Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Compost Extracts
2.2. Study Areas and Sampling
2.3. Seed Treatment, Planting, and Crop Management
2.4. Physiological Evaluations
2.5. Phytosanitary Evaluations
2.6. Determination of Soil Microbial Biomass Carbon (SMBC)
- Vb = volume of ammonium iron sulfate used in titration of control sample
- Va = volume of ammonium iron sulfate used in titration of sample
- M = exact molarity of ammonium iron sulfate
- V1 = volume of extractor (K2SO4)
- V2 = volume of extract
- 0.003 = carbon milliequivalent
- DW = dry weight of soil
- kc = correction factor (0.33), as described by Sparling and West (1988).
2.7. Evaluations of Agronomic and Yield Components
2.8. Statistical Analyses
3. Results
4. Discussion
4.1. Soybean Plants (Glycine max L.) Inoculated with Bra+Azo Invest in Photosynthetic Pigments, Resulting in Higher Photochemical Yield than Plants Inoculated with Compost Extracts (AC and GC)
4.2. Compost Extracts Based on Litterfall of Angiosperm and Gymnosperm Species Are More Effective than Inoculation with Bra+Azo in Promoting Growth and Increasing Soybean 1000-Grain Weight
4.3. The Growth Promotion Provided by AC and GC Compost Extracts Is Explained by the Improvement in Soil Microbial Biomass Carbon (SMBC) and the Biocontrol of Insect Attacks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Yadav, A.N. Plant microbiomes for sustainable agriculture: Current research and future challenges. In Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges; Springer International Publishing: Cham, Switzerland, 2020; pp. 475–482. [Google Scholar] [CrossRef]
- Sznitowski, A.M.; Gasparini, L.V.L.; Leitner, C.P.S.; Baggenstoss, S.; Lima, A.M. Integrated agricultural production systems: A sustainable alternative to specialized production systems. Braz. J. Dev. 2019, 5, 9047–9051. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative agriculture—A literature review on the practices and mechanisms used to improve soil health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Gordon, E.; Davila, F.; Riedy, C. Transforming landscapes and mindscapes through regenerative agriculture. Agric. Human Values 2022, 39, 809–826. [Google Scholar] [CrossRef] [PubMed]
- Pessôa, V.L.S. O paradoxo da revolução verde no Cerrado. Élisée 2020, 9, e922013. [Google Scholar]
- Prasad, R.; Zhang, S.H. Beneficial Microorganisms in Agriculture; Springer: Singapore, 2022; p. 348. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Avila, G.M.A.; Gabardo, G.; Clock, D.C.; de Lim, O.S., Jr. Use of efficient microorganisms in agriculture. Res. Soc. Dev. 2021, 10, e17515. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Penfold, C.; Marschner, P. Differential effects of composts on properties of soils with different textures. Biol. Fertil. Soils 2012, 48, 699–707. [Google Scholar] [CrossRef]
- Luo, X.; Liu, G.; Xia, Y.; Chen, L.; Jiang, Z.; Zheng, H.; Wang, Z. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 2017, 17, 780–789. [Google Scholar] [CrossRef]
- Donn, S.; Wheatley, R.E.; McKenzie, B.M.; Loades, K.W.; Hallett, P.D. Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecol. Eng. 2014, 71, 458–465. [Google Scholar] [CrossRef]
- Mendes, A.K.S.; Vilhena, M.D.P.S.P.; Silva, M.V.O.; Berrêdo, J.F.; da Costa, M.L.; Trindade, M.J. Solid bio-compost as a nutrient source for family farming. J. Agric. Food Res. 2023, 12, 100575. [Google Scholar] [CrossRef]
- Gao, X.; Bronzeado, W.; Zhao, Y.; Wu, J.; Sun, Q.; Qi, H.; Xie, X.; Wei, Z. Diversity in the mechanisms of humin formation during composting with different materials. Environ. Sci. Technol. 2019, 53, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- De Gannes, V.; Eudoxie, G.; Hickey, W.J. Insights into fungal communities in composts revealed by 454-pyrosequencing: Implications for human health and safety. Front. Microbiol. 2013, 4, 164. [Google Scholar] [CrossRef] [PubMed]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 604. [Google Scholar] [CrossRef]
- Babur, E.; Dindaroglu, T. Seasonal changes of soil organic carbon and microbial biomass carbon in different forest ecosystems. Environ. Factors Affect. Hum. Health 2020, 1, 1–21. [Google Scholar]
- Maini, A.; Sharma, V.; Sharma, S. Assessment of soil carbon and biochemical indicators of soil quality under rainfed land use systems in North Eastern region of Punjab, India. Carbon Manag. 2020, 11, 169–182. [Google Scholar] [CrossRef]
- Tolin, S.A.; Lacy, G.H. Viral, bacterial, and phytoplasmal diseases of soybean. Soybeans Improv.Prod. Uses 2004, 16, 765–819. [Google Scholar] [CrossRef]
- Kumar, S. Diseases of soybean and their management. In Crop Diseases and Their Management; Apple Academic Press: New York, NY, USA, 2016; p. 295. [Google Scholar]
- Hartman, G.L.; Hill, C.B. Diseases of soybean and their management. In The Soybean: Botany, Production and Uses; CABI: Wallingford, UK, 2010; pp. 276–299. [Google Scholar]
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef] [PubMed]
- Picinini, E.C.; Fernandes, J.M. Doenças de Soja: Diagnose, Epidemiologia e Controle; EMBRAPA Trigo: Passo Fundo, Brazil, 2003; p. 105. [Google Scholar]
- Rezende, C.C.; Silva, M.A.; Frasca, L.L.M.; Faria, D.R.; de Filippi, M.C.C.; Lanna, A.C.; Nascente, A.S. Multifunctional microorganisms: Use in agriculture. Res. Soc. Dev. 2021, 10, e50810212725. [Google Scholar] [CrossRef]
- Singh, H.B. Management of plant pathogens with microorganisms. Proc. Indian Natl. Sci. Acad. 2014, 80, 443–454. [Google Scholar] [CrossRef]
- Ingham, E.R. Compost Tea Promises and Practicalities. Agres 2003, 33. [Google Scholar]
- Ingham, E.R.; Slaughter, M.D. The soil foodweb—Soil and composts as living ecosystems. In Proceedings of the I Conferência Internacional Soil and Compost Eco-Biology, León, Spain, 15–17 September 2004. [Google Scholar]
- Scheu, S. The soil food web: Structure and perspectives. Eur. J. Soil Biol. 2002, 38, 11–20. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. ProbingPhotosynth. Mech. Regul. Adapt. 2000, 25, 445–483. [Google Scholar]
- Silva, E.E.; Azevedo, P.H.S.; De-Polli, H. Determinação do Carbono da Biomassa Microbiana do Solo (BMS-C); EMBRAPA Agrobiologia: Seropédica, Brazil, 2007; p. 6. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. The comparison of dendrograms by objective methods. Taxon 1962, 11, 33–40. [Google Scholar] [CrossRef]
- Garcia-Vallve, S.; Palau, J.; Romeu, A. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol. Biol. Evol. 1999, 16, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 March 2024).
- Picoli, M.M.; Pasquetto, J.V.G.; Muraoka, C.Y.; Milani, K.M.L.; Marin, F.B.B.; Souchie, E.L.; Tezotto, T. Combination of Azospirillum and Bradyrhizobium on inoculant formulation improve nitrogen biological fixation in soybean. J. Agric. Sci. 2022, 14, 145. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am. J. Plant Sci. 2015, 6, 811–817. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.S.; Sena, J.V.S.; Poggere, G.; dos Reis, A.R.; Corrêa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
- Brignoli, D.; Frickel-Critto, E.; Sandobal, T.J.; Balda, R.S.; Castells, C.B.; Mongiardini, E.J.; Lodeiro, A.R. Quality control of Bradyrhizobium inoculant strains: Detection of nosZ and correlation of symbiotic efficiency with soybean leaf chlorophyll levels. Front. Agron. 2024, 6, 1336433. [Google Scholar] [CrossRef]
- Amaral, J.; Lobo, A.K.; Carmo-Silva, E. Regulation of Rubisco activity in crops. New Phytol. 2024, 241, 35–51. [Google Scholar] [CrossRef]
- Shao, J.; Liu, Y.; Xie, J.; Lv, Y.; Fan, B.; Mandic-Mulec, I.; Zhang, R.; Shen, Q.; Xu, Z. Annulment of bacterial antagonism improves plant beneficial activity of a Bacillus velezensis consortium. Appl. Environ. Microbiol. 2022, 88, e00240-22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Shen, Z.; Miao, Y.; Wang, J.; Jiang, X.; Shen, Q.; Li, R. Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Appl. Soil Ecol. 2022, 170, 104300. [Google Scholar] [CrossRef]
- Tanaka, A.; Tanaka, R. The biochemistry, physiology, and evolution of the chlorophyll cycle. Adv. Bot. Res. 2019, 90, 183–212. [Google Scholar] [CrossRef]
- Ort, D.R.; Merchant, S.S.; Alric, J.; Barkan, A.; Blankenship, R.E.; Bock, R.; Croce, R.; Hanson, M.R.; Hibberd, J.M.; Long, S.P.; et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 2015, 112, 8529–8536. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, F.; Song, P.; Sun, B.; Wang, Q.; Wang, J. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. J. Plant Physiol. 2022, 272, 153669. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhou, Z.; Li, Z.; Chen, Y.; Wang, Z.; Zhang, H. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crop Res. 2017, 200, 58–70. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Y.; Qu, M.; Ort, D.R.; Zhu, X.G. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency—Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant Cell Environ. 2017, 40, 2946–2957. [Google Scholar] [CrossRef]
- El-Gendi, H.; Al-Askar, A.A.; Király, L.; Samy, M.A.; Moawad, H.; Abdelkhalek, A. Foliar applications of Bacillus subtilis HA1 culture filtrate enhance tomato growth and induce systemic resistance against tobacco mosaic virus infection. Horticulturae 2022, 8, 301. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Aseel, D.G.; Király, L.; Künstler, A.; Moawad, H.; Al-Askar, A.A. Induction of systemic resistance to Tobacco mosaic virus in tomato through foliar application of Bacillus amyloliquefaciens Strain TBorg1 culture filtrate. Viruses 2022, 14, 1830. [Google Scholar] [CrossRef] [PubMed]
- Olowe, O.M.; Akanmu, A.O.; Asemoloye, M.D. Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Ann. Appl. Biol. 2020, 177, 282–293. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, M.; Sharma, A.; Sharma, V. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress 2023, 7, 100140. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Van, W.S.C.M.; Swart, E.A.M.; Van Pelt, J.A.; Van Loon, L.C.; Pieterse, C.M. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 8711–8716. [Google Scholar] [CrossRef]
- Muir, C.D. A stomatal model of anatomical tradeoffs between gas exchange and pathogen colonization. Front. Plant Sci. 2020, 11, 518991. [Google Scholar] [CrossRef] [PubMed]
- Naik, K.; Mishra, S.; Srichandan, H.; Singh, P.K.; Sarangi, P.K. Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatal. Agric. Biotechnol. 2019, 21, 101326. [Google Scholar] [CrossRef]
- Souza, R.D.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.B.; da Silva, A.G.; da Costa, A.C.; Alves da Silva, A.; Rosa, M.; Bessa, L.A.; Rodrigues, C.R.; Castoldi, G.; Vitorino, L.C. Foliar application of biostimulant mitigates water stress effects on soybean. Agronomy 2024, 14, 414. [Google Scholar] [CrossRef]
- Kumari, S.; Sehrawat, K.D.; Phogat, D.; Sehrawat, A.R.; Chaudhary, R.; Sushkova, S.N.; Voloshina, M.S.; Rajput, V.D.; Shmaraeva, A.N.; Marc, R.A.; et al. Ascophyllum nodosum (L.) Le Jolis, a pivotal biostimulant toward sustainable agriculture: A comprehensive review. Agriculture 2023, 13, 1179. [Google Scholar] [CrossRef]
- Sousa, W.S.; Pontes, J.R.V.; Melo, O.F.P. Efficient microorganisms in lettuce cultivation. Rev. Agrogeoambiental 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Pugas, A.S.; Gomes, S.S.; Duarte, A.P.R.; Rocha, F.C.R.; Santos, T.E.M.S. Effect of Effective Microorganisms in the rate of germination and growth of zucchini (Curcubita pepo L.). Cad. Agroecol. 2013, 8, 1–5. [Google Scholar]
- Yaduwanshi, B.; Sahu, R.K.; Mitra, N.G.; Dwivedi, B.S. Impact of microbial consortia on microbial population and available nutrients in soil under soybean crop. J. Indian Soc. Soil Sci. 2021, 69, 187–194. [Google Scholar] [CrossRef]
- Carvalho, F.L.C.; Peluzio, J.M.; Hackenhaar, C.; dos Santos, D.B.R.; Madeiro, I.I.C.; Jorge, V.S. Teor de óleo e proteína nos grãos em soja cultivada em diferentes populações de plantas no cerrado. Rev. Agronegócio Meio Ambiente 2023, 16, 1–16. [Google Scholar] [CrossRef]
- Bajagić, M.; Đukić, V.; Cvijanović, V.; Mamlić, Z.; Đurić, N.; Ivetić, A.; Sekulić, J. The influence of effective microorganisms on the yield and quality of individual seed components of different soybean genotypes. Acta Agric. Serb. 2024, 29, 9–16. [Google Scholar] [CrossRef]
- Sen, D.O.U.; Jun, S.; Xiangyun, S.; Rui, C.; Meng, W.; Chenglin, L.; Song, G. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere 2020, 30, 159–167. [Google Scholar] [CrossRef]
- Nardis, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Meerza, C.H.N.; Ali, S.S. Morphological growth of soybean (Glycine max L.) treated with soil application of humic acid under different cultivation periods. Agric. Sci. 2023, 6, 136–145. [Google Scholar] [CrossRef]
- Silva, M.O.; Santos, M.P.; Sousa, A.C.P.; Silva, R.L.V.; Moura, I.A.A.; Silva, R.S.; Silva Costa, K.D. Soil quality: Biological indicators for sustainable management. Braz. J. Dev. 2021, 7, 6853–6875. [Google Scholar] [CrossRef]
- Ribeiro, L.L.O.; Cadena, A.L.S.; Weber, E.S.; Spohr, E.; Almeida, K.F. Considerações sobre os indicadores biológicos de qualidade do solo. Open Sci. Res. 2022, 3, 86–91. [Google Scholar] [CrossRef]
- Moreira, P.E.F.; Siqueira, J.O. Microbiologia e Bioquímica do Solo; UFLA: Lavras, Brazil, 2006; p. 729. [Google Scholar]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 2023, 13, 542. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.B.; Medeiros, J.B.; Moraes, M.C.H.S.; Silva, J.S.A.; Costa, D.P.; França, R.F.; Lima, J.R.S.; Duda, J.P. Effect of the application of biochar on microbial biomass carbon in soil cultivated with melon. Braz. Anim. Environ. 2021, 4, 368–377. [Google Scholar] [CrossRef]
- Beffa, T. The composting biotechnology: A microbial aerobic solid substrate fermentation complex process. Compost. Process Manag. 2002, 1, 1–30. [Google Scholar]
- Chalivendra, S. Microbial toxins in insect and nematode pest biocontrol. Int. J. Mol. Sci. 2021, 22, 7657. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.K.; Daniel-Ivad, M.; Jeedigunta, S.P.; Li, J.; Iliadi, K.G.; Boulianne, G.L.; Hurd, T.L.; Smibert, C.A.; Nodwell, J.R. Chemical entrapment and killing of insects by bacteria. Nat. Commun. 2020, 11, 4608. [Google Scholar] [CrossRef]
- Zouari, I.; Masmoudi, F.; Medhioub, K.; Tounsi, S.; Trigui, M. Biocontrol and plant growth-promoting potentiality of bacteria isolated from compost extract. Anton. Leeuw. Int. J. G. 2020, 113, 2107–2122. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 2023, 126, 102048. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Kaari, M.; Manikkam, R.; Annamalai, K.K.; Joseph, J. Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. J. Appl. Microbiol. 2023, 134, lxac047. [Google Scholar] [CrossRef]
- Ebrahimi-Zarandi, M.; Saberi Riseh, R.; Tarkka, M.T. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms 2022, 10, 1739. [Google Scholar] [CrossRef]
- Boukhatem, Z.F.; Merabet, C.; Tsaki, H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Front. Agron. 2022, 4, 849911. [Google Scholar] [CrossRef]
Code Treatment | Composition | Dose (Kg−1 of Seed) | Phenological Phase of Application |
---|---|---|---|
Control | Non-inoculated plants | - | - |
AC | AC compost extracts (Handroanthus impetiginosus) | 50 g | Seed, V3 (35 DAA), and R1 (55 DAA) |
GC | GC compost extracts (Pinus elliptti) | 50 g | Seed, V3 (35 DAA), and R1 (55 DAA) |
Bra+Azo | Bradyrhizobium japonicum + Azospirillum brasilense | 2.4 + 2.0 mL | Seed |
Bra+Azo + AC | Bradyrhizobium japonicum + Azospirillum brasilense + AC compost extracts | 2.4 + 2.0 mL + 50 g | Seed, V3 (35 DAA), and R1 (55 DAA) |
Bra+Azo + GC | Bradyrhizobium japonicum + Azospirillum brasilense + GC compost extracts | 2.4 + 2.0 mL + 50 g | Seed, V3 (35 DAA), and R1 (55 DAA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, A.P.d.; Reis, M.N.O.; Lourenço, L.L.; Mol, D.J.d.S.; Bessa, L.A.; Brasil, M.d.S.; Vitorino, L.C. Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops. Microorganisms 2025, 13, 341. https://doi.org/10.3390/microorganisms13020341
Jesus APd, Reis MNO, Lourenço LL, Mol DJdS, Bessa LA, Brasil MdS, Vitorino LC. Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops. Microorganisms. 2025; 13(2):341. https://doi.org/10.3390/microorganisms13020341
Chicago/Turabian StyleJesus, Andressa Pereira de, Mateus Neri Oliveira Reis, Lucas Loram Lourenço, Daniel José de Souza Mol, Layara Alexandre Bessa, Marivaine da Silva Brasil, and Luciana Cristina Vitorino. 2025. "Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops" Microorganisms 13, no. 2: 341. https://doi.org/10.3390/microorganisms13020341
APA StyleJesus, A. P. d., Reis, M. N. O., Lourenço, L. L., Mol, D. J. d. S., Bessa, L. A., Brasil, M. d. S., & Vitorino, L. C. (2025). Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops. Microorganisms, 13(2), 341. https://doi.org/10.3390/microorganisms13020341