Association of Diarrheagenic Escherichia coli Virulence Genes and Antimicrobial Resistance Genes in an Interface Model of Swine Colonization and Human Diarrhea in Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study
2.2. Sample
2.3. Isolation and Identification of Escherichia coli Strains
2.4. Antimicrobial Susceptibility Testing
2.5. Virulence Factor Gene Detection
2.6. Pulsed-Field Gel Electrophoresis (PFGE)
2.7. Statistical Analysis
3. Results
3.1. Prevalence of Escherichia coli Strains Isolated from Swine and Human
3.2. Antimicrobial Susceptibility Testing
3.3. Multidrug Resistance
3.4. Pathotype Characterization
3.5. Phylogenetic Analysis of E. coli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heymann, D.L.; Brilliant, L. Surveillance in eradication and elimination of infectious diseases: A progression through the years. Vaccine 2011, 29 (Suppl. 4), D141–D144. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Kasanga, M.; Shempela, D.M.; Daka, V.; Mwikisa, M.J.; Sikalima, J.; Chanda, D.; Mudenda, S. Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: Findings and implications. JAC Antimicrob. Resist. 2024, 6, dlae061. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215 (Suppl. 1), S28–S36. [Google Scholar] [CrossRef]
- Bartsch, S.M.; McKinnell, J.A.; Mueller, L.E.; Miller, L.G.; Gohil, S.K.; Huang, S.S.; Lee, B.Y. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin. Microbiol. Infect. 2017, 23, 48.e9–48.e16. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yu, J.K.; Park, K.; Oh, E.J.; Kim, S.Y.; Park, Y.J. Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. Ann. Clin. Lab. Sci. 2010, 40, 361–367. [Google Scholar]
- Sodagari, H.R.; Varga, C. Evaluating antimicrobial resistance trends in commensal Escherichia coli Isolated from cecal samples of swine at slaughter in the United States, 2013–2019. Microorganisms 2023, 11, 1033. [Google Scholar] [CrossRef]
- Bosák, J.; Hrala, M.; Pirková, V.; Micenková, L.; Čížek, A.; Smola, J.; Kučerová, D.; Vacková, Z.; Budinská, E.; Koláčková, I.; et al. Porcine pathogenic Escherichia coli strains differ from human fecal strains in occurrence of bacteriocin types. Vet. Microbiol. 2019, 232, 121–127. [Google Scholar] [CrossRef]
- Peirano, V.; Bianco, M.N.; Navarro, A.; Schelotto, F.; Varela, G. Diarrheagenic Escherichia coli associated with acute gastroenteritis in children from Soriano, Uruguay. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 8387218. [Google Scholar] [CrossRef]
- Torres, A.G. Escherichia coli diseases in Latin America-a “One Health” multidisciplinary approach. Pathog Dis. 2017, 75, ftx012. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed]
- Konaté, A.; Dembélé, R.; Guessennd, N.K.; Kouadio, F.K.; Kouadio, I.K.; Ouattara, M.B.; Kaboré, W.A.D.; Kagambèga, A.; Cissé, H.; Ibrahim, H.B.; et al. Epidemiology and antibiotic resistance phenotypes of diarrheagenic Escherichia coli responsible for infantile gastroenteritis in Ouagadougou, Burkina Faso. Eur. J. Microbiol. Immunol. 2017, 7, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Legorreta, E.M.; García-Radilla, A.; Moreno-Vázquez, E.; Téllez-Figueroa, F.; Alpuche-Aranda, C.M. Diarrheagenic Escherichia coli pathotypes isolated from a swine farm in a region of Morelos state, Mexico. Salud Publica Mex. 2020, 63, 34–41. [Google Scholar] [CrossRef]
- Navarro, A.; Cauich-Sánchez, P.I.; Trejo, A.; Gutiérrez, A.; Díaz, S.P.; Díaz, C.M.; Cravioto, A.; Eslava, C. Characterization of diarrheagenic dtrains of Escherichia coli isolated from cattle raised in three regions of Mexico. Front. Microbiol. 2018, 9, 2373. [Google Scholar] [CrossRef]
- Patzi-Vargas, S.; Zaidi, M.B.; Perez-Martinez, I.; León-Cen, M.; Michel-Ayala, A.; Chaussabel, D.; Estrada-Garcia, T. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico. PLoS Negl. Trop Dis. 2015, 9, e0003510. [Google Scholar] [CrossRef]
- Canizalez-Roman, A.; Gonzalez-Nuñez, E.; Vidal, J.E.; Flores-Villaseñor, H.; León-Sicairos, N. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int. J. Food Microbiol. 2013, 164, 36–45. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Medlicott, K.; Wester, A.; Gordon, B.; Montgomery, M.; Tayler, E.; Sutherland, D.; Schmoll, O.; De-Souza, M.; Koo-Oshima, S.; Da-Balogh, K.; et al. Technical Brief on Water, Sanitation, Hygiene and Wastewater Management to Prevent Infections and Reduce the Spread of Antimicrobial Resistance. WHO/FAO/OIE Recommendations Report. 2020. Available online: https://www.who.int/publications/i/item/9789240006416 (accessed on 17 September 2024).
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI Supplement M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Işeri, L.; Zafer Apan, T.; Aksoy, A.; Koç, F.; Sedef Göçmen, J.; Nuristani, D. The prevalence of enterotoxigenic E. coli isolated from the stools of children aged 0-10 years with diarrhea in mid-anatolia region, Turkey. Braz. J. Microbiol. 2011, 42, 243–247. [Google Scholar] [CrossRef]
- Uribe-Beltrán, M.J.; Ahumada-Santos, Y.P.; Díaz-Camacho, S.P.; Eslava-Campos, C.A.; Reyes-Valenzuela, J.E.; Báez-Flores, M.E.; Osuna-Ramírez, I.; Delgado-Vargas, F. High prevalence of multidrug-resistant Escherichia coli isolates from children with and without diarrhoea and their susceptibility to the antibacterial activity of extracts/fractions of fruits native to Mexico. J. Med. Microbiol. 2017, 66, 972–980. [Google Scholar] [CrossRef]
- Al-Gallas, N.; Bahri, O.; Bouratbeen, A.; Ben Haasen, A.; Ben Aissa, R. Etiology of acute diarrhea in children and adults in Tunis, Tunisia, with emphasis on diarrheagenic Escherichia coli: Prevalence, phenotyping, and molecular epidemiology. Am. J. Trop Med. Hyg. 2007, 77, 571–582. [Google Scholar] [CrossRef]
- Souza, T.B.; Lozer, D.M.; Kitagawa, S.M.; Spano, L.C.; Silva, N.P.; Scaletsky, I.C. Real-time multiplex PCR assay and melting curve analysis for identifying diarrheagenic Escherichia coli. J. Clin. Microbiol. 2013, 51, 1031–1033. [Google Scholar] [CrossRef]
- CDC PulseNet. Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157: H7, Escherichia coli Non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri; PNL05; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017; Volume 157, pp. 1–16.
- Durmaz, R.; Otlu, B.; Koksal, F.; Hosoglu, S.; Ozturk, R.; Ersoy, Y.; Aktas, E.; Gursoy, N.C.; Caliskan, A. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn. J. Infect. Dis. 2009, 62, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar]
- Pungpian, C.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Chuanchuen, R. Presence and transfer of antimicrobial resistance determinants in Escherichia coli in pigs, pork, and humans in Thailand and Lao PDR Border Provinces. Microb. Drug Resist. 2021, 27, 571–584. [Google Scholar] [CrossRef]
- Do, K.H.; Seo, K.; Lee, W.K. Antimicrobial resistance, virulence genes, and phylogenetic characteristics of pathogenic Escherichia coli isolated from patients and swine suffering from diarrhea. BMC Microbiol. 2022, 22, 199. [Google Scholar] [CrossRef]
- World Health Organization. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List). 5th Revision. World Health Organization. 2017. Available online: https://apps.who.int/iris/handle/10665/325036 (accessed on 17 September 2024).
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Harrell, E.; Thakur, S. Quinolone-resistant Escherichia coli at the interface between humans, poultry and their shared environment- a potential public health risk. One Health Outlook 2023, 5, 2. [Google Scholar] [CrossRef]
- Christodoulou, M.K. Comparison of antimicrobial resistance in Escherichia coli strains isolated from swine, poultry, and farm workers in the respective livestock farming units in Greece. Cureus 2023, 25, e51073. [Google Scholar] [CrossRef]
- Castro, A.M.; Santos-Balbuena, H.F.; García-García, A.E.; Arzate-Barbosa, P. Association of diarrheagenic Escherichia coli with virotypes and sensitivity to antimicrobials in children of the Mexico City. Rev. Méd. Hosp. Gen. Mex. 2019, 82, 87–97. [Google Scholar] [CrossRef]
- van Den Bogaard, A.E.; London, N.; Stobberingh, E.E. Antimicrobial resistance in pig faecal samples from the Netherlands (five abattoirs) and Sweden. J. Antimicrob. Chemother. 2000, 45, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Mesa-Varona, O.; Boone, I.; Flor, M.; Eckmanns, T.; Kaspar, H.; Grobbel, M.; Tenhagen, B.A. Comparison of consumption data and phenotypical antimicrobial resistance in E. coli isolates of human urinary samples and of weaning and fattening pigs from surveillance and monitoring systems in Germany. Antibiotics 2022, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- van Breda, L.K.; Dhungyel, O.P.; Ward, M.P. Antibiotic resistant Escherichia coli in southeastern Australian swine herds and implications for surveillance. Zoonoses Public Health 2018, 65, e1–e7. [Google Scholar] [CrossRef]
- Lunha, K.; Leangapichart, T.; Jiwakanon, J.; Angkititrakul, S.; Sunde, M.; Järhult, J.D.; Ström Hallenberg, G.; Hickman, R.A.; Van Boeckel, T.; Magnusson, U. Antimicrobial resistance in fecal Escherichia coli from humans and swines at farms at different levels of intensification. Antibiotics 2020, 9, 662. [Google Scholar] [CrossRef]
- Pietsch, M.; Irrgang, A.; Roschanski, N.; Brenner Michael, G.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; Kreienbrock, L.; et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef]
- Sauget, M.; Atchon, A.K.; Valot, B.; Garch, F.E.; Jong, A.; Moyaert, H.; Hocquet, D.; EASSA and VetPath Study Group. Genome analysis of third-generation cephalosporin-resistant Escherichia coli and Salmonella species recovered from healthy and diseased food-producing animals in Europe. PLoS ONE 2023, 18, e0289829. [Google Scholar] [CrossRef]
- Dang, S.T.T.; Bortolaia, V.; Tran, N.T.; Le, H.Q.; Dalsgaard, A. Cephalosporin-resistant Escherichia coli isolated from farm workers and pigs in northern Vietnam. Trop. Med. Int. Health 2018, 23, 415–424. [Google Scholar] [CrossRef]
- Sali, V.; Nykäsenoja, S.; Heikinheimo, A.; Hälli, O.; Tirkkonen, T.; Heinonen, M. Antimicrobial use and susceptibility of indicator Escherichia coli in finnish integrated pork production. Front. Microbiol. 2021, 12, 754894. [Google Scholar] [CrossRef]
- Dimitrova, L.; Kaleva, M.; Zaharieva, M.M.; Stoykova, C.; Tsvetkova, I.; Angelovska, M.; Ilieva, Y.; Kussovski, V.; Naydenska, S.; Najdenski, H. Prevalence of antibiotic-resistant Escherichia coli isolated from swine faeces and lagoons in Bulgaria. Antibiotics 2021, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Msolo, L.; Iweriebor, B.C.; Okoh, A.I. Antimicrobial resistance profiles of diarrheagenic E. coli (DEC) and Salmonella species recovered from diarrheal patients in selected rural communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect. Drug Resist. 2020, 13, 4615–4626. [Google Scholar] [CrossRef]
- Yang, G.Y.; Guo, L.; Su, J.H.; Zhu, Y.H.; Jiao, L.G.; Wang, J.F. Frequency of diarrheagenic virulence genes and characteristics in Escherichia coli isolates from pigs with diarrhea in China. Microorganisms 2019, 7, 308. [Google Scholar] [CrossRef]
- Park, S.B.; Park, Y.K.; Ha, M.W.; Thompson, K.D.; Jung, T.S. Antimicrobial resistance, pathogenic, and molecular characterization of Escherichia coli from diarrheal patients in South Korea. Pathogens 2022, 11, 385. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol. Environ. Saf. 2023, 254, 114734. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar]
- Pan, Y.; Hu, B.; Bai, X.; Yang, X.; Cao, L.; Liu, Q.; Sun, H.; Li, J.; Zhang, J.; Jin, D.; et al. Antimicrobial resistance of Non-O157 Shiga toxin-producing Escherichia coli isolated from humans and domestic animals. Antibiotics 2021, 10, 74. [Google Scholar] [CrossRef]
- Alali, W.Q.; Scott, H.M.; Harvey, R.B.; Norby, B.; Lawhorn, D.B.; Pillai, S.D. Longitudinal study of antimicrobial resistance among Escherichia coli isolates from integrated multisite cohorts of humans and swine. Appl. Environ. Microbiol. 2008, 74, 3672–3681. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; McEwen, S.A.; Boerlin-Petzold, F.; Wilson, J.B.; Johnson, R.P.; Gyles, C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 1999, 37, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.E.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. Food animals as reservoirs and potential sources of multidrug-resistant diarrheagenic E. coli pathotypes: Focus on intensive pig farming in South Africa. Onderstepoort J. Vet. Res. 2022, 89, e1–e13. [Google Scholar] [CrossRef] [PubMed]
- Kylla, H.; Dutta, T.K.; Roychoudhury, P.; Subudhi, P.K. Coinfection of diarrheagenic bacterial and viral pathogens in piglets of Northeast region of India. Vet. World 2019, 12, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Tack, D.; Pindyck, T.; Griffin, P. Escherichia coli, Diarrheagenic. Centre for Disease Control and Prevention. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/escherichia-coli-diarrheagenic (accessed on 20 October 2024).
- Pasqua, M.; Michelacci, V.; Di Martino, M.L.; Tozzoli, R.; Grossi, M.; Colonna, B.; Morabito, S.; Prosseda, G. The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Front. Microbiol. 2017, 8, 2390. [Google Scholar] [CrossRef]
- Blanco, M.; Lazo, L.; Blanco, J.E.; Dahbi, G.; Mora, A.; López, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, and PFGE patterns of enteropathogenic Escherichia coli isolated from Cuban pigs with diarrhea. Int. Microbiol. 2006, 9, 53–60. [Google Scholar]
- Vu Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Mora, A.; Dahbi, G.; López, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet. Res. 2006, 2, 10. [Google Scholar] [CrossRef]
- Karama, M.; Cenci-Goga, B.T.; Malahlela, M.; Smith, A.M.; Keddy, K.H.; El-Ashram, S.; Kabiru, L.M.; Kalake, A. Virulence characteristics and antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli isolates from humans in South Africa: 2006–2013. Toxins 2019, 11, 424. [Google Scholar] [CrossRef]

| Pathotype 1 | Target Gene | Primer Sequence (5′-3′) | Amplicon Size (bp) | Reference |
|---|---|---|---|---|
| EPEC | eae | F: ACTGGACTTCTTATTTCCGTTCTATG R: CCTAAACGGGTATAATCACCAGA | 189 | [27] |
| EHEC | stx-1 | F: AGTCGTACGGGGATGCAGATAAAT R: CCGGACACATAGAAGGAAACTCAT | 418 | [27] |
| stx-2 | F: GGCACTGTCTGAAACTGCCC R: TCGCCAGTTATCTGACATTCTG | 255 | [27] | |
| ETEC | elt | F: GGCGACAGATTATACCGTGC R: CGGTCTCTATATTCCCTGTT | 440 | [27] |
| est | F: ATTTTTMTTTCTGTATTRTCTT R: CACCCGGTACARGCAGGATT | 191 | [27] | |
| EIEC | ipaH | F: GTTCCTTGACCGCCTTTCCGATACCGTC R: GCCGGTCAGCCACCCTCTGAGAGTAC | 619 | [27] |
| EAEC | aat | F: AGGTTTGATAATGATGTCCTTGAGGA R: TCAGCTAATAATGTATAGAAATCCGCTGTT | 152 | [27] |
| DAEC | daa | F: ATTACGTCATCCGGGAAGCACACA R: GCTTGCTCATAAAGCCGCAGACAA | 146 | [27] |
| Source (Number of Samples) | Age Group and/or Healthcare Centers 1 | Total Number of Fecal Samples | Total Number of Confirmed E. coli (API 20E) (%) |
|---|---|---|---|
| Swine Farm (N = 508) | Suckling piglets | 160 | 289 (29.4) |
| Weaning piglets | 126 | 228 (23.19) | |
| Sows | 211 | 444 (45.17) | |
| Boar | 11 | 22 (2.24) | |
| Human (N = 262) | HC Jiutepec | 36 | 58 (13.65) |
| HC Huizachera | 47 | 83 (19.53) | |
| HC Calera Chica | 68 | 110 (25.88) | |
| CGH “Dr. José G. Parres” | 111 | 174 (40.94) |
| Percentage of Antimicrobial Resistance and Statistical Comparison of Resistant Isolates (Z-Test for Proportions) | ||||||||
|---|---|---|---|---|---|---|---|---|
| Swine | Human | Z-Score | p-Value | |||||
| Antimicrobial (Family) 1 | Pathogenic n = 62 (6.31%) | Commensal n = 921 (93.69%) | Total N = 983 (100%) | Pathogenic n = 95 (22.35%) | Commensal n = 330 (77.65%) | Total N = 425 (100%) | ||
| Ampicillin [B] | 4.47 (44) | 50.97 (501) | 55.44 (545) | 13.88 (59) | 44.0 (187) | 57.88 (246) | −0.80 | 0.42 |
| Ceftazidime [B] | 0.00 (0) | 2.54 (25) | 2.54 (25) | 3.77 (16) | 10.82 (46) | 14.59 (62) | −8.74 | <0.0001 |
| Cefotaxime [B] | 0.00 (0) | 2.44 (24) | 2.44 (24) | 2.82 (12) | 8.71 (37) | 11.53 (49) | −7.19 | <0.0001 |
| Gentamicin [A] | 1.42 (14) | 36.42 (358) | 37.84 (372) | 9.88 (42) | 36.47 (155) | 46.35 (197) | −2.94 | 0.0032 |
| Ciprofloxacin [Q] | 2.95 (29) | 20.44 (201) | 23.39 (230) | 1.65 (7) | 13.65 (58) | 15.30 (65) | 3.39 | 0.0007 |
| Nalidixic acid [Q] | 5.49 (54) | 73.45 (722) | 78.94 (776) | 14.12 (60) | 51.29 (218) | 65.41 (278) | 5.42 | <0.0001 |
| Cotrimoxazole [S] 2 | 3.96 (39) | 49.95 (491) | 53.91 (530) | 12.94 (55) | 40.94 (174) | 53.88 (229) | 0.058 | 0.95 |
| Tetracycline [T] | 5.19 (51) | 66.73 (656) | 71.92 (707) | 14.59 (62) | 57.18 (243) | 71.77 (305) | 0.021 | 0.98 |
| MDR 3 | 4.78 (47) | 61.44 (604) | 66.22 (651) | 14.82 (63) | 49.88 (212) | 64.71 (275) | 0.51 | 0.61 |
| Group (%) | Number of Antibiotic Resistances | No. of Isolates (%) | Most Frequent Pattern of Antimicrobial Resistance (No. of Isolates) 1 |
|---|---|---|---|
| Swine n = 651 (66.22) | 3 | 251 (25.54) | NAL-SXT-TET (48) GEN-NAL-TET (43) |
| 4 | 187 (19.02) | AMP-NAL-SXT-TET (79) | |
| 5 | 129 (13.12) | AMP-CIP-NAL-SXT-TET (63) | |
| 6 | 70 (7.12) | AMP-GEN-CIP-NAL-SXT-TET (65) | |
| 7 | 8 (0.81) | AMP-CAZ-CTX-CIP-NAL-SXT-TET (4) | |
| 8 | 6 (0.61) | AMP-CAZ-CTX-GEN-CIP-NAL-SXT-TET (6) | |
| Humans n = 275 (64.71) | 3 | 95 (22.35) | AMP-NAL-TET (19) |
| GEN-NAL-TET (19) | |||
| 4 | 83 (19.53) | AMP-NAL-SXT-TET (31) | |
| 5 | 43 (10.12) | AMP-GEN-NAL-SXT-TET (23) | |
| 6 | 22 (5.18) | AMP-GEN-CIP-NAL-SXT-TET (9) | |
| 7 | 14 (3.29) | AMP-CAZ-CTX-CIP-NAL-SXT-TET (6) | |
| 8 | 18 (4.24) | AMP-CAZ-CTX-GEN-CIP-NAL-SXT-TET (18) |
| Pathotypes 1 | Virulence Genes | Swine N = 983 | Human N = 425 | ||||
|---|---|---|---|---|---|---|---|
| Total Diarrheagenic E. coli n = 62 (6.31%) 2 | Total Diarrheagenic E. coli n = 95 (22.35%) 2 | ||||||
| MDR n = 47 (75.8%) 3 | No MDR n = 15 (24.19%) 3 | Total | MDR n = 63 (66.31%) 3 | No MDR n = 32 (33.68%) 3 | Total | ||
| EPEC | eae | 34 (54.84%) | 10 (16.13%) | 44 (70.97%) | 11 (11.58%) | 6 (6.32%) | 17 (17.90%) |
| EHEC | sxt1 | 4 (6.45%) | 3 (4.84%) | 7 (11.29%) | 2 (2.10%) | 3 (3.16%) | 5 (5.26%) |
| sxt2 | 6 (9.68%) | 0 (0.00%) | 6 (9.68%) | 2 (2.10%) | 0 (0.00%) | 2 (2.10%) | |
| stx1/stx2 | 1 (1.61%) | 0 (0.00%) | 1 (1.61%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | |
| ETEC | elt | 1 (1.61%) | 1 (1.61%) | 2 (3.22%) | 6 (6.32%) | 4 (4.21%) | 10 (10.53%) |
| est | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 1 (1.05%) | 1 (1.05%) | |
| EIEC | ipaH | 1 (1.61%) | 1 (1.61%) | 2 (3.22%) | 7 (7.37%) | 5 (5.26%) | 12 (12.63%) |
| EAEC | aat | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 8 (8.43%) | 2 (2.10%) | 10 (10.53%) |
| DAEC | daa | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 27 (28.42%) | 11 (11.58%) | 38 (40.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamayo-Legorreta, E.M.; Moreno-Vazquez, E.; Cerón-López, J.; Tellez-Figueroa, F.; Medina-Julián, R.M.; López-Gatell, H.; Alpuche-Aranda, C.M. Association of Diarrheagenic Escherichia coli Virulence Genes and Antimicrobial Resistance Genes in an Interface Model of Swine Colonization and Human Diarrhea in Mexico. Microorganisms 2025, 13, 2436. https://doi.org/10.3390/microorganisms13112436
Tamayo-Legorreta EM, Moreno-Vazquez E, Cerón-López J, Tellez-Figueroa F, Medina-Julián RM, López-Gatell H, Alpuche-Aranda CM. Association of Diarrheagenic Escherichia coli Virulence Genes and Antimicrobial Resistance Genes in an Interface Model of Swine Colonization and Human Diarrhea in Mexico. Microorganisms. 2025; 13(11):2436. https://doi.org/10.3390/microorganisms13112436
Chicago/Turabian StyleTamayo-Legorreta, Elsa M., Eduardo Moreno-Vazquez, Jackeline Cerón-López, Fabian Tellez-Figueroa, Rosa M. Medina-Julián, Hugo López-Gatell, and Celia M. Alpuche-Aranda. 2025. "Association of Diarrheagenic Escherichia coli Virulence Genes and Antimicrobial Resistance Genes in an Interface Model of Swine Colonization and Human Diarrhea in Mexico" Microorganisms 13, no. 11: 2436. https://doi.org/10.3390/microorganisms13112436
APA StyleTamayo-Legorreta, E. M., Moreno-Vazquez, E., Cerón-López, J., Tellez-Figueroa, F., Medina-Julián, R. M., López-Gatell, H., & Alpuche-Aranda, C. M. (2025). Association of Diarrheagenic Escherichia coli Virulence Genes and Antimicrobial Resistance Genes in an Interface Model of Swine Colonization and Human Diarrhea in Mexico. Microorganisms, 13(11), 2436. https://doi.org/10.3390/microorganisms13112436

