Evaluation of Specific Torulaspora delbrueckii Fractions to Stimulate Malolactic Fermentation in Limiting Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Wines, Yeast Fractions, and Microbial Strains
2.2. Experimental Fermentations
2.2.1. Effect of T. delbrueckii as Starter Culture
2.2.2. Screening of Different T. delbrueckii Fractions in Harsh Wines
2.2.3. Confirmation of Results in Harsh Wines
2.3. Wine Characterization
2.4. α-Mannosidase Activity
2.5. Statistical Analysis
3. Results
3.1. Validating T. delbrueckii as a Malolactic Fermentation Enhancing Starter Culture
3.2. Screening of Different T. delbrueckii Fractions in Harsh Wines
3.3. Confirmation of the Potential of T. delbrueckii Fractions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Duration (d) | L-Malic Acid (g/L) | pH | L-Lactic Acid (g/L) | D-Lactic Acid (g/L) | Citric Acid (mg/L) | Acetic Acid (g/L) | Glycerol (g/L) | PAN (mg N/L) | NH4 + (mg N/L) | |
|---|---|---|---|---|---|---|---|---|---|---|
| A-Ø | ~0.20 b | 3.19 ± 0.01 a | 1.13 ± 0.01 a | 0.14 ± 0.01 ab | 77 ± 1 | 0.29 ± 0.02 a | 7.30 ± 0.57 ab | 8 ± 2 ab | 22 ± 2 b | |
| A-Tdi | ~0.16 a | 3.19 ± 0.01 a | 1.12 ± 0.03 a | 0.13 ± 0.01 a | 77 ± 8 | 0.28 ± 0.02 a | 7.10 ± 0.01 a | 8 ± 1 a | 26 ± 6 b | |
| A-A | 61 | n.d. | 3.31 ± 0.01 b | 1.27 ± 0.05 b | 0.15 ± 0.01 bc | 56 ± 1 | 0.40 ± 0.02 b | 8.45 ± 0.07 ab | 12 ± 2 ab | 15 ± 1 ab |
| A-YE | 61 | n.d. | 3.30 ± 0.01 b | 1.18 ± 0.04 ab | 0.15 ± 0.01 c | 61 ± 20 | 0.37 ± 0.01 b | 8.50 ± 0.28 b | 14 ± 1 b | 9 ± 1 a |
| A-CW | ~0.24 c | 3.18 ± 0.01 a | 1.11 ± 0.01 a | 0.13 ± 0.01 a | 79 ± 1 | 0.28 ± 0.01 a | 7.40 ± 0.42 ab | 14 ± 1 b | 9 ± 2 a | |
| B-Ø | ~0.42 | 3.32 ± 0.01 a | 0.36 ± 0.01 a | 0.12 ± 0.04 | 192 ± 11 | 0.46 ± 0.01 | 8.85 ± 0.07 a | 65 ± 1 a | 57 ± 3 a | |
| B-Tdi | 21 | n.d. | 3.42 ± 0.04 b | 0.58 ± 0.03 c | 0.12 ± 0.01 | 209 ± 1 | 0.52 ± 0.01 | 9.40 ± 0.14 ab | 70 ± 1 a | 68 ± 2 b |
| B-A | 24 | n.d. | 3.44 ± 0.02 b | 0.54 ± 0.02 bc | 0.11 ± 0.01 | 201 ± 5 | 0.51 ± 0.04 | 9.45 ± 0.07 ab | 72 ± 1 ab | 61 ± 1 ab |
| B-YE | 24 | n.d. | 3.45 ± 0.01 b | 0.50 ± 0.02 b | 0.11 ± 0.01 | 199 ± 11 | 0.50 ± 0.01 | 9.45 ± 0.07 ab | 86 ± 5 c | 63 ± 10 ab |
| B-CW | 41 | n.d. | 3.45 ± 0.02 b | 0.54 ± 0.01 bc | 0.11 ± 0.01 | 199 ± 23 | 0.51 ± 0.03 | 9.70 ± 0.28 b | 83 ± 4 bc | 68 ± 2 ab |
| C-Ø | ~2.00 b | 3.70 ± 0.01 | 0.77 ± 0.01 a | 0.25 ± 0.02 a | 280 ± 11 | 0.34 ± 0.01 a | 8.90 ± 0.01 | 43 ± 1 a | 22 ± 5 | |
| C-Tdi | 45 | n.d. | 3.82 ± 0.11 | 2.07 ± 0.11 b | 0.38 ± 0.02 abc | 210 ± 6 | 0.42 ± 0.01 b | 9.35 ± 0.21 | 49 ± 1 ab | 44 ± 4 |
| C-A | 24 | n.d. | 3.80 ± 0.14 | 2.14 ± 0.07 b | 0.42 ± 0.03 c | 251 ± 3 | 0.41 ± 0.01 b | 9.50 ± 0.01 | 52 ± 3 ab | 34 ± 8 |
| C-YE | ~1.81 a | 3.72 ± 0.01 | 0.91 ± 0.01 a | 0.26 ± 0.05 ab | 283 ± 39 | 0.35 ± 0.01 a | 8.80 ± 0.14 | 57 ± 3 b | 25 ± 1 | |
| C-CW | 27 | n.d. | 3.84 ± 0.08 | 2.05 ± 0.15 b | 0.42 ± 0.06 bc | 242 ± 8 | 0.41 ± 0.02 b | 9.50 ± 0.57 | 58 ± 4 b | 27 ± 3 |
| D-Ø | ~1.70 b | 3.29 ± 0.01 a | 0.58 ± 0.05 a | 0.11 ± 0.01 a | 182 ± 14 c | 0.49 ± 0.01 | 9.55 ± 0.07 | 35 ± 1 | n.d. | |
| D-Tdi | 17 | n.d. | 3.46 ± 0.01 b | 1.63 ± 0.10 c | 0.13 ± 0.01 ab | 149 ± 11 abc | 0.56 ± 0.01 | 9.35 ± 0.21 | 31 ± 6 | 7 ± 3 |
| D-A | 17 | n.d. | 3.47 ± 0.01 b | 1.67 ± 0.16 c | 0.13 ± 0.01 ab | 145 ± 4 ab | 0.57 ± 0.05 | 9.70 ± 0.14 | 36 ± 8 | n.d. |
| D-YE | ~1.19 a | 3.30 ± 0.01 a | 0.96 ± 0.04 b | 0.12 ± 0.01 a | 178 ± 1 bc | 0.55 ± 0.04 | 9.65 ± 0.35 | 41 ± 1 | n.d. | |
| D-CW | 21 | n.d. | 3.48 ± 0.01 b | 1.67 ± 0.01 c | 0.15 ± 0.01 b | 131 ± 5 a | 0.58 ± 0.01 | 9.65 ± 0.35 | 37 ± 1 | 8 ± 1 |
References
- Lerm, E.; Engelbrecht, L.; du Toit, M. Malolactic Fermentation: The ABC’s of MLF. S. Afr. J. Enol. Vitic. 2010, 31, 186–212. [Google Scholar] [CrossRef]
- Davis, C.R.; Wibowo, D.; Eschenbruch, R.; Lee, T.H.; Fleet, G.H. Practical Implications of Malolactic Fermentation: A Review. Am. J. Enol. Vitic. 1985, 36, 290–301. [Google Scholar] [CrossRef]
- Liu, S.Q. Malolactic Fermentation in Wine—Beyond Deacidification. J. Appl. Microbiol. 2002, 92, 589–601. [Google Scholar] [CrossRef]
- Albergaria, H.; Arneborg, N. Dominance of Saccharomyces cerevisiae in Alcoholic Fermentation Processes: Role of Physiological Fitness and Microbial Interactions. Appl. Microbial. Biotechnol. 2016, 100, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Börlin, M.; Venet, P.; Claisse, O.; Salin, F.; Legras, J.L.; Masneuf-Pomarede, I. Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Appl. Environ. Microbiol. 2016, 82, 2909–2918. [Google Scholar] [CrossRef]
- Padilla, B.; García-Fernández, D.; González, B.; Izidoro, I.; Esteve-Zarzoso, B.; Beltran, G.; Mas, A. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations. Front. Microbiol. 2016, 7, 930. [Google Scholar] [CrossRef]
- Balmaseda, A.; Lorentzen, M.; Dutilh, L.; Bauduin, R.; Guichard, H.; Ollivier, S.; Miot-Sertier, C.; Lucas, P.M. Alcoholic Fermentation Drives the Selection of Oenococcus oeni Strains in Wine but Not in Cider. Int. J. Food Microbiol. 2023, 400, 110276. [Google Scholar] [CrossRef]
- Lorentzen, M.P.; Campbell-Sills, H.; Jorgensen, T.S.; Nielsen, T.K.; Coton, M.; Coton, E.; Hansen, L.; Lucas, P.M. Expanding the Biodiversity of Oenococcus oeni through Comparative Genomics of Apple Cider and Kombucha Strains. BMC Genom. 2019, 20, 300. [Google Scholar] [CrossRef]
- Campbell-Sills, H.; Khoury, M.E.; Gammacurta, M.; Miot-sertier, C.; Claisse, O.; Spano, G.; Revel, G.D.; Lucas, P. Two Different Oenococcus oeni Lineages Are Associated to Either Red or White Wines in Burgundy: Genomics and Metabolomics Insights. OENO One 2017, 51, 309–322. [Google Scholar] [CrossRef]
- Bech-Terkilsen, S.; Westman, J.O.; Swiegers, J.H.; Siegumfeldt, H. Oenococcus Oeni, a Species Born and Moulded in Wine: A Critical Review of the Stress Impacts of Wine and the Physiological Responses. Aust. J. Grape Wine Res. 2020, 26, 188–206. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Sawyer, S.; Longo, R.; Solomon, M.; Nicolotti, L.; Westmore, H.; Merry, A.; Gnoinski, G.; Ylia, A.; Dambergs, R.; Kerslake, F. Autolysis and the Duration of Ageing on Lees Independently Influence the Aroma Composition of Traditional Method Sparkling Wine. Aust. J. Grape Wine Res. 2022, 28, 146–159. [Google Scholar] [CrossRef]
- Charpentier, C.; Aussenac, J.; Charpentier, M.; Prome, J.C.; Duteurtre, B.; Feuillat, M. Release of Nucleotides and Nucleosides during Yeast Autolysis: Kinetics and Potential Impact on Flavor. J. Agric. Food Chem. 2005, 53, 3000–3007. [Google Scholar] [CrossRef]
- Martínez-Rodriguez, A.J.; Carrascosa, A.V.; Polo, M.C. Release of Nitrogen Compounds to the Extracellular Medium by Three Strains of Saccharomyces cerevisiae During Induced Autolysis in a Model Wine System. Int. J. Food Microbiol. 2001, 68, 155–160. [Google Scholar] [CrossRef]
- Palomero, F.; Morata, A.; Benito, S.; González, M.C.; Suárez-Lepe, J.A. Conventional and Enzyme-Assisted Autolysis during Ageing over Lees in Red Wines: Influence on the Release of Polysaccharides from Yeast Cell Walls and on Wine Monomeric Anthocyanin Content. Food Chem. 2007, 105, 838–846. [Google Scholar] [CrossRef]
- Balmaseda, A.; Bordons, A.; Reguant, C.; Bautista-Gallego, J. Non-Saccharomyces in Wine: Effect upon Oenococcus oeni and Malolactic Fermentation. Front. Microbiol. 2018, 9, 534. [Google Scholar] [CrossRef]
- Jolly, N.P.; Augustyn, O.P.H.; Pretorius, I.S. The Role and Use of Non-Saccharomyces Yeasts in Wine Production. S. Afr. J. Enol. Vitic. 2006, 27, 15–39. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef]
- Escribano-Viana, R.; Portu, J.; Garijo, P.; López, R.; Santamaría, P.; López-Alfaro, I.; Gutiérrez, A.R.; González-Arenzana, L. Effect of the Sequential Inoculation of Non-Saccharomyces/Saccharomyces on the Anthocyans and Stilbenes Composition of Tempranillo Wines. Front. Microbiol. 2019, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Vejarano, R.; Gil-Calderón, A. Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile Profile of Reduced Alcohol Wines Fermented with Selected Non-Saccharomyces Yeasts Under Different Aeration Conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef]
- Ivit, N.N.; Kemp, B. The Impact of Non-Saccharomyces Yeast on Traditional Method Sparkling The Impact of Non-Saccharomyces Yeast on Traditional Method Sparkling Wine. Fermentation 2018, 4, 73. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, C.; Yang, D.; Liu, H.; Xue, J.; Duan, C.; Yan, G. Effects of Three Indigenous Non-Saccharomyces Yeasts and Their Pairwise Combinations in Co-Fermentation with Saccharomyces Cerevisiae on Volatile Compounds of Petit Manseng Wines. Food Chem. 2022, 368, 130807. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Comitini, F.; Oro, L.; Ciani, M. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine. Front. Microbiol. 2016, 7, 278. [Google Scholar] [CrossRef]
- Moreno-García, J.; García-Martínez, T.; Mauricio, J.C.; Moreno, J. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Front. Microbiol. 2018, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Guzzon, R.; Carturan, G.; Krieger-Weber, S.; Cavazza, A. Use of Organo-Silica Immobilized Bacteria Produced in a Pilot Scale Plant to Induce Malolactic Fermentation in Wines That Contain Lysozyme. Ann. Microbiol. 2012, 62, 381–390. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V.; Kourkoutas, Y. Freeze-Dried Immobilized Kefir Culture in Low Alcohol Winemaking. Foods 2020, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-de-Villa, C.; Gombau, J.; Poblet, M.; Bordons, A.; Canals, J.M.; Zamora, F.; Reguant, C.; Rozès, N. Sequential Inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae in Rosé Wines Enhances Malolactic Fermentation and Potentially Improves Colour Stability. LWT 2023, 190, 115540. [Google Scholar] [CrossRef]
- Ruiz-de-Villa, C.; Poblet, M.; Bordons, A.; Reguant, C.; Rozès, N. Comparative Study of Inoculation Strategies of Torulaspora delbrueckii and Saccharomyces cerevisiae on the Performance of Alcoholic and Malolactic Fermentations in an Optimized Synthetic Grape Must. Int. J. Food Microbiol. 2023, 404, 110367. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. Torulaspora delbrueckii Promotes Malolactic Fermentation in High Polyphenolic Red Wines. LWT 2021, 148, 111777. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. Molecular Adaptation Response of Oenococcus oeni in Non-Saccharomyces Fermented Wines: A Comparative Multi-Omics Approach. Int. J. Food Microbiol. 2022, 362, 109490. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Rozès, N.; Leal, M.Á.; Bordons, A.; Reguant, C. Impact of Changes in Wine Composition Produced by Non-Saccharomyces on Malolactic Fermentation. Int. J. Food Microbiol. 2021, 337, 108954. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. The Use of Torulaspora delbrueckii to Improve Malolactic Fermentation. Microb. Biotechnol. 2024, 17, e14302. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Loira, I.; Escott, C.; Manuel, J.; Su, A. Applications of Metschnikowia pulcherrima in Wine Biotechnology. Fermentation 2019, 5, 63. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.A.; Curtin, C.; Varela, C. The Application of Non-Saccharomyces Yeast in Fermentations with Limited Aeration as a Strategy for the Production of Wine with Reduced Alcohol Content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. Simulated Lees of Different Yeast Species Modify the Performance of Malolactic Fermentation by Oenococcus oeni in Wine-like Medium. Food Microbiol. 2021, 99, 103839. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. Characterization of Malolactic Fermentation by Lactiplantibacillus plantarum in Red Grape Must. LWT 2024, 199, 116070. [Google Scholar] [CrossRef]
- Balmaseda, A.; Aniballi, L.; Rozès, N.; Bordons, A. Use of Yeast Mannoproteins by Oenococcus oeni during Malolactic Fermentation under Different Oenological Conditions. Foods 2021, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Olguín, N.; Alegret, J.O.; Bordons, A.; Reguant, C. β-Glucosidase Activity and Bgl Gene Expression of Oenococcus oeni Strains in Model Media and Cabernet Sauvignon Wine. Am. J. Enol. Vitic. 2011, 62, 99–105. [Google Scholar] [CrossRef]
- Toraño, P.; Martín-García, A.; Bordons, A.; Rozès, N.; Reguant, C. Enhancing Wine Malolactic Fermentation: Variable Effect of Yeast Mannoproteins on Oenococcus oeni Strains. Food Microbiol. 2024, 127, 104689. [Google Scholar] [CrossRef]
- Martín-García, A.; Balmaseda, A.; Bordons, A.; Reguant, C. Effect of the Inoculation Strategy of Non-Saccharomyces Yeasts on Wine Malolactic Fermentation. OENO One 2020, 54, 101–108. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. Modulation of a Defined Community of Oenococcus oeni Strains by Torulaspora delbrueckii and Its Impact on Malolactic Fermentation. Aust. J. Grape Wine Res. 2022, 28, 374–382. [Google Scholar] [CrossRef]
- Ramírez, M.; Velázquez, R.; Maqueda, M.; Zamora, E.; López-Piñeiro, A.; Hernández, L.M. Influence of the Dominance of Must Fermentation by Torulaspora delbrueckii on the Malolactic Fermentation and Organoleptic Quality of Red Table Wine. Int. J. Food Microbiol. 2016, 238, 311–319. [Google Scholar] [CrossRef]
- Ritt, J.; Remize, F.; Grandvalet, C.; Guzzo, J.; Atlan, D.; Alexandre, H. Peptidases Specific for Proline-Containing Peptides and Their Unusual Peptide-Dependent Regulation in Oenococcus oeni. J. Appl. Microbiol. 2009, 106, 801–813. [Google Scholar] [CrossRef]
- Alcaide-Hidalgo, J.M.; Moreno-Arribas, M.V.; Polo, M.C.; Pueyo, E. Partial Characterization of Peptides from Red Wines. Changes During Malolactic Fermentation and Ageing with Lees. Food Chem. 2008, 107, 622–630. [Google Scholar] [CrossRef]
- Toraño, P.; Gombau, J.; Mejías, I.; Bordons, A.; Rozès, N.; Reguant, C. Evaluation of the Addition of Yeast Mannoprotein to Oenococcus oeni Starter Cultures to Improve Wine Malolactic Fermentation. Fermentation 2024, 10, 52. [Google Scholar] [CrossRef]
- Juega, M.; Carrascosa, A.V.; Martinez-Rodriguez, A.J. Effect of Short Ageing on Lees on the Mannoprotein Content, Aromatic Profile, and Sensorial Character of White Wines. J. Food Sci. 2015, 80, M384–M388. [Google Scholar] [CrossRef] [PubMed]
- Lipke, P.N.; Ovalle, R. Cell Wall Architecture in Yeast: New Structure and New Challenge. J. Bacteriol. 1998, 180, 3735–3740. [Google Scholar] [CrossRef] [PubMed]
- Patynowsky, R.J.; Jiranek, V.; Markides, A.J. Yeast Viability During Fermentation and Sur Lie Ageing of a Defined Medium and Subsequent Growth of Oenococcus oeni. Aust. J. Grape Wine Res. 2002, 8, 62–69. [Google Scholar] [CrossRef]
- Diez, L.; Guadalupe, Z.; Ayestarán, B.; Ruiz-Larrea, F. Effect of Yeast Mannoproteins and Grape Polysaccharides on the Growth of Wine Lactic Acid and Acetic Acid Bacteria. J. Agric. Food Chem. 2010, 58, 7731–7739. [Google Scholar] [CrossRef]
- Dupin, I.V.S.; McKinnon, B.M.; Ryan, C.; Boulay, M.; Markides, A.J.; Jones, G.P.; Williams, P.J.; Waters, E.J. Saccharomyces cerevisiae Mannoproteins That Protect Wine from Protein Haze: Their Release during Fermentation and Lees Contact and a Proposal for Their Mechanism of Action. J. Agric. Food Chem. 2000, 48, 3098–3105. [Google Scholar] [CrossRef]
- Jamal, Z.; Miot-Sertier, C.; Thibau, F.; Dutilh, L.; Lonvaud-Funel, A.; Ballestra, P.; Le Marrec, C.; Dols-Lafargue, M. Distribution and Functions of Phosphotransferase System Genes in the Genome of the Lactic Acid Bacterium Oenococcus oeni. Appl. Environ. Microbiol. 2013, 79, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; Andrés, M.; Eder, R. Release of Wine Monoterpenes from Natural Precursors by Glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Alexandre, H.; Reguant, C. Evaluating the Impact of Torulaspora delbrueckii and Amino Acid Concentration on the Nitrogen Metabolism of Oenococcus oeni. LWT 2024, 210, 116838. [Google Scholar] [CrossRef]
- Guilloux-Benatier, M.; Guerreau, J.; Feuillat, M. Influence of Initial Colloid Content on Yeast Macromolecule Production and on the Metabolism of Wine Microorganisms. Am. J. Enol. Vitic. 1995, 46, 486–492. [Google Scholar] [CrossRef]
- Guilloux-Benatier, M.; Chassagne, D. Comparison of Components Released by Fermented or Active Dried Yeasts After Aging on Lees in a Model Wine. J. Agric. Food Chem. 2003, 51, 746–751. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Ayestara, B.; Herna, Z. Amino Acids and Biogenic Amines in Red Varietal Wines: The Role of Grape Variety, Malolactic Fermentation and Vintage. Eur. Food Res. Technol. 2013, 237, 887–895. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.A.; G-Alegría, E.; Polo, M.C.; Tenorio, C.; Martín-Álvarez, P.J.; Calvo de la Banda, M.T.; Ruiz-Larrea, F.; Moreno-Arribas, M.V. Wine Volatile and Amino Acid Composition after Malolactic Fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum Starter Cultures. J. Agric. Food Chem. 2005, 53, 8729–8735. [Google Scholar] [CrossRef] [PubMed]
- Alcaide-Hidalgo, J.M.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Polo, M.C. Influence of Malolactic Fermentation, Postfermentative Treatments and Ageing with Lees on Nitrogen Compounds of Red Wines. Food Chem. 2007, 103, 572–581. [Google Scholar] [CrossRef]





| Cultivar | Wine A Merlot | Wine B Merlot | Wine C Tempranillo | Wine D Chardonnay |
|---|---|---|---|---|
| Ethanol (% v/v) | 13.5 | 14.9 | 16.2 | 14.2 |
| pH | 3.20 | 3.30 | 3.53 | 3.20 |
| Residual sugars (g/L) | <0.4 | <0.4 | <0.4 | <0.4 |
| L-malic acid (g/L) | 2.06 | 0.99 | 3.21 | 2.55 |
| Citric acid (mg/L) | 126 | 217 | 180 | 141 |
| Acetic acid (g/L) | 0.25 | 0.52 | 0.35 | 0.49 |
| D-lactic acid (g/L) | 0.11 | 0.08 | 0.22 | 0.10 |
| L-lactic acid (g/L) | 0.10 | <0.10 | 0.10 | <0.10 |
| Total SO2 (mg/L) | <25 | <25 | <25 | <25 |
| Free SO2 (mg/L) | <8 | <8 | <8 | <8 |
| PAN * (mg N/L) | 11 | 86 | 60 | 37 |
| NH4+ (mg/L) | 10 | 96 | 23 | 11 |
| Color intensity | 11.9 | 17.8 | 13.2 | 0.3 |
| AF | MLF | |||||||
|---|---|---|---|---|---|---|---|---|
| Oo LAA1 | Oo LAB6 | Oo LAB9 | Oo LAB2013 | Oo LAC20 | Oo LAA4 | Sp | ||
| Sc | 10 | 15 | 15 | 15 | 15 | 15 | 15 | 44 |
| Td + Sc | 16 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| ø | Tdi | A | |
|---|---|---|---|
| Wine C | |||
| t2 | 6.5 ± 0.1 | 6.6 ± 0.1 | 6.2 ± 0.2 |
| t7 | 7.0 ± 0.1 | 7.1 ± 0.1 | 6.9 ± 0.1 |
| t14 | 6.0 ± 0.3 a | 7.0 ± 0.1 b | 7.3 ± 0.2 b |
| Wine D | |||
| t2 | 6.5 ± 0.1 | 6.4 ± 0.1 | 6.2 ± 0.1 |
| t7 | 6.4 ± 0.1 | 6.3 ± 0.1 | 6.2 ± 0.2 |
| t14 | 6.0 ± 0.3 a | 7.2 ± 0.3 b | 7.6 ± 0.1 b |
| O. oeni Strain | Duration (Days) | Residual L-Malic Acid (g/L) | Viability After 6 Days (log CFU/mL) | Viability After 13 Days (log CFU/mL) | Viability After 20 Days (log CFU/mL) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| ø | Tdi | ø | Tdi | ø | Tdi | ø | Tdi | ø | Tdi | |
| LAA1 | - | 42 | 1.85 | n.d. | 6.0 ± 0.1 | 6.1 ± 0.1 | 5.6 ± 0.1 a | 6.0 ± 0.1 b | 5.2 ± 0.1 a | 5.9 ± 0.1 b |
| LAB2013 | - | 35 | 1.49 | n.d. | 6.1 ± 0.1 | 6.2 ± 0.1 | 5.4 ± 0.1 | 5.6 ± 0.1 | 4.9 ± 0.1 a | 5.8 ± 0.1 b |
| LAA4 | - | 20 | 1.25 | n.d. | 6.2 ± 0.1 | 6.4 ± 0.1 | 5.9 ± 0.1 a | 7.2 ± 0.1 b | 5.8 ± 0.1 a | 6.6 ± 0.1 b |
| LAC20 | - | 20 | 1.10 | n.d. | 6.2 ± 0.1 | 6.2 ± 0.1 | 6.1 ± 0.1 a | 7.1 ± 0.1 b | 5.9 ± 0.1 | 5.7 ± 0.1 |
| LAB9 | - | 20 | 1.35 | n.d. | 6.2 ± 0.1 | 6.4 ± 0.1 | 6.0 ± 0.1 a | 7.4 ± 0.1 b | 6.4 ± 0.1 | 6.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmaseda, A.; Toraño, P.; Leroux, B.; Heras, J.M.; Krieger-Weber, S.; Rozès, N.; Deleris-Bou, M.; Reguant, C. Evaluation of Specific Torulaspora delbrueckii Fractions to Stimulate Malolactic Fermentation in Limiting Conditions. Microorganisms 2025, 13, 2391. https://doi.org/10.3390/microorganisms13102391
Balmaseda A, Toraño P, Leroux B, Heras JM, Krieger-Weber S, Rozès N, Deleris-Bou M, Reguant C. Evaluation of Specific Torulaspora delbrueckii Fractions to Stimulate Malolactic Fermentation in Limiting Conditions. Microorganisms. 2025; 13(10):2391. https://doi.org/10.3390/microorganisms13102391
Chicago/Turabian StyleBalmaseda, Aitor, Paloma Toraño, Benjamin Leroux, José María Heras, Sibylle Krieger-Weber, Nicolas Rozès, Magali Deleris-Bou, and Cristina Reguant. 2025. "Evaluation of Specific Torulaspora delbrueckii Fractions to Stimulate Malolactic Fermentation in Limiting Conditions" Microorganisms 13, no. 10: 2391. https://doi.org/10.3390/microorganisms13102391
APA StyleBalmaseda, A., Toraño, P., Leroux, B., Heras, J. M., Krieger-Weber, S., Rozès, N., Deleris-Bou, M., & Reguant, C. (2025). Evaluation of Specific Torulaspora delbrueckii Fractions to Stimulate Malolactic Fermentation in Limiting Conditions. Microorganisms, 13(10), 2391. https://doi.org/10.3390/microorganisms13102391

