Roughage Sources During Late Gestation and Lactation Alter Metabolism, Immune Function and Rumen Microbiota in Ewes and Their Offsprings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Management
2.2. Sample Collection
2.3. Serum Parameters
2.4. Volatile Fatty Acids Determination
2.5. DNA Extraction and 16S RNA Sequencing
2.6. Bioinformatics
2.7. Statistical Analysis
3. Results
3.1. Effects of Roughage Sources on Ewe Body Weight and Feed Intake
3.2. Effects of Maternal Diet on Lamb Growth Performance
3.3. Effects of Roughage Sources on Ewe Serum Biochemical Parameters
3.4. Effects of Maternal Diet on Lamb Serum Biochemical Parameters
3.5. Effects of Roughage Sources on Ewe Serum Inflammatory Cytokines
3.6. Effects of Maternal Diet on Lamb Serum Inflammatory Cytokines
3.7. Correlation Between Inflammatory Factors of Ewes and Lambs
3.8. Effects of Roughage Sources on Ewe Rumen Volatile Fatty Acids
3.9. Effects of Roughage Sources on Ewe Rumen Microbiota
3.9.1. Effects of Roughage Sources on Diversity and Richness of Rumen Microbial Communities
3.9.2. Effects of Roughage Sources on Rumen Microbiota Compositions
3.9.3. Comparison of Significantly Different Bacterial Community at the Genus Level
3.9.4. LEfSe Analysis Was Performed to Identify the Differential Abundant Taxa
3.9.5. Correlation Between Microbiota Biomarkers and Host Metabolism and Inflammation-Related Factors by Spearman Correlation Analysis
3.10. Ewes and Lamb Share Microbes
3.11. Spearman Rank Correlation Analysis of Rumen Dominant ASV in Ewe and Offspring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shagana, J.A.; Dhanraj, M.; Jain, A.R.; Nirosa, T. Physiological changes in pregnancy. Drug Invent. Today 2018, 8, 1594–1597. [Google Scholar] [CrossRef]
- Bell, A.W.; Bauman, D.E. Adaptations of glucose metabolism during pregnancy and lactation. J. Mammary Gland. Biol. Neoplasia 1997, 2, 265–278. [Google Scholar] [CrossRef]
- Liu, L.X.; Arany, Z. Maternal cardiac metabolism in pregnancy. Cardiovasc. Res. 2014, 101, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, X.; Cui, Y.; Wang, W.; Liu, H.; Li, Z.; Guo, Z.; Ma, S.; Li, D.; Wang, C. Consumption of dietary fiber from different sources during pregnancy alters sow gut microbiota and improves performance and reduces inflammation in sows and piglets. mSystems 2021, 6, e00591-20. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim. Prod. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Cockburn, M. Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals 2020, 10, 1690. [Google Scholar] [CrossRef]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Backhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef]
- Newbern, D.; Freemark, M. Placental hormones and the control of maternal metabolism and fetal growth. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wei, H.; Yu, H.; Xu, C.; Jiang, S.; Peng, J. Metabolic syndrome during perinatal period in sows and the link with gut microbiota and metabolites. Front. Microbiol. 2018, 9, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.G.D.; Ganal-Vonarburg, S.C.; Fuhrer, T.; Rupp, S.; Uchimura, Y.; Li, H.; Steinert, A.; Heikenwalder, M.; Hapfelmeier, S.; Sauer, U.; et al. The maternal microbiota drives early postnatal innate immune development. Science 2016, 351, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Castanys-Muñoz, E.; Martin, M.J.; Vazquez, E. Building a beneficial microbiome from birth. Adv. Nutr. 2016, 7, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Wang, T.; Wu, M.; Chu, Q.; Lan, H.; Lang, W.; Zhu, L.; Song, Y.; Zhou, Y.; Wen, Q. Maternal effects drive intestinal development beginning in the embryonic period on the basis of maternal immune and microbial transfer in chickens. Microbiome 2023, 11, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Battersby, A.J.; Gibbons, D.L. The gut mucosal immune system in the neonatal period. Pediatr. Allergy Immunol. 2013, 24, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Li, Q.; Zheng, T.; Yang, S.; Chen, F.; Guan, W.; Zhang, S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023, 15, 2206505–2206529. [Google Scholar] [CrossRef]
- Ma, J.; Prince, A.L.; Bader, D.; Hu, M.; Ganu, R.; Baquero, K.; Blundell, P.; Alan Harris, R.; Frias, A.E.; Grove, K.L. High-fat materucosal immune system in the neonatal period. Nat. Commun. 2014, 5, 3889–3900. [Google Scholar] [CrossRef]
- Xue, Y.; Lin, L.; Hu, F.; Zhu, W.; Mao, S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome 2020, 8, 138–152. [Google Scholar] [CrossRef]
- Li, X.; Sha, Y.; Li, S.; Wang, Z.; Yang, Y.; Jiao, T.; Zhao, S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front. Immunol. 2024, 15, 1462805–1462822. [Google Scholar] [CrossRef]
- Galyean, M.L.; Hubbert, M.E. Review: Traditional and alternative sources of fiber—Roughage values, effectiveness, and levels in starting and finishing diets1. Prof. Anim. Sci. 2014, 6, 571–584. [Google Scholar] [CrossRef]
- Kendall, C.; Leonardi, C.; Hoffman, P.C.; Combs, D.K. Intake and milk production of cows fed diets that differed in dietary neutral deterge nt fiber and neutral detergent fiber digestibility. J. Dairy Sci. 2009, 1, 313–323. [Google Scholar] [CrossRef]
- Thomson, C.; Garcia, A.L.; Edwards, C.A. Interactions between dietary fibre and the gut microbiota. Proc. Nutr. Soc. 2021, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Meng, L.; Mi, L. Effects of Leymus chinensis hay and alfalfa hay on growth performance, rumen microbiota, and untargeted metabolomics of meat in lambs. Front. Vet. Sci. 2023, 10, 1256903–1256917. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Xue, Y.; Sun, R.; Sun, X.; Sun, Z.; Liu, S.; Tan, Z.; Zhu, W.; Cheng, Y. Nutrient availability of roughages in isocaloric and isonitrogenous diets alters the bacterial networks in the whole gastrointestinal tract of Hu sheep. BMC Microbiol. 2023, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, B.S.; Subih, H.S.; Taylor, J.B.; Obeidat, M.D. Alfalfa hay improves nursing performance of Awassi ewes and performance of growing lambs when used as a source of forage compared with wheat straw. Trop. Anim. Health Prod. 2019, 3, 581–588. [Google Scholar] [CrossRef]
- Beukema, M.; Faas, M.M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.j.; Gao, Y.Y.; Zhang, J.; Wang, L.; Zhao, S.; Che, Y.Y.; Ao, C.J.; Yang, H.J.; Wang, J.Q. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells. Cell Death Discov. 2016, 1, 15065–15076. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Sun, X.; Zhao, S.; Hu, M.; Li, D.; Qi, S.; Jiao, X.; Sun, Y.; Wang, C.; Zhu, X.; et al. Dietary alfalfa powder supplementation improves growth and development, body health, and meat quality of Tibetan sheep. Food Chem. 2022, 396, 133709–133718. [Google Scholar] [CrossRef]
- Jiang, F.G.; Lin, X.Y.; Yan, Z.G.; Hu, Z.Y.; Liu, G.M.; Sun, Y.D.; Liu, X.W.; Wang, Z.H. Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2660–2671. [Google Scholar] [CrossRef]
- Nutrient Requirements of Cashmere Goats. Ministry of Agriculture of the People’s Republic of China. Nutrient Requirements of Cashmere Goats (NY/T 4048–2021). 2021. Available online: https://hbba.sacinfo.org.cn/ (accessed on 9 February 2025).
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Aqil, F.; Jeyabalan, J.; Munagala, R.; Ahmad, I.; Schultz, D.J.; Gupta, R.C. Cumin Prevents 17β-Estradiol-Associated Breast Cancer in ACI Rats. Int. J. Mol. Sci. 2021, 22, 6194. [Google Scholar] [CrossRef]
- Shang, Q.; Liu, S.; Liu, H.; Mahfuz, S.; Piao, X. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. J. Anim. Sci. Biotechnol. 2021, 12, 54–68. [Google Scholar] [CrossRef]
- Haddad, S.G.; Grant, R.J.; Kachman, S.D. Effect of wheat straw treated with alkali on ruminal function and lactational performance of dairy cows. J. Dairy Sci. 1998, 81, 1956–1965. [Google Scholar] [CrossRef]
- Lewis, C.; Bunter, K.L. Body development in sows, feed intake and maternal capacity. Part 2: Gilt body condition before and after lactation, reproductive performance and correlations with lactation feed intake. Animal 2011, 5, 1855–1867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ahn, J.M.; Kim, I.H. Micelle silymarin supplementation to sows’ diet from day 109 of gestation to entire lactation period enhances reproductive performance and affects serum hormones and metabolites. J. Anim. Sci. 2021, 99, skab354. [Google Scholar] [CrossRef]
- Bach, A. Ruminant Nutrition Symposium: Optimizing Performance of the Offspring: Nourishing and managing the dam and postnatal calf for optimal lactation, reproduction, and immunity. J. Anim. Sci. 2012, 90, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Goulart, R.S.; Vieira, R.A.M.; Daniel, J.L.P.; Amaral, R.C.; Santos, V.P.; Toledo Filho, S.G.; Cabezas-Garcia, E.H.; Tedeschi, L.O.; Nussio, L.G. Effects of source and concentration of neutral detergent fiber from roughage in beef cattle diets on feed intake, ingestive behavior, and ruminal kinetics. J. Anim. Sci. 2020, 98, skaa107. [Google Scholar] [CrossRef]
- Early, R.J.; Anderson, D.C. Kentucky Bluegrass Straw Composition, Digestibility and Utilization in Wintering Cow Rations. J. Anim. Sci. 1978, 3, 787–796. [Google Scholar] [CrossRef]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef]
- Abdelsattar, M.M.; Vargas-Bello-Pérez, E.; Zhang, N. Age-related changes in blood biochemical composition of Hu sheep. Ital. J. Anim. Sci. 2022, 1, 1297–1306. [Google Scholar] [CrossRef]
- Jardstedt, M.; Hessle, A.; Norgaard, P.; Frendberg, L.; Nadeau, E. Intake and feed utilization in two breeds of pregnant beef cows fed forages with high-fiber concentrations. J. Anim. Sci. 2018, 96, 3398–3411. [Google Scholar] [CrossRef] [PubMed]
- Tabata, F.; Wada, Y.; Kawakami, S.; Miyaji, K. Serum Albumin Redox States: More Than Oxidative Stress Biomarker. Antioxidants 2021, 4, 503. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Jagadeeshaprasad, M.G.; Venkatasubramani, V.; Kulkarni, M.J. Abundance matters: Role of albumin in diabetes, a proteomics perspective. Expert. Rev. Proteom. 2017, 14, 677–689. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, Y.; Zhou, H.; Kuang, X. Optimal partner wavelength combination method applied to NIR spectroscopic analysis of human serum globulin. BMC Chem. 2020, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Srisaikham, S. A Comparison of Nutritional Values, Bioactive Compounds, Amino Acids, and Antioxidant Activities of Alfalfa (Medicago sativa) Plant and Pellet for Use as Beneficial Material Ruminant Feed. Walailak J. Sci. Technol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Sun, H.; Wang, Y.; Yang, Z.; Zhang, G.; Yang, W. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice. Int. J. Biol. Macromol. 2019, 133, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Z.; Zhou, M.; Wang, O.; Chen, Y.; Liu, J.X.; Guan, L.L. Multiomics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows. Bioinformatics 2020, 36, 2530–2537. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, B.; La, S.; Li, D.; Zhu, X.; Sun, H.; Ma, S.; Cui, Y.; Shi, Y. Alfalfa hay substitution for wheat straw improves beef quality via rumen microflora alteration. Heliyon 2023, 9, e20803. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Duval, B.; Powell, J.M.; Vadas, P.A.; Wattiaux, M.A. Effects of feeding a quebracho-chestnut tannin extract on lactating cow performance and nitrogen utilization efficiency. J. Dairy Sci. 2020, 103, 2264–2271. [Google Scholar] [CrossRef]
- Wright, T.C.; Moscardini, S.; Luimes, P.H.; Susmel, P.; McBride, B.W. Effects of rumen-undegradable protein and feed intake on nitrogen balance and milk protein production in dairy cows. J. Dairy Sci. 1998, 81, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Cadaret, C.N.; Merrick, E.M.; Barnes, T.L.; Beede, K.A.; Posont, R.J.; Petersen, J.L.; Yates, D.T. Sustained maternal inflammation during the early third-trimester yields intrauterine growth restriction, impaired skeletal muscle glucose metabolism, and diminished β-cell function in fetal sheep1,2. J. Anim. Sci. 2019, 12, 4822–4833. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.Y.; Xia, X.J.; He, B.P.; Gao, Y.Y.; Ren, W.B.; Liu, H.T.; Liu, J.F.; Huang, T.H.; Han, W.Y.; Lei, L.C. A corn straw-based diet increases release of inflammatory cytokines in peripheral blood mononuclear cells of dairy cows. J. Zhejiang Univ. Sci. B 2018, 19, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wu, S.; Li, J.; Yang, Q.E.; Chai, S.; Wang, L.; Wang, X.; Zhang, X.; Liu, S.; Yao, J. Effect of Alfalfa Hay and Starter Feeding Intervention on Gastrointestinal Microbial Community, Growth and Immune Performance of Yak Calves. Front. Microbiol. 2020, 11, 994–1014. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, N.; Wendner, D.; Schauerhuber, N.; Mayer, E. Effect of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) on the inflammatory response in rumen epithelial cells (REC) and the impact of LPS on claw explants. Animals 2021, 11, 2058. [Google Scholar] [CrossRef]
- Liu, R.; Wang, S.-M.; Guo, S.-J.; Ma, M.-M.; Fu, Y.-L. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats. Ann. Transl. Med. 2022, 10, 54–68. [Google Scholar] [CrossRef]
- Liu, R.; Liu, B.; Tian, L.; Jiang, X.; Li, X.; Cai, D.; Sun, J.; Bai, W.; Jin, Y. Exposure to bisphenol A caused hepatoxicity and intestinal flora disorder in rats. Int. J. Mol. Sci. 2022, 23, 8042. [Google Scholar] [CrossRef]
- Deng, S.; Wu, Q.; Yu, K.; Zhang, Y.; Yao, Y.; Li, W.; Deng, Z.; Liu, G.; Li, W.; Lian, Z. Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS. PLoS ONE 2012, 7, e47118. [Google Scholar] [CrossRef] [PubMed]
- Redl, H.; Bahrami, S.; Schlag, G.; Traber, D.L. Clinical detection of LPS and animal models of endotoxemia. Immunobiology 1993, 187, 330–345. [Google Scholar] [CrossRef]
- Yang, F.; Yang, F.; Zhai, Z.H.; Wang, S.Q.; Zhao, L.; Zhang, B.L.; Chen, J.C.; Wang, Y.Q. Effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in Small-Tailed Han sheep. Front. Vet. Sci. 2022, 9, 924373–924384. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, Y.; Li, Z.; Guo, M.; Liu, B.; Wang, Z.; Cui, Y.; Wang, C.; Li, D.; Shi, Y. Roughage quality determines the production performance of post-weaned Hu sheep via altering ruminal fermentation, morphology, microbiota, and the global methylome landscape of the rumen wall. Front. Microbiomes 2024, 2, 1272625–1272642. [Google Scholar] [CrossRef]
- Lim, R.H.; Kobzik, L. Maternal transmission of asthma risk. Am. J. Reprod. Immunol. 2009, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grindstaff, J.L.; Brodie, E.D.; Ketterson, E.D. Immune function across generations: Integrating mechanism and evolutionary process in maternal antibody transmission. Proc. Biol. Sci. 2003, 270, 2309–2319. [Google Scholar] [CrossRef]
- Hee, B.V.D.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty Acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Chen, Y.; Ma, Z.; Zhang, X.; Shi, D.; Khan, J.A.; Liu, H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim. Nutr. 2022, 8, 350–360. [Google Scholar] [CrossRef]
- Guyader, J.; Eugene, M.; Doreau, M.; Morgavi, D.P.; Gerard, C.; Martin, C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 2017, 100, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yang, C.; Guan, L.L.; Wang, J.; Xue, M.; Liu, J.X. Persistence of cellulolytic bacteria Fibrobacter and Treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front. Microbiol. 2018, 9, 1363–1378. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Q.; Wang, X.; Song, J.; Lambo, M.T.; Huang, J.; He, P.; Li, Y.; Zhang, Y. Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in Holstein cows. Front. Vet. Sci. 2023, 10, 1061219–1061234. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, Y.; Gao, S.; Liao, Z.; Lai, T.; Zhou, H.; Chen, Q.; Li, L.; Gao, H.; Lu, W. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 2020, 10, 10721–10737. [Google Scholar] [CrossRef]
- Hoyles, L.; Snelling, T.; Umlai, U.-K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome 2018, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bai, Y.; Tao, S.; Zhang, G.; Wang, J.; Liu, L.; Zhang, S. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. J. Funct. Foods 2019, 57, 266–274. [Google Scholar] [CrossRef]
- Wei, X.; Long, T.; Li, Y.; Ouyang, K.; Qiu, Q. Diet shift may trigger LuxS/AI-2 quorum sensing in rumen bacteria. Bioengineering 2022, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J. Dairy Sci. 2002, 85, 1183–1190. [Google Scholar] [CrossRef]
- Wolff, S.M.; Ellison, M.J.; Hao, Y.; Cockrum, R.R.; Austin, K.J.; Baraboo, M.; Burch, K.; Lee, H.J.; Maurer, T.; Patil, R.; et al. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome 2017, 5, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Yang, C.; Zhang, J.; Kalwar, Q.; Liang, Z.; Li, C.; Du, M.; Yan, P.; Long, R.; Han, J. Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Front. Microbiol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, Q.; Liu, J.; Huang, A.; Xia, X.; Xia, X. Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Front. Chem. 2022, 10, 1036380–1036404. [Google Scholar] [CrossRef]
- Kim, Y.C.; Choi, S.; Sohn, K.H.; Bang, J.Y.; Kim, Y.; Jung, J.W.; Kim, H.Y.; Park, J.; Kim, K.; Kang, M.G. Selenomonas: A marker of asthma severity with the potential therapeutic effect. Allergy 2022, 77, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Cheng, D.; Huang, C.; Li, Y.; Lao, C.; Xia, Y.; Liu, W.; Gong, X.; Hu, D.; Li, B.; et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats. Molecules 2019, 24, 1139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Vasquez, R.; Yoo, J.M.; Kim, S.H.; Kang, D.K.; Kim, I.H. Dietary Supplementation of Limosilactobacillus mucosae LM1 Enhances Immune Functions and Modulates Gut Microbiota Without Affecting the Growth Performance of Growing Pigs. Front. Vet. Sci. 2022, 9, 918114–948126. [Google Scholar] [CrossRef]
- Barden, M.; Richards-Rios, P.; Ganda, E.; Lenzi, L.; Eccles, R.; Neary, J.; Oultram, J.; Oikonomou, G. Maternal influences on oral and faecal microbiota maturation in neonatal calves in beef and dairy production systems. Anim. Microbiome 2020, 2, 31–47. [Google Scholar] [CrossRef]
- Shang, Q.; Liu, H.; Liu, S.; He, T.; Piao, X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 2019, 97, 4922–4933. [Google Scholar] [CrossRef]
- Lundgren, S.N.; Madan, J.C.; Emond, J.A.; Morrison, H.G.; Christensen, B.C.; Karagas, M.R.; Hoen, A.G. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 2018, 6, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Keller, A.J.; Salbaum, J.M.; Berthoud, H.R. Harnessing gut microbes for mental health: Getting from here to there. Biol. Psychiatry 2018, 83, 214–223. [Google Scholar] [CrossRef]
Items | CS | AH |
---|---|---|
Ingredients | ||
Corn | 20.00 | 33.00 |
Soybean meal | 19.00 | - |
Corn straw | 50.00 | - |
Alfalfa hay | - | 50.00 |
Wheat hay | 1.00 | 5.00 |
concentrate supplement a | 8.50 | 8.50 |
Zeolite powder | - | 2.00 |
NaHCO3 | 0.25 | 0.25 |
Salt | 0.25 | 0.25 |
Premix b | 1.00 | 1.00 |
Total | 100.00 | 100.00 |
Nutrient Levels c | ||
ME, MJ/kg | 9.21 | 9.20 |
CP | 13.97 | 13.97 |
EE | 3.60 | 4.12 |
Ash | 5.61 | 5.67 |
NDF | 43.81 | 29.07 |
ADF | 25.70 | 19.17 |
Items | CS | AH | p-Value |
---|---|---|---|
BW, kg | |||
Initial | 46.09 ± 2.83 | 46.26 ± 2.51 | 0.92 |
G140 | 55.13 ± 4.21 | 55.06 ± 4.32 | 0.98 |
Gestation BW gain | 9.04 ± 1.70 | 8.50 ± 2.68 | 0.82 |
L0 | 50.81 ± 7.53 | 51.01 ± 3.87 | 0.96 |
L28 | 46.83 ± 6.18 | 50.37 ± 3.71 | 0.35 |
Lactation BW loss | −3.98 ± 2.92 | −0.64 ± 0.93 | 0.05 |
Pregnancy ADFI | 1.43 ± 0.01 | 1.72 ± 0.01 | <0.01 |
Lactation ADFI | 1.59 ± 0.16 | 1.9 ± 0.04 | <0.01 |
Items | CS | AH | p-Value |
---|---|---|---|
BW, kg | |||
L0 | 3.28 ± 0.41 | 3.42 ± 0.36 | 0.57 |
L28 | 8.38 ± 1.32 | 8.53 ± 0.33 | 0.82 |
ADG | 0.18 ± 0.03 | 0.18 ± 0.01 | 0.99 |
Items | CS | AH | p-Value |
---|---|---|---|
G140 | |||
TP (mmol/L) | 61.67 ± 0.96 | 66.50 ± 6.94 | 0.23 |
ALB (mmol/L) | 36.59 ± 1.45 | 37.05 ± 5.37 | 0.28 |
GLB (mmol/L) | 25.09 ± 1.30 | 29.45 ± 1.87 | 0.02 |
TAA (μmol/L) | 3.66 ± 0.135 | 3.96 ± 0.071 | 0.01 |
TG (mmol/L) | 0.79 ± 0.003 | 1.33 ± 0.39 | 0.19 |
GLU (mmol/L) | 3.32 ± 0.12 | 4.31 ± 1.18 | 0.43 |
L28 | |||
TP (mmol/L) | 75.47 ± 3.68 | 79.79 ± 2.16 | 0.05 |
ALB (mmol/L) | 42.85 ± 2.76 | 42.25 ± 2.07 | 0.70 |
GLB (mmol/L) | 32.62 ± 3.54 | 37.55 ± 3.72 | 0.05 |
TAA (μmol/L) | 3.71 ± 0.18 | 3.93 ± 0.14 | 0.05 |
TG (mmol/L) | 0.23 ± 0.02 | 0.24 ± 0.02 | 0.75 |
GLU (mmol/L) | 4.29 ± 0.27 | 4.36 ± 0.40 | 0.84 |
Items | CS | AH | p-Value |
---|---|---|---|
L0 | |||
TP (mmol/L) | 41.19 ± 1.41 | 40.80 ± 3.37 | 0.89 |
ALB (mmol/L) | 28.65 ± 0.88 | 27.80 ± 1.25 | 0.48 |
GLB (mmol/L) | 12.54 ± 0.53 | 13.00 ± 2.23 | 0.79 |
TAA (μmol/L) | 3.83 ± 0.11 | 4.13 ± 0.15 | 0.01 |
TG (mmol/L) | 0.60 ± 0.21 | 0.52 ± 0.06 | 0.40 |
GLU (mmol/L) | 2.99 ± 0.20 | 3.05 ± 0.08 | 0.73 |
L28 | |||
TP (mmol/L) | 60.45 ± 2.86 | 60.73 ± 2.48 | 0.92 |
ALB (mmol/L) | 37.42 ± 1.12 | 38.77 ± 2.17 | 0.48 |
GLB (mmol/L) | 23.03 ± 1.78 | 21.96 ± 1.00 | 0.50 |
TAA (μmol/L) | 3.70 ± 0.078 | 3.78 ± 0.136 | 0.26 |
TG (mmol/L) | 0.73 ± 0.24 | 0.65 ± 0.06 | 0.69 |
GLU (mmol/L) | 6.95 ± 0.26 | 6.98 ± 0.02 | 0.90 |
Items | LPS | TNF-α | IL-6 | IL-10 | DAO |
---|---|---|---|---|---|
0-day-old lamb | |||||
LPS | 0.20 | 0.61 | 0.12 | −0.79 * | 0.45 |
TNF-α | 0.29 | 0.80 * | 0.10 | −0.57 | 0.00 |
IL-6 | 0.54 | 0.00 | 0.17 | −0.74 * | −0.41 |
IL-10 | −0.49 | −0.64 | −0.17 | 0.50 | −0.60 |
28-day-old lamb | |||||
LPS | 0.14 | 0.08 | −0.02 | −0.08 | −0.01 |
TNF-α | 0.03 | −0.42 | 0.20 | −0.08 | −0.07 |
IL-6 | −0.02 | −0.07 | 0.24 | −0.30 | 0.28 |
IL-10 | −0.63 | −0.70 * | −0.10 | 0.56 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Li, K.; Guo, W.; Na, M.; Zhang, J.; Na, R. Roughage Sources During Late Gestation and Lactation Alter Metabolism, Immune Function and Rumen Microbiota in Ewes and Their Offsprings. Microorganisms 2025, 13, 394. https://doi.org/10.3390/microorganisms13020394
Du H, Li K, Guo W, Na M, Zhang J, Na R. Roughage Sources During Late Gestation and Lactation Alter Metabolism, Immune Function and Rumen Microbiota in Ewes and Their Offsprings. Microorganisms. 2025; 13(2):394. https://doi.org/10.3390/microorganisms13020394
Chicago/Turabian StyleDu, Haidong, Kenan Li, Wenliang Guo, Meila Na, Jing Zhang, and Renhua Na. 2025. "Roughage Sources During Late Gestation and Lactation Alter Metabolism, Immune Function and Rumen Microbiota in Ewes and Their Offsprings" Microorganisms 13, no. 2: 394. https://doi.org/10.3390/microorganisms13020394
APA StyleDu, H., Li, K., Guo, W., Na, M., Zhang, J., & Na, R. (2025). Roughage Sources During Late Gestation and Lactation Alter Metabolism, Immune Function and Rumen Microbiota in Ewes and Their Offsprings. Microorganisms, 13(2), 394. https://doi.org/10.3390/microorganisms13020394