Microbial Ecology of Sulfur Mustard Toxicity: From Dysbiosis to Restoration
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Models and SM Exposure
2.2. 16S rRNA Gene Sequencing and Analysis
2.3. MR Analysis
2.4. Fecal Microbiota Transplantation
2.5. Intestinal Histopathological Analysis
2.6. Statistical Analysis
3. Results
3.1. SM Exposure Alters Gut Microbiota Composition and Diversity
3.2. Mendelian Randomization Analysis of Gut Microbiota–IBD Associations
3.3. Concordance Analysis of MR-Derived Taxa with 16S Sequencing Data
3.4. FMT Ameliorates SM-Induced Intestinal Injury and Restores Microbial Homeostasis
3.5. FMT Mediated Restoration of Gut Microbiota Composition
3.6. Longitudinal Analysis of Microbial Dynamics in SM-Exposed Survivors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SM | Sulfur mustard |
| IBD | inflammatory bowel disease |
| MR | Mendelian randomization |
| FMT | Fecal microbiota transplantation |
References
- Isono, O.; Kituda, A.; Fujii, M.; Yoshinaka, T.; Nakagawa, G.; Suzuki, Y. Long-term neurological and neuropsychological complications of sulfur mustard and Lewisite mixture poisoning in Chinese victims exposed to chemical warfare agents abandoned at the end of WWII. Toxicol. Lett. 2018, 293, 9–15. [Google Scholar] [CrossRef]
- Kadar, T.; Dachir, S.; Cohen, M.; Gutman, H.; Cohen, L.; Brandeis, R.; Horwitz, V.; Amir, A. Prolonged impairment of corneal innervation after exposure to sulfur mustard and its relation to the development of delayed limbal stem cell deficiency. Cornea 2013, 32, e44–e50. [Google Scholar] [CrossRef] [PubMed]
- Kehe, K.; Thiermann, H.; Balszuweit, F.; Eyer, F.; Steinritz, D.; Zilker, T. Acute effects of sulfur mustard injury—Munich experiences. Toxicology 2009, 263, 3–8. [Google Scholar] [CrossRef]
- Khazdair, M.R.; Boskabady, M.H. The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial. Respir. Med. 2019, 150, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Layegh, P.; Maleki, M.; Mousavi, S.R.; Yousefzadeh, H.; Momenzadeh, A.; Golmohammadzadeh, S.; Balali-Mood, M. Epidermal hydration and skin surface lipids in patients with long-term complications of sulfur mustard poisoning. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2015, 20, 640–645. [Google Scholar] [CrossRef]
- Iravani, S.; Rahnavardi, M.; Gorouhi, F.; Gorouhi, F. Repeated gastrointestinal malignancies in a victim of sulfur mustard gas attack. Indian J. Gastroenterol 2007, 26, 102. [Google Scholar]
- Emmler, J.; Iris, H.M.; Dirk, S.; Helmut, K.; James, K.C.; Wilhelm, B.; Ladislaus, S.; Kehe, K. Assessment of Alterations in Barrier Functionality and Induction of Proinflammatory and Cytotoxic Effects After Sulfur Mustard Exposure of an In Vitro Coculture Model of the Human Alveolo-Capillary Barrier. Inhal. Toxicol. 2007, 19, 657–665. [Google Scholar] [CrossRef]
- Moin, A.; Khamesipour, A.; Hassan, Z.M.; Ebtekar, M.; Davoudi, S.-M.; Vaez-Mahdavi, M.-R.; Soroush, M.-R.; Faghihzadeh, S.; Naghizadeh, M.-M.; Ghazanfari, T. Pro-inflammatory cytokines among individuals with skin findings long-term after sulfur mustard exposure: Sardasht-Iran Cohort Study. Int. Immunopharmacol. 2013, 17, 986–990. [Google Scholar] [CrossRef]
- Huber, B.; Dammann, P.; Krüger, C.; Kirsch, P.; Bialek, B.; Diaz-Bone, R.A.; Hensel, R. Production of Toxic Volatile Trimethylbismuth by the Intestinal Microbiota of Mice. J. Toxicol. 2011, 2011, 491039. [Google Scholar] [CrossRef]
- Luo, L.; Liu, S.; Chen, B.; Li, F.; Deng, Y.; Huang, X.; Geng, Y.; Ouyang, P.; Chen, D. Chronic ammonia stress caused disorder of intestinal microbiota and damaged intestinal structure and function in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2024, 581, 740428. [Google Scholar] [CrossRef]
- Zhai, Q.; Li, T.; Yu, L.; Xiao, Y.; Feng, S.; Wu, J.; Zhao, J.; Zhang, H.; Chen, W. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci. Bull. 2017, 62, 831–840. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Mousavi, S.; Balali-Mood, B. Chronic health effects of sulphur mustard exposure with special reference to Iranian veterans. Emerg. Health Threat. J. 2008, 1, e7. [Google Scholar] [CrossRef]
- Gracie, D.J.; Hamlin, P.J.; Ford, A.C. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol. Hepatol. 2019, 4, 632–642. [Google Scholar] [CrossRef]
- Bišćanin, A.; Palac, L.; Dorosulić, Z.; Kralj, D.; Ćaćić, P.; Babić, F.; Ogresta, D.; Hrabar, D.; Tomašić, V. Impaired Quality of Life in Croatian IBD Patients in the Era of Advanced Treatment Options. Healthcare 2025, 13, 1681. [Google Scholar] [CrossRef] [PubMed]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356, eaag2770. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Sci. Total Environ. 2020, 742, 140429. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Gui, W.; Rimal, B.; Koo, I.; Smith, P.B.; Nichols, R.G.; Cai, J.; Liu, Q.; Patterson, A.D. Metabolic impact of persistent organic pollutants on gut microbiota. Gut Microbes 2020, 12, 1848209. [Google Scholar] [CrossRef]
- Pei, Z.; Cen, J.; Zhang, X.; Gong, C.; Sun, M.; Meng, W.; Mao, G.; Wan, J.; Hu, B.; He, X.; et al. MiR-146a-5p delivered by hucMSC extracellular vesicles modulates the inflammatory response to sulfur mustard-induced acute lung injury. Stem Cell Res. Ther. 2023, 14, 149. [Google Scholar] [CrossRef]
- Tsou, A.M.; Olesen, S.W.; Alm, E.J.; Snapper, S.B. 16S rRNA sequencing analysis: The devil is in the details. Gut Microbes 2020, 11, 1139–1142. [Google Scholar] [CrossRef]
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef]
- Han, Y.J.; Kim, S.; Shin, H.; Kim, H.W.; Park, J.D. Protective effect of gut microbiota restored by fecal microbiota transplantation in a sepsis model in juvenile mice. Front. Immunol. 2024, 15, 1451356. [Google Scholar] [CrossRef]
- Liu, Q.X.; Zhou, Y.; Li, X.M.; Ma, D.D.; Xing, S.; Feng, J.H.; Zhang, M.H. Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult. Sci. 2020, 99, 3402–3410. [Google Scholar] [CrossRef]
- Dong, B.; Moon, H.-B. Toxicological effects of chemical pesticides in fish: Focusing on intestinal injury and gut microbial dysbiosis. Pestic. Biochem. Physiol. 2025, 211, 106405. [Google Scholar] [CrossRef]
- Dey, P. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sci. 2020, 258, 118172. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Wu, L.-L.; Chen, H.-P.; Yu, J.; Wu, C.-Y. Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host–microbiota interface upon alcohol exposure. J. Gastroenterol. Hepatol. 2024, 39, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wen, K.; Ding, D.; Liu, J.; Lei, Z.; Chen, X.; Ye, G.; Zhang, J.; Shen, H.; Yan, C.; et al. Size-dependent adverse effects of microplastics on intestinal microbiota and metabolic homeostasis in the marine medaka (Oryzias melastigma). Environ. Int. 2021, 151, 106452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Gao, B.; Adeolu, M.; Khadka, B.; Gupta, R.S. Phylogenomic Analyses and Comparative Studies on Genomes of the Bifidobacteriales: Identification of Molecular Signatures Specific for the Order Bifidobacteriales and Its Different Subclades. Front. Microbiol. 2016, 7, 978. [Google Scholar] [CrossRef]
- Akagawa, S.; Akagawa, Y.; Yamanouchi, S.; Teramoto, Y.; Yasuda, M.; Fujishiro, S.; Kino, J.; Hirabayashi, M.; Mine, K.; Kimata, T.; et al. Association of Neonatal Jaundice with Gut Dysbiosis Characterized by Decreased Bifidobacteriales. Metabolites 2021, 11, 887. [Google Scholar] [CrossRef]
- Gu, T.; Kong, M.; Duan, M.; Chen, L.; Tian, Y.; Xu, W.; Zeng, T.; Lu, L. Cu exposure induces liver inflammation via regulating gut microbiota/LPS/liver TLR4 signaling axis. Ecotoxicol. Environ. Saf. 2024, 278, 116430. [Google Scholar] [CrossRef]
- Xu, B.; Yan, Y.; Yin, B.; Zhang, L.; Qin, W.; Niu, Y.; Tang, Y.; Zhou, S.; Yan, X.; Ma, L. Dietary glycyl-glutamine supplementation ameliorates intestinal integrity, inflammatory response, and oxidative status in association with the gut microbiota in LPS-challenged piglets. Food Funct. 2021, 12, 3539–3551. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Zhao, X.; Feng, J. Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. Ecotoxicol. Environ. Saf. 2021, 226, 112832. [Google Scholar] [CrossRef]
- Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafò, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.; Zhao, Q.; et al. Mendelian randomization. Nat. Rev. Methods Primers 2022, 2, 6. [Google Scholar] [CrossRef]
- Wu, K.; Luo, Q.; Liu, Y.; Li, A.; Xia, D.; Sun, X. Causal relationship between gut microbiota and gastrointestinal diseases: A mendelian randomization study. J. Transl. Med. 2024, 22, 92. [Google Scholar] [CrossRef]
- Thomas, H. Mendelian randomization reveals causal effects of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 198–199. [Google Scholar] [CrossRef]
- Potts, L.D.; Douglas, A.; Perez Calderon, L.J.; Anderson, J.A.; Witte, U.; Prosser, J.I.; Gubry-Rangin, C. Chronic Environmental Perturbation Influences Microbial Community Assembly Patterns. Environ. Sci. Technol. 2022, 56, 2300–2311. [Google Scholar] [CrossRef]
- Du, X.; Zhang, J.; Zhang, X.; Schramm, K.-W.; Nan, B.; Huang, Q.; Tian, M.; Shen, H. Persistence and reversibility of arsenic-induced gut microbiome and metabolome shifts in male rats after 30-days recovery duration. Sci. Total Environ. 2021, 776, 145972. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.-Z.; Zhao, Z.-H.; Liu, X.-L.; Pan, Q.; Wang, Z.-X.; Zeng, L.; Zhang, Q.-R.; Ye, L.; Wang, M.-Y.; Zhang, R.-N.; et al. Escherichia fergusonii Promotes Nonobese Nonalcoholic Fatty Liver Disease by Interfering With Host Hepatic Lipid Metabolism Through Its Own msRNA 23487. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 827–841. [Google Scholar] [CrossRef]
- Licht, T.R.; Bahl, M.I. Impact of the gut microbiota on chemical risk assessment. Curr. Opin. Toxicol. 2019, 15, 109–113. [Google Scholar] [CrossRef]
- Thompson, J.A.; Oliveira, R.A.; Xavier, K.B. Chemical conversations in the gut microbiota. Gut Microbes 2016, 7, 163–170. [Google Scholar] [CrossRef]
- Taur, Y.; Coyte, K.; Schluter, J.; Robilotti, E.; Figueroa, C.; Gjonbalaj, M.; Littmann, E.R.; Ling, L.; Miller, L.; Gyaltshen, Y.; et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 2018, 10, eaap9489. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Mao, G.; Pei, Z.; Sun, Y.; Cen, J.; Zhang, S.; Li, S.; Meng, W.; Xiao, K.; Xu, Q.; et al. Microbial Ecology of Sulfur Mustard Toxicity: From Dysbiosis to Restoration. Microorganisms 2025, 13, 2793. https://doi.org/10.3390/microorganisms13122793
Zhang X, Mao G, Pei Z, Sun Y, Cen J, Zhang S, Li S, Meng W, Xiao K, Xu Q, et al. Microbial Ecology of Sulfur Mustard Toxicity: From Dysbiosis to Restoration. Microorganisms. 2025; 13(12):2793. https://doi.org/10.3390/microorganisms13122793
Chicago/Turabian StyleZhang, Xinkang, Guanchao Mao, Zhipeng Pei, Yunrui Sun, Jinfeng Cen, Shanshan Zhang, Songling Li, Wenqi Meng, Kai Xiao, Qingqiang Xu, and et al. 2025. "Microbial Ecology of Sulfur Mustard Toxicity: From Dysbiosis to Restoration" Microorganisms 13, no. 12: 2793. https://doi.org/10.3390/microorganisms13122793
APA StyleZhang, X., Mao, G., Pei, Z., Sun, Y., Cen, J., Zhang, S., Li, S., Meng, W., Xiao, K., Xu, Q., & Sun, M. (2025). Microbial Ecology of Sulfur Mustard Toxicity: From Dysbiosis to Restoration. Microorganisms, 13(12), 2793. https://doi.org/10.3390/microorganisms13122793

