojtczak, A. Biological Inspirations: Iron Complexes Mimicking the Catechol Dioxygenases. Materials 2021, 14, 3250. [Google Scholar] [CrossRef]
- Hu, X.; Cao, J.; Yang, H.; Li, D.; Qiao, Y.; Zhao, J.; Zhang, Z.; Huang, L. Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS ONE 2020, 15, e0226557. [Google Scholar] [CrossRef]
- Hu, X.; Pan, Y.; Bao, M.; Zhang, X.; Luo, C.; Han, X.; Li, F. The structure, properties and rheological characterisation of exopolysaccharides produced by Chryseobacterium cucumeris AP-2 from deteriorated milk. Int. Dairy J. 2022, 126, 105253. [Google Scholar] [CrossRef]
- Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, N.; Raoof, A.; van Genuchten, M.T. Evaluation of a horizontal permeable reactive barrier for preventing up-ward diffusion of volatile organic compounds through the unsaturated zone. J. Environ. Manag. 2015, 163, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, K.; Nassery, H.R.; Asadi, M.M.; Mohammadzadeh, H.; Mahmoodlu, M.G. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30). Int. Bioderter. Biodegr. 2017, 116, 234–242. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, A.; Liu, Y.J.; Liu, Z.; Liu, Y.; Wu, X. Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9. Ecotoxicol. Environ. Saf. 2021, 225, 112789. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, D.; Qiao, Y.; Song, Q.; Guan, Z.; Qiu, K.; Cao, J.; Huang, L. Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. J. Hazard. Mater. 2020, 392, 122326. [Google Scholar] [CrossRef]
- Chen, S.N.; Yin, H.; Ye, J.S.; Peng, H.; Zhang, N.; He, B.Y. Effect of copper(II) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia. Chemosphere 2013, 90, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Amor, L.; Kennes, C.; Veiga, M.C. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour. Technol. 2001, 78, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Long, J.; Feng, C.; Feng, Y.; Cheng, D.; Liu, Y.; Xue, J.; Li, Z. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonas. Water Res. 2019, 160, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yang, J.; Ma, F.; Xing, L.; Pi, S.; Cui, D.; Li, A. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13. The Science of the total environment 2021, 776, 145939. [Google Scholar] [CrossRef]
- Karlsson, A.; Beharry, Z.M.; Eby, D.M.; Coulter, E.D.; Neidle, E.L.; Kurtz Jr, D.M.; Ramaswamy, S. X-ray crystal structure of benzoate 1, 2-dioxygenase reductase from Acinetobacter sp. strain ADP1. J. Mol. Biol. 2002, 318, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Matera, I.; Ferraroni, M.; Kolomytseva, M.; Golovleva, L.; Scozzafava, A.; Briganti, F. Catechol 1, 2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: Quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts. J. Struct. Biol. 2010, 170, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Panke, S.; Sánchez-Romero, J.M.; de Lorenzo, V. Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through an ortho-cleavage degradation pathway. Appl. Environ. Microbiol. 1998, 64, 748–751. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer | Sequences |
---|---|---|
xylB | xylB-F | CGAAGTCGGTGCTACCGGAA |
xylB-R | TGCGTGCGCCAGAGCTGTTG | |
xylC | xylC-F | TCGCTCATCAGCAATGGCAC |
xylC-R | CTGCCTTACGGATCACCGAA | |
benA-xylX | benA-xylX-F | ATGACGGATATGTTGGATGC |
benA-xylX-R | GGTGAAGTAGTCGCCGACGT | |
benB-xylY | benB-xylY-F | ACCAATGCCGTCGCCCTCGA |
benB-xylY-R | GATTCGGAACACGCGGTCCT | |
benC-xylZ | benC-xylZ-F | ATTCCGCTCGACTGCCGCGA |
benC-xylZ-R | GGTGGACGTGTACGAACCGG | |
benD-Xyl | benD-Xyl-F | CACGAGATTCTTCGCCGGCC |
benD-Xyl-R | TGCGTGCGCCAGAGCTGTTG | |
catA | catA-F | AGCCCCACCGCAGTAGGTTC |
catA-R | CCGAACTGGCCGATGTCGAT | |
catB | catB-F | CCTGTCGATCGTCTCCATCG |
catB-R | CGGGAGCGATGTACTTCTCG | |
fadA | fadA-F | GTCATCGTCGACGCAGTACG |
fadA-R | CGGCAGCGAGTGCCGCTGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Ma, J.; Huang, L.; Gao, G.; Zhao, Y.; Antunes, A.; Li, M. Study on the Mechanism by Which Fe3+ Promotes Toluene Degradation by Rhodococcus sp. TG-1. Microorganisms 2025, 13, 468. https://doi.org/10.3390/microorganisms13020468
Qiao Y, Ma J, Huang L, Gao G, Zhao Y, Antunes A, Li M. Study on the Mechanism by Which Fe3+ Promotes Toluene Degradation by Rhodococcus sp. TG-1. Microorganisms. 2025; 13(2):468. https://doi.org/10.3390/microorganisms13020468
Chicago/Turabian StyleQiao, Yue, Jiajun Ma, Lei Huang, Guohui Gao, Yihe Zhao, Agostinho Antunes, and Meitong Li. 2025. "Study on the Mechanism by Which Fe3+ Promotes Toluene Degradation by Rhodococcus sp. TG-1" Microorganisms 13, no. 2: 468. https://doi.org/10.3390/microorganisms13020468
APA StyleQiao, Y., Ma, J., Huang, L., Gao, G., Zhao, Y., Antunes, A., & Li, M. (2025). Study on the Mechanism by Which Fe3+ Promotes Toluene Degradation by Rhodococcus sp. TG-1. Microorganisms, 13(2), 468. https://doi.org/10.3390/microorganisms13020468