Morphological, Genetic, and Microbiological Characterization of Tuber magnatum Picco Populations from “Alto Molise”, Central-Southern Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas and Sample Collection
2.2. Ascocarp Morphological Characterization
2.3. Molecular Analyses
2.3.1. DNA Extraction from Fruiting Bodies
2.3.2. Assessment of T. magnatum Genetic Variability
2.3.3. Profiling of Microbial Communities Associated with Truffles Using 16S rRNA Gene and ITS2 Region Amplicon Sequencing and Bioinformatics
3. Results
3.1. Identification and Morphological Features of T. magnatum Picco Ascocarps
3.2. Analysis of the Genetic Variability of T. magnatum Picco Populations
3.3. Profiling of Prokaryotic and Fungal Communities Associated with T. magnatum Picco Ascocarps Through Next-Generation Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mello, A.; Murat, C.; Bonfante, P. Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Iotti, M.; Piattoni, F.; Leonardi, P.; Hall, I.R.; Zambonelli, A. First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza 2016, 26, 793–798. [Google Scholar] [CrossRef]
- Mello, A.; Zampieri, E.; Zambonelli, A. Truffle Ecology: Genetic Diversity, Soil Interactions and Functioning. In Mycorrhiza-Function, Diversity, State of the Art; Springer International Publishing: Cham, Switzerland, 2017; pp. 231–252. [Google Scholar]
- Monaco, P.; Bucci, A.; Naclerio, G.; Mello, A. Heterogeneity of the white truffle Tuber magnatum in a limited geographic area of Central—Southern Italy. Environ. Microbiol. Rep. 2021, 13, 591–599. [Google Scholar] [CrossRef]
- Graziosi, S.; Deloche, L.; Januario, M.; Selosse, M.-A.; Deveau, A.; Bach, C.; Chen, Z.; Murat, C.; Iotti, M.; Rech, P.; et al. Newly Designed Fluorescence In Situ Hybridization Probes Reveal Previously Unknown Endophytic Abilities of Tuber magnatum in Herbaceous Plants. Microb. Ecol. 2025, 88, 42. [Google Scholar] [CrossRef] [PubMed]
- Bonito, G.; Trappe, J.M.; Rawlinson, P.; Vilgalys, R. Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 2010, 102, 1042–1057. [Google Scholar] [CrossRef]
- Graziosi, S.; Hall, I.R.; Zambonelli, A. The Mysteries of the White Truffle: Its Biology, Ecology and Cultivation. Encyclopedia 2022, 2, 1959–1971. [Google Scholar] [CrossRef]
- Hamzić Gregorčič, S.; Strojnik, L.; Potočnik, D.; Vogel-Mikuš, K.; Jagodic, M.; Camin, F.; Zuliani, T.; Ogrinc, N. Can We Discover Truffle’s True Identity? Molecules 2020, 25, 2217. [Google Scholar] [CrossRef]
- Segelke, T.; Schelm, S.; Ahlers, C.; Fischer, M. Food Authentication: Truffle (Tuber spp.) Species Differentiation by FT-NIR and Chemometrics. Foods 2020, 9, 922. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Felices-Mayordomo, M.; Blanco, D.; Sánchez, S.; Marco, P. Truffle flavored commercial products veracity and sensory analysis from truffle and non-truffle consumers. Food Control 2023, 145, 109424. [Google Scholar] [CrossRef]
- Vita, F.; Giuntoli, B.; Bertolini, E.; Taiti, C.; Marone, E.; D’Ambrosio, C.; Trovato, E.; Sciarrone, D.; Zoccali, M.; Balestrini, R.; et al. Tuberomics: A molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments. BMC Genom. 2020, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Sillo, F.; Vergine, M.; Luvisi, A.; Calvo, A.; Petruzzelli, G.; Balestrini, R.; Mancuso, S.; De Bellis, L.; Vita, F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front. Microbiol. 2022, 13, 864434. [Google Scholar] [CrossRef]
- Bucci, A.; Monaco, P.; Naclerio, G. Tuber magnatum Picco: The challenge to identify ascoma-associated bacteria as markers for geographic traceability. Front. Microbiol. 2023, 14, 1142214. [Google Scholar] [CrossRef] [PubMed]
- Rubini, A.; Paolocci, F.; Riccioni, C.; Vendramin, G.G.; Arcioni, S. Genetic and Phylogeographic Structures of the Symbiotic Fungus Tuber magnatum. Appl. Environ. Microbiol. 2005, 71, 6584–6589. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Iotti, M.; Oddis, M.; Lalli, G.; Pacioni, G.; Leonardi, P.; Maccherini, S.; Perini, C.; Salerni, E.; Zambonelli, A. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 2013, 23, 349–358. [Google Scholar] [CrossRef]
- Belfiori, B.; D’Angelo, V.; Riccioni, C.; Leonardi, M.; Paolocci, F.; Pacioni, G.; Rubini, A. Genetic Structure and Phylogeography of Tuber magnatum Populations. Diversity 2020, 12, 44. [Google Scholar] [CrossRef]
- Monaco, P.; Toumi, M.; Sferra, G.; Tóth, E.; Naclerio, G.; Bucci, A. The bacterial communities of Tuber aestivum: Preliminary investigations in Molise region, Southern Italy. Ann. Microbiol. 2020, 70, 37. [Google Scholar] [CrossRef]
- Liu, D.; Pérez-Moreno, J.; He, X.; Garibay-Orijel, R.; Yu, F. Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. mSphere 2021, 6, e0003921. [Google Scholar] [CrossRef]
- Zeppa, S.; Guidi, C.; Zambonelli, A.; Potenza, L.; Vallorani, L.; Pierleoni, R.; Sacconi, C.; Stocchi, V. Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel. Curr. Genet. 2002, 42, 161–168. [Google Scholar] [CrossRef]
- Monaco, P.; Naclerio, G.; Bucci, A.; Mello, A. Determination of the peridium thickness of Tuber magnatum ascomata from Molise region. Ital. J. Micol. 2021, 50, 92–98. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Mello, A.; Murat, C.; Vizzini, A.; Gavazza, V.; Bonfante, P. Tuber magnatum Pico, a species of limited geographical distribution: Its genetic diversity inside and outside a truffle ground. Environ. Microbiol. 2005, 7, 55–65. [Google Scholar] [CrossRef]
- Vahdatzadeh, M.; Deveau, A.; Splivallo, R. Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiol. 2019, 84, 103251. [Google Scholar] [CrossRef]
- Mello, A.; Garnero, L.; Bonfante, P. Specific PCR-primers as a reliable tool for the detection of white truffles in mycorrhizal roots. New Phytol. 1999, 141, 511–516. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef] [PubMed]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Caprari, C.; Bucci, A.; Ciotola, A.C.; Del Grosso, C.; Dell’Edera, I.; Di Bartolomeo, S.; Di Pilla, D.; Divino, F.; Fortini, P.; Monaco, P.; et al. Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. Plants 2024, 13, 2505. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Harrell, F., Jr. Harrell Miscellaneous 2025. Available online: https://cran.rstudio.com/web/packages/Hmisc/Hmisc.pdf (accessed on 7 May 2025).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Wien, Austria, 2024. [Google Scholar]
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJournal 2006, Complex Sy, 1695. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef]
- Guimerà, R.; Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef]
- Hall, I.R.; Brown, G.T.; Zambonelli, A. Taming the Truffle History, Lore, and Science of the Ultimate Mushroom; Timber Press: Portland, OR, USA, 2008; ISBN 978-0881928600. [Google Scholar]
- Angeloni, S.; Marconi, R.; Piatti, D.; Caprioli, G.; Tiecco, M.; Sagratini, G.; Alessandroni, L.; Ricciutelli, M. Italian White Truffle (Tuber magnatum Pico): Discovery of new molecules through untargeted UHPLC-QTOF-MS analysis. Food Chem. 2025, 477, 143562. [Google Scholar] [CrossRef]
- Mastronardi, L.; Giagnacovo, M.; Romagnoli, L. Bridging regional gaps: Community-based cooperatives as a tool for Italian inner areas resilience. Land Use Policy 2020, 99, 104979. [Google Scholar] [CrossRef]
- Niimi, J.; Deveau, A.; Splivallo, R. Geographical-based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytol. 2021, 230, 1623–1638. [Google Scholar] [CrossRef] [PubMed]
- Monaco, P.; Naclerio, G.; Mello, A.; Bucci, A. Role and potentialities of bacteria associated with Tuber magnatum: A mini-review. Front. Microbiol. 2022, 13, 1017089. [Google Scholar] [CrossRef]
- Citterio, B.; Cardoni, P.; Potenza, L.; Amicucci, A.; Stocchi, V.; Gola, G.; Trillini, B.; Nuti, M.P. Isolation of bacteria from sporocarps of Tuber magnatum Pico, Tuber borchii Vitt. and Tuber maculatum Vitt. In Biotechnology of Ectomycorrhizae; Bonfante, P., Stocchi, V., Nuti, M.P., Eds.; Springer: Boston, MA, USA, 1995; pp. 241–248. [Google Scholar]
- Barbieri, E.; Ceccaroli, P.; Saltarelli, R.; Guidi, C.; Potenza, L.; Basaglia, M.; Fontana, F.; Baldan, E.; Casella, S.; Ryahi, O.; et al. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol. 2010, 114, 936–942. [Google Scholar] [CrossRef]
- Barbieri, E.; Guidi, C.; Bertaux, J.; Frey-Klett, P.; Garbaye, J.; Ceccaroli, P.; Saltarelli, R.; Zambonelli, A.; Stocchi, V. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ. Microbiol. 2007, 9, 2234–2246. [Google Scholar] [CrossRef]
- Graziosi, S.; Puliga, F.; Iotti, M.; Amicucci, A.; Zambonelli, A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. Environ. Microbiol. Rep. 2024, 16, e13271. [Google Scholar] [CrossRef]
- Sbrana, C.; Agnolucci, M.; Bedini, S.; Lepera, A.; Toffanin, A.; Giovannetti, M.; Nuti, M.P. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol. Lett. 2002, 211, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Antony-Babu, S.; Deveau, A.; Van Nostrand, J.D.; Zhou, J.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ. Microbiol. 2014, 16, 2831–2847. [Google Scholar] [CrossRef] [PubMed]
- Benucci, G.M.N.; Bonito, G.M. The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales. Microb. Ecol. 2016, 72, 4–8. [Google Scholar] [CrossRef]
- Niimi, J.; Deveau, A.; Splivallo, R. Aroma and bacterial communities dramatically change with storage of fresh white truffle Tuber magnatum. LWT 2021, 151, 112125. [Google Scholar] [CrossRef]
- Barbieri, E.; Ceccaroli, P.; Palma, F.; Agostini, D.; Stocchi, V. Ectomycorrhizal helper bacteria: The third partner in the symbiosis. In Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects, Soil Biology; Bonito, G.M., Zambonelli, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 125–141. [Google Scholar]
- Huang, J.; Peng, X.; Qin, K.; Liu, Y.; Niu, J.; Liu, J.; Dong, J.; Zhang, Y.; Peng, F. Pedobacter mucosus sp. nov., isolated from a soil sample of glacier foreland in Austre Lovénbreen, Arctic. Int. J. Syst. Evol. Microbiol. 2022, 72, 005448. [Google Scholar] [CrossRef]
- He, X.; Li, N.; Chen, X.; Zhang, Y.; Zhang, X.; Song, X. Pedobacter indicus sp. nov., isolated from deep-sea sediment. Antonie Van Leeuwenhoek 2020, 113, 357–364. [Google Scholar] [CrossRef]
- Corsaro, D.; Wylezich, C.; Walochnik, J.; Venditti, D.; Michel, R. Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitol. Res. 2017, 116, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Splivallo, R.; Vahdatzadeh, M.; Maciá-Vicente, J.G.; Molinier, V.; Peter, M.; Egli, S.; Uroz, S.; Paolocci, F.; Deveau, A. Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Front. Microbiol. 2019, 10, 1437. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, M.; Wang, Z.; Wu, X.; Chen, Y. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus. Chem.—Eur. J. 2017, 23, 2548–2551. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Ning, L.; Yao, Z.; Du, Y. Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02. Int. J. Biol. Macromol. 2018, 108, 1331–1338. [Google Scholar] [CrossRef]
- Liu, Y.; Linares-Otoya, L.; Kersten, C.; Marner, M.; Mihajlovic, S.; Abdeldayem, M.H.; Semmler, S.; Bletz, M.C.; Vences, M.; Spohn, M.; et al. A genetically tractable branch of environmental Pedobacter from the phylum Bacteroidota represents a hotspot for natural product discovery. Sci. Rep. 2025, 15, 20106. [Google Scholar] [CrossRef]
- Lambert, B.; Joos, H.; Dierickx, S.; Vantomme, R.; Swings, J.; Kersters, K.; Van Montagu, M. Identification and Plant Interaction of a Phyllobacterium sp., a Predominant Rhizobacterium of Young Sugar Beet Plants. Appl. Environ. Microbiol. 1990, 56, 1093–1102. [Google Scholar] [CrossRef]
- Gonzalez-Bashan, L.E.; Lebsky, V.K.; Hernandez, J.P.; Bustillos, J.J.; Bashan, Y. Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can. J. Microbiol. 2000, 46, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Miller, T.; Erlandson, K.; Schneider, R.; Belas, R. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ. Microbiol. 2001, 3, 380–396. [Google Scholar] [CrossRef] [PubMed]
- Mergaert, J.; Cnockaert, M.C.; Swings, J. Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int. J. Syst. Evol. Microbiol. 2002, 52, 1821–1823. [Google Scholar] [CrossRef]
- Jurado, V.; Laiz, L.; Gonzalez, J.M.; Hernandez-Marine, M.; Valens, M.; Saiz-Jimenez, C. Phyllobacterium catacumbae sp. nov., a member of the order ‘Rhizobiales’ isolated from Roman catacombs. Int. J. Syst. Evol. Microbiol. 2005, 55, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Eren Eroğlu, A.E.; Eroğlu, V.; Yaşa, İ. Genomic Insights into the Symbiotic and Plant Growth-Promoting Traits of “Candidatus Phyllobacterium onerii” sp. nov. Isolated from Endemic Astragalus flavescens. Microorganisms 2024, 12, 336. [Google Scholar] [CrossRef]
- Gryndler, M.; Hršelová, H. Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad. Acta Mycol. 2013, 47, 155–160. [Google Scholar] [CrossRef]
- Flores-Félix, J.D.; Menéndez, E.; Peix, A.; García-Fraile, P.; Velázquez, E. History and current taxonomic status of genus Agrobacterium. Syst. Appl. Microbiol. 2020, 43, 126046. [Google Scholar] [CrossRef]
- Naranjo, H.D.; Lebbe, L.; Cnockaert, M.; Lassalle, F.; Too, C.C.; Willems, A. Phylogenomics reveals insights into the functional evolution of the genus Agrobacterium and enables the description of Agrobacterium divergens sp. nov. Syst. Appl. Microbiol. 2023, 46, 126420. [Google Scholar] [CrossRef]
- Marozzi, G.; Benucci, G.M.N.; Turchetti, B.; Massaccesi, L.; Baciarelli Falini, L.; Bonito, G.; Buzzini, P.; Agnelli, A.; Donnini, D.; Albertini, E. Correction to: Fungal and Bacterial Diversity in the Tuber magnatum Ecosystem and Microbiome. Microb. Ecol. 2023, 85, 522. [Google Scholar] [CrossRef] [PubMed]
- Murat, C.; Vizzini, A.; Bonfante, P.; Mello, A. Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol. Lett. 2005, 245, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-T.; Shen, J.-P.; Zhang, L.-M.; Singh, B.K.; Delgado-Baquerizo, M.; Hu, H.-W.; Han, L.-L.; Wei, W.-X.; Fang, Y.-T.; He, J.-Z. Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Front. Microbiol. 2021, 12, 678290. [Google Scholar] [CrossRef] [PubMed]
Collection Area | Sample Code | Weight (g) 1 | Peridum Thickness 2 (µm) | Maturity Stage 3,* | Scar A21-inf Haplotype 4 |
---|---|---|---|---|---|
Agnone (AG) | AG1 | 6.20 | 264.71 | III (95%) | II |
AG2 | 5.40 | 301.95 | II (45%) | I | |
AG3 | 3.34 | 308.48 | I (2%) | I | |
AG4 | 3.35 | 325.18 | I (0%) | III | |
AG5 | 4.73 | 394.80 | I (4%) | II | |
Carovilli (CAR) | CAR1 | 5.22 | 240.69 | III (95%) | II |
CAR2 | 4.20 | 234.63 | I (0%) | I | |
CAR3 | 5.28 | 260.32 | III (93%) | III | |
CAR4 | 4.44 | 344.98 | II (25%) | I | |
CAR5 | 4.95 | 227.31 | I (1%) | III | |
Castel del Giudice (CDG) | CDG1 | 7.73 | 198.12 | III (99%) | I |
CDG2 | 6.51 | 209.99 | III (96%) | I | |
CDG3 | 7.83 | 311.39 | II (50%) | II | |
CDG4 | 4.09 | 222.33 | II (59%) | I | |
CDG5 | 3.69 | 229.27 | II (20%) | I | |
Pietrabbondante (P) | P1 | 3.25 | 268.03 | III (90%) | I |
P2 | 2.75 | 224.38 | III (85%) | II | |
P3 | 6.19 | 182.80 | III (87%) | I | |
P4 | 5.64 | 236.44 | III (86%) | II | |
P5 | 7.84 | 235.03 | III (90%) | I |
Agnone | Carovilli | Castel del Giudice | Pietrabbondante | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fungal Genera | AG1 | AG2 | AG3 | AG4 | AG5 | CAR1 | CAR2 | CAR3 | CAR4 | CAR5 | CDG1 | CDG2 | CDG3 | CDG4 | CDG5 | P1 | P2 | P3 | P4 | P5 |
Anthopsis | + | + | ||||||||||||||||||
Capronia | + | + | ||||||||||||||||||
Dactylonectria | + | + | ||||||||||||||||||
Dactylospora | + | + | + | |||||||||||||||||
Exophiala | + | + | + | + | + | + | + | |||||||||||||
Helvella | + | + | + | |||||||||||||||||
Helvellosebacina | + | |||||||||||||||||||
Minimelanolocus | + | |||||||||||||||||||
Penicillium | + | + | ||||||||||||||||||
Pseudocosmospora | + | |||||||||||||||||||
Pseudodictyosporium | + | + | + | |||||||||||||||||
Sebacina | + | |||||||||||||||||||
Thyridium | + | + | + | + | + | |||||||||||||||
Tomentella | + | + | ||||||||||||||||||
Unclassified | + | + | + | + | + | + | + | + | + | + | + |
Empirical Networks | Random Networks (Avg ± SD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
taxa | Edges | Mean Degree | Density | APL * | Modularity | ACC ** | APL * | Modularity | ACC ** | |
AG | 142 | 1082 | 15.24 | 0.1080 | 5.04 | 0.78 | 0.85 | 2.14 ± 0.0083 | 0.21 ± 0.0055 | 0.19 ± 0.010 |
CAR | 153 | 2043 | 26.71 | 0.1757 | 3.09 | 0.43 | 0.88 | 1.87 ± 0.0025 | 0.14 ± 0.0048 | 0.28 ± 0.009 |
CDG | 140 | 3138 | 44.83 | 0.3224 | 1.96 | 0.12 | 0.91 | 1.71 ± 0.0001 | 0.09 ± 0.0035 | 0.41 ± 0.007 |
P | 147 | 1469 | 19.99 | 0.1369 | 3.87 | 0.66 | 0.88 | 2.01 ± 0.0068 | 0.18 ± 0.0054 | 0.22 ± 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucci, A.; Monaco, P.; Caprari, C.; Di Pilla, D.; Mello, A.; Sferra, G.; Naclerio, G. Morphological, Genetic, and Microbiological Characterization of Tuber magnatum Picco Populations from “Alto Molise”, Central-Southern Italy. Microorganisms 2025, 13, 2340. https://doi.org/10.3390/microorganisms13102340
Bucci A, Monaco P, Caprari C, Di Pilla D, Mello A, Sferra G, Naclerio G. Morphological, Genetic, and Microbiological Characterization of Tuber magnatum Picco Populations from “Alto Molise”, Central-Southern Italy. Microorganisms. 2025; 13(10):2340. https://doi.org/10.3390/microorganisms13102340
Chicago/Turabian StyleBucci, Antonio, Pamela Monaco, Claudio Caprari, Danilo Di Pilla, Antonietta Mello, Gabriella Sferra, and Gino Naclerio. 2025. "Morphological, Genetic, and Microbiological Characterization of Tuber magnatum Picco Populations from “Alto Molise”, Central-Southern Italy" Microorganisms 13, no. 10: 2340. https://doi.org/10.3390/microorganisms13102340
APA StyleBucci, A., Monaco, P., Caprari, C., Di Pilla, D., Mello, A., Sferra, G., & Naclerio, G. (2025). Morphological, Genetic, and Microbiological Characterization of Tuber magnatum Picco Populations from “Alto Molise”, Central-Southern Italy. Microorganisms, 13(10), 2340. https://doi.org/10.3390/microorganisms13102340