The Mycobacterium avium Complex: Genomics, Disease, and Beyond
Abstract
1. Introduction
2. Population Structure and Genetic Diversity
3. Clinical Significance of MAC Infections
4. Host–Pathogen Relationship
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection Sources of a Common Non-Tuberculous Mycobacterial Pathogen, Mycobacterium Avium Complex. Front. Med. 2017, 4, 27. [Google Scholar] [CrossRef]
- Brode, S.K.; Daley, C.L.; Marras, T.K. The Epidemiologic Relationship between Tuberculosis and Nontuberculous Mycobacterial Disease: A Systematic Review. Int. J. Tuberc. Lung Dis. 2014, 18, 1370–1377. [Google Scholar] [CrossRef]
- Gupta, R.S.; Lo, B.; Son, J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018, 9, 67. [Google Scholar] [CrossRef]
- Meehan, C.J.; Barco, R.A.; Loh, Y.H.E.; Cogneau, S.; Rigouts, L. Reconstituting the Genus Mycobacterium. Int. J. Syst. Evol. Microbiol. 2021, 71, 004922. [Google Scholar] [CrossRef]
- Val-Calvo, J.; Vázquez-Boland, J.A. Mycobacteriales Taxonomy Using Network Analysis-Aided, Context-Uniform Phylogenomic Approach for Non-Subjective Genus Demarcation. mBio 2023, 14, e0220723. [Google Scholar] [CrossRef]
- Kim, C.J.; Kim, N.H.; Song, K.H.; Choe, P.G.; Kim, E.S.; Park, S.W.; Kim, H.B.; Kim, N.J.; Kim, E.C.; Park, W.B.; et al. Differentiating Rapid- and Slow-Growing Mycobacteria by Difference in Time to Growth Detection in Liquid Media. Diagn. Microbiol. Infect. Dis. 2013, 75, 73–76. [Google Scholar] [CrossRef]
- Wallace, R.J.; Swenson, J.M.; Silcox, V.A.; Good, R.C.; Tschen, J.A.; Stone, M.S.; Wal-Lace, R.J. Spectrum of Disease Due to Rapidly Growing Mycobacteria. Rev. Infect. Dis. 1983, 5, 657–679. [Google Scholar] [CrossRef]
- Philley, J.V.; Griffith, D.E. Treatment of Slowly Growing Mycobacteria. Clin. Chest Med. 2015, 36, 79–90. [Google Scholar] [CrossRef]
- Falkinham, J.O. Hospital Water Filters as a Source of Mycobacterium avium Complex. J. Med. Microbiol. 2010, 59, 1198–1202. [Google Scholar] [CrossRef]
- Honda, J.R.; Alper, S.; Bai, X.; Chan, E.D. Acquired and Genetic Host Susceptibility Factors and Microbial Pathogenic Factors That Predispose to Nontuberculous Mycobacterial Infections. Curr. Opin. Immunol. 2018, 54, 66–73. [Google Scholar] [CrossRef]
- Sax, H.; Bloemberg, G.; Hasse, B.; Sommerstein, R.; Kohler, P.; Achermann, Y.; Rössle, M.; Falk, V.; Kuster, S.P.; Böttger, E.C.; et al. Prolonged Outbreak of Mycobacterium Chimaera Infection after Open-Chest Heart Surgery. Clin. Infect. Dis. 2015, 61, 67–75. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Larsenid, S.E.; Ordway, D.; Cassell, G.; Coler, R.N. The Complexities and Challenges of Preventing and Treating Nontuberculous Mycobacterial Diseases. PLoS Negl. Trop. Dis. 2019, 13, e0007083. [Google Scholar] [CrossRef]
- Busatto, C.; Vianna, J.S.; da Silva, L.V.; Ramis, I.B.; da Silva, P.E.A. Mycobacterium Avium: An Overview. Tuberculosis 2019, 114, 127–134. [Google Scholar] [CrossRef]
- Aksamit, T.R. Mycobacterium avium Complex Pulmonary Disease in Patients with Pre-Existing Lung Disease. Clin. Chest Med. 2002, 23, 643–653. [Google Scholar] [CrossRef]
- Havlik, J.A.; Robert Horsburgh, C.; Metchock, B.; Williams, P.P.; Alan Fann, S.; Thompson III, S.E. Disseminated Mycobacterium avium Complex Infection: Clinical Identification and Epidemiologic Trends. J. Infect. Dis. 1992, 165, 577–580. [Google Scholar] [CrossRef]
- Collins, F.M. Mycobacterial Disease, Immunosuppression, and Acquired Immunodeficiency Syndrome. Clin. Microbiol. Rev. 1989, 2, 360–377. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, N.Y.; Jung, H.W.; Yim, J.J.; Kwak, N. Old Age Is Associated with Worse Treatment Outcome and Frequent Adverse Drug Reaction in Mycobacterium avium Complex Pulmonary Disease. BMC Pulm. Med. 2022, 22, 269. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, B.J.; Kim, H.; Won, Y.S.; Jeon, C.O.; Jeong, J.; Lee, S.H.; Lim, J.H.; Lee, S.H.; Kim, C.K.; et al. Mycobacterium paraintracellulare Sp. Nov., for the Genotype INT-1 of Mycobacterium intracellulare. Int. J. Syst. Evol. Microbiol. 2016, 66, 3132–3141. [Google Scholar] [CrossRef]
- Van Ingen, J.; Turenne, C.Y.; Tortoli, E.; Wallace, R.J.; Brown-Elliott, B.A. A Definition of the Mycobacterium avium Complex for Taxonomical and Clinical Purposes, a Review. Int. J. Syst. Evol. Microbiol. 2018, 68, 3666–3677. [Google Scholar] [CrossRef]
- Salah, I.B.; Cayrou, C.; Raoult, D.; Drancourt, M. Mycobacterium marseillense Sp. Nov., Mycobacterium timonense Sp. Nov. and Mycobacterium bouchedurhonense Sp. Nov.,Members of the Mycobacterium avium Complex. Int. J. Syst. Evol. Microbiol. 2009, 59, 2803–2808. [Google Scholar] [CrossRef]
- Murcia, M.I.; Tortoli, E.; Menendez, M.C.; Palenque, E.; Garcia, M.J. Mycobacterium colombiense Sp. Nov., a Novel Member of the Mycobacterium avium Complex and Description of MAC-X as a New ITS Genetic Variant. Int. J. Syst. Evol. Microbiol. 2006, 56, 2049–2054. [Google Scholar] [CrossRef]
- Bang, D.; Herlin, T.; Stegger, M.; Andersen, A.B.; Torkko, P.; Tortoli, E.; Thomsen, V.O. Mycobacterium arosiense Sp. Nov., a Slowly Growing, Scotochromogenic Species Causing Osteomyelitis in an Immunocompromised Child. Int. J. Syst. Evol. Microbiol. 2008, 58, 2398–2402. [Google Scholar] [CrossRef]
- Inderlied, C.B.; Kemper, C.A.; Bermudez, L.E.M. The Mycobacterium avium Complex. Clin. Microbiol. Rev. 1993, 6, 266–310. [Google Scholar] [CrossRef] [PubMed]
- Mijs, W.; de Haas, P.; Rossau, R.; Van Der Laan, T.; Rigouts, L.; Portaels, F.; van Soolingen, D. Molecular Evidence to Support a Proposal to Reserve the Designation Mycobacterium avium Subsp. avium for Bird-Type Isolates and “M. avium Subsp. hominissuis” for the Human/Porcine Type of M. Avium. Int. J. Syst. Evol. Microbiol. 2002, 52, 1505–1518. [Google Scholar] [CrossRef]
- Thorel, M.-F.; Krichevsky, M.; Vincent Lévy-Frébault, V. Numerical Taxonomy of Mycobactin-Dependent Mycobacteria, Emended Description of Mycobacterium avium, and Description of Mycobacterium avium Subsp. avium Subsp. Nov., Mycobacterium Subsp. paratuberculosis Subsp. Nov., and Mycobacterium Subsp. silvaticum Subsp. Nov. Int. J. Syst. Bacteriol. 1990, 40, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Han, X.Y. Subspecies Identification and Significance of 257 Clinical Strains of Mycobacterium avium. J. Clin. Microbiol. 2014, 52, 1201–1206. [Google Scholar] [CrossRef]
- Turenne, C.Y.; Collins, D.M.; Alexander, D.C.; Behr, M.A. Mycobacterium avium Subsp. paratuberculosis and M. avium Subsp. avium Are Independently Evolved Pathogenic Clones of a Much Broader Group of M. avium Organisms. J. Bacteriol. 2008, 190, 2479–2487. [Google Scholar] [CrossRef]
- Mizzi, R.; Plain, K.M.; Whittington, R.; Timms, V.J. Global Phylogeny of Mycobacterium avium and Identification of Mutation Hotspots During Niche Adaptation. Front. Microbiol. 2022, 13, 892333. [Google Scholar] [CrossRef]
- Frothingham, R.; Wilson, K.H. Sequence-Based Differentiation of Strains in the Mycobacterium avium Complex. J. Bacteriol. 1993, 175, 2818–2825. [Google Scholar] [CrossRef]
- Tortoli, E.; Rindi, L.; Garcia, M.J.; Chiaradonna, P.; Dei, R.; Garzelli, C.; Kroppenstedt, R.M.; Lari, N.; Mattei, R.; Mariottini, A.; et al. Proposal to Elevate the Genetic Variant MAC-A Included in the Mycobacterium avium Complex, to Species Rank as Mycobacterium Chimaera Sp. Nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1277–1285. [Google Scholar] [CrossRef]
- Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.; Göker, M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front. Microbiol. 2018, 9, 2007. [Google Scholar] [CrossRef]
- Tortoli, E.; Meehan, C.J.; Grottola, A.; Fregni Serpini, G.; Fabio, A.; Trovato, A.; Pecorari, M.; Cirillo, D.M. Genome-Based Taxonomic Revision Detects a Number of Synonymous Taxa in the Genus Mycobacterium. Infect. Genet. Evol. 2019, 75, 103983. [Google Scholar] [CrossRef]
- Tateishi, Y.; Ozeki, Y.; Nishiyama, A.; Miki, M.; Maekura, R.; Fukushima, Y.; Nakajima, C.; Suzuki, Y.; Matsumoto, S. Comparative Genomic Analysis of Mycobacterium intracellulare: Implications for Clinical Taxonomic Classification in Pulmonary Mycobacterium avium-intracellulare Complex Disease. BMC Microbiol. 2021, 21, 103. [Google Scholar] [CrossRef]
- Shin, J.I.; Shin, S.J.; Shin, M.K. Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology. Microorganisms 2020, 8, 98. [Google Scholar] [CrossRef]
- Mazurek, G.H.; Hartman, S.; Zhang, Y.; Brown, B.A.; Hector, J.S.R.; Murphy, D.; Wallace, R.J. Large DNA Restriction Fragment Polymorphism in the Mycobactenium avium-M. intracellulare Complex: A Potential Epidemiologic Tool. J. Clin. Microbiol. 1993, 31, 390–394. [Google Scholar] [CrossRef]
- Iakhiaeva, E.; McNulty, S.; Brown Elliott, B.A.; Falkinham, J.O.; Williams, M.D.; Vasireddy, R.; Wilson, R.W.; Turenne, C.; Wallace, R.J. Mycobacterial Interspersed Repetitive-Unit-Variable-Number Tandem- Repeat (MIRU-VNTR) Genotyping of Mycobacterium intracellulare for Strain Comparison with Establishment of a PCR-Based Database. J. Clin. Microbiol. 2013, 51, 409–416. [Google Scholar] [CrossRef]
- Semret, M.; Turenne, C.Y.; Behr, M.A. Insertion Sequence IS900 Revisited. J. Clin. Microbiol. 2006, 44, 1081–1083. [Google Scholar] [CrossRef]
- Ichikawa, K.; Yagi, T.; Moriyama, M.; Inagaki, T.; Nakagawa, T.; Uchiya, K.I.; Nikai, T.; Ogawa, K. Characterization of Mycobacterium avium Clinical Isolates in Japan Using Subspecies-Specific Insertion Sequences, and Identification of a New Insertion Sequence, ISMav6. J. Med. Microbiol. 2009, 58, 945–950. [Google Scholar] [CrossRef]
- Devallois, A.; Picardeau, M.; Paramasivan, C.N.; Vincent, V.; Rastogi, N. Molecular Characterization of Mycobacterium avium Complex Isolates Giving Discordant Results in AccuProbe Tests by PCR-Restriction Enzyme Analysis, 16S RRNA Gene Sequencing, and DT1-DT6 PCR. J. Clin. Microbiol. 1997, 35, 2767–2772. [Google Scholar] [CrossRef]
- Zozaya-Valdés, E.; Porter, J.L.; Coventry, J.; Fyfe, J.A.M.; Carter, G.P.; Gonçalves Da Silva, A.; Schultz, M.B.; Seemann, T.; Johnson, P.D.R.; Stewardson, A.J.; et al. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA. J. Clin. Microbiol. 2017, 55, 1847–1856. [Google Scholar] [CrossRef]
- Adékambi, T.; Drancourt, M. Dissection of Phylogenetic Relationships among 19 Rapidly Growing Mycobacterium Species by 16S rRNA, hsp65, sodA, recA and rpoB Gene Sequencing. Int. J. Syst. Evol. Microbiol. 2004, 54, 2095–2105. [Google Scholar] [CrossRef]
- Dohál, M.; Porvazník, I.; Solovič, I.; Mokrý, J. Whole Genome Sequencing in the Management of Non-Tuberculous Mycobacterial Infections. Microorganisms 2021, 9, 2237. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O. Mycobacterium avium Complex: Adherence as a Way of Life. AIMS Microbiol. 2018, 4, 428–438. [Google Scholar] [CrossRef] [PubMed]
- van Ingen, J.; Kohl, T.A.; Kranzer, K.; Hasse, B.; Keller, P.M.; Katarzyna Szafrańska, A.; Hillemann, D.; Chand, M.; Schreiber, P.W.; Sommerstein, R.; et al. Global Outbreak of Severe Mycobacterium chimaera Disease after Cardiac Surgery: A Molecular Epidemiological Study. Lancet Infect. Dis. 2017, 17, 1033–1041. [Google Scholar] [CrossRef]
- van Tonder, A.J.; Ellis, H.C.; Churchward, C.P.; Kumar, K.; Ramadan, N.; Benson, S.; Parkhill, J.; Moffatt, M.F.; Loebinger, M.R.; Cookson, W.O.C. Mycobacterium avium Complex Genomics and Transmission in a London Hospital. Eur. Respir. J. 2023, 61, 2201237. [Google Scholar] [CrossRef]
- Wetzstein, N.; Diricks, M.; Anton, T.B.; Andres, S.; Kuhns, M.; Kohl, T.A.; Schwarz, C.; Lewin, A.; Kehrmann, J.; Kahl, B.C.; et al. Clinical and Genomic Features of Mycobacterium avium Complex: A Multi-National European Study. Genome Med. 2024, 16, 86. [Google Scholar] [CrossRef]
- Diricks, M.; Maurer, F.P.; Dreyer, V.; Barilar, I.; Utpatel, C.; Merker, M.; Wetzstein, N.; Niemann, S. Genomic Insights into the Plasmidome of Non-Tuberculous Mycobacteria. Genome Med. 2025, 17, 19. [Google Scholar] [CrossRef]
- Cirillo, J.D.; Falkow, S.; Tompkins, L.S.; Bermudez, L.E. Interaction of Mycobacterium avium with Environmental Amoebae Enhances Virulence. Infect. Immun. 1997, 65, 3759–3767. [Google Scholar] [CrossRef] [PubMed]
- Claeys, T.A.; Robinson, R.T. The Many Lives of Nontuberculous Mycobacteria. J. Bacteriol. 2018, 200, e00739-17. [Google Scholar] [CrossRef]
- Falkinham, J.O. Ecology of Nontuberculous Mycobacteria-Where Do Human Infections Come From? Semin. Respir. Crit. Care Med. 2013, 34, 95–102. [Google Scholar] [CrossRef]
- Keen, E.C.; Choi, J.; Wallace, M.A.; Azar, M.; Mejia-Chew, C.R.; Mehta, S.B.; Bailey, T.C.; Caverly, L.J.; Burnham, C.-A.D.; Dantas, G.; et al. Comparative Genomics of Mycobacterium avium Complex Reveals Signatures of Environment-Specific Adaptation and Community Acquisition. mSystems 2021, 6, 1194–1215. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, L.J.; del Ojo Elias, C.; Votintseva, A.A.; Walker, T.M.; Cole, K.; Davies, J.; Fermont, J.M.; Gascoyne-Binzi, D.M.; Kohl, T.A.; Kong, C.; et al. Rapid, Comprehensive, and Affordable Mycobacterial Diagnosis with Whole-Genome Sequencing: A Prospective Study. Lancet Respir. Med. 2016, 4, 49–58. [Google Scholar] [CrossRef]
- Chawla, R.; Shaw, B.; von Bredow, B.; Chong, C.; Garner, O.B.; Zangwill, K.M.; Yang, S. Accurate Subspecies-Level Identification of Clinically Significant Mycobacterium avium and Mycobacterium intracellulare by Whole-Genome Sequencing. J. Microbiol. Methods 2023, 208, 106726. [Google Scholar] [CrossRef] [PubMed]
- Prommi, A.; Sawaswong, V.; Petsong, S.; Wongjarit, K.; Somsukpiroh, U.; Payungporn, S.; Rotcheewaphan, S. Genomic Analysis of Mycobacterium abscessus Isolates from Non-Cystic Fibrosis Patients in Thailand: Phylogeny, Subspecies Distribution, and Antimicrobial Resistance Profiles. J. Microbiol. Immunol. Infect. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.J.; Moon, S.M.; Kim, S.Y.; Woo, M.A.; Kim, S.; Jhun, B.W.; Park, H.Y.; Jeon, K.; Huh, H.J.; Ki, C.S.; et al. Outcomes of Mycobacterium avium Complex Lung Disease Based on Clinical Phenotype. Eur. Respir. J. 2017, 50, 1602503. [Google Scholar] [CrossRef]
- Daley, C.L. Mycobacterium avium Complex Disease. Microbiol. Spectr. 2017, 5, 663–701. [Google Scholar] [CrossRef]
- Kim, R.D.; Greenberg, D.E.; Ehrmantraut, M.E.; Guide, S.V.; Ding, L.; Shea, Y.; Brown, M.R.; Chernick, M.; Steagall, W.K.; Glasgow, C.G.; et al. Pulmonary Nontuberculous Mycobacterial Disease: Prospective Study of a Distinct Preexisting Syndrome. Am. J. Respir. Crit. Care Med. 2008, 178, 1066–1074. [Google Scholar] [CrossRef]
- Wallace, R.J.; Zhang, Y.; Brown, B.A.; Dawson, D.; Murphy, D.T.; Wilson, R.; Griffith, D.E.; Polyclonal, G. DE Polyclonal Mycobacterium avium Complex Infections in Patients with Nodular Bronchiectasis. Am. J. Respir. Crit. Care Med. 1998, 158, 1235–1244. [Google Scholar] [CrossRef]
- Han, D.W.; Jo, K.W.; Kim, O.H.; Shim, T.S. Cavity Formation and Its Predictors in Noncavitary Nodular Bronchiectatic Mycobacterium avium Complex Pulmonary Disease. Respir. Med. 2021, 179, 106340. [Google Scholar] [CrossRef]
- Pan, S.W.; Shu, C.C.; Feng, J.Y.; Su, W.J. Treatment for Mycobacterium avium Complex Lung Disease. J. Formos. Med. Assoc. 2020, 119, S67–S75. [Google Scholar] [CrossRef]
- Kim, B.G.; Jhun, B.W.; Kim, H.; Kwon, O.J. Treatment Outcomes of Mycobacterium avium Complex Pulmonary Disease According to Disease Severity. Sci. Rep. 2022, 12, 1970. [Google Scholar] [CrossRef]
- Koh, W.J.; Jeong, B.H.; Jeon, K.; Lee, N.Y.; Lee, K.S.; Woo, S.Y.; Shin, S.J.; Kwon, O.J. Clinical Significance of the Differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. Avium Complex Lung Disease. Chest 2012, 142, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Rickman, O.B.; Ryu, J.H.; Fidler, M.E.; Kalra, S. Hypersensitivity Pneumonitis Associated with Mycobacterium avium Complex and Hot Tub Use. Mayo Clin. Proc. 2002, 77, 1233–1237. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Bruijnesteijn Van Coppenraet, L.E.S.; De Haas, P.E.W.; Lindeboom, J.A.; Kuijper, E.J.; Van Soolingen, D. Lymphadenitis in Children Is Caused by Mycobacterium avium hominissuis and Not Related to “Bird Tuberculosis. ” Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 293–299. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Marcos, L.A.; Henao-Martínez, A.F.; Rodríguez-Morales, A.J.; Villamil-Gómez, W.E.; Gotuzzo, E.; Bonifaz, A.; Heredia, C. Cutaneous Mycobacterial Infections. Clin. Microbiol. Rev. 2018, 32, e00069-18. [Google Scholar] [CrossRef]
- Zenone, T.; Boibieux, A.; Tigaud, S.; Fredenucci, J.F.; Vincent, V.; Chidiac, C.; Peyramond, D. Non-Tuberculous Mycobacterial Tenosynovitis: A Review. Scand. J. Infect. Dis. 1999, 31, 221–228. [Google Scholar] [CrossRef]
- Bridges, M.J.; McGarry, F. Two Cases of Mycobacterium avium Septic Arthritis. Ann. Rheum. Dis. 2002, 61, 186–187. [Google Scholar] [CrossRef]
- Wood, B.R.; Buitrago, M.O.; Patel, S.; Hachey, D.H.; Haneuse, S.; Harrington, R.D. Mycobacterium avium Complex Osteomyelitis in Persons With Human Immunodeficiency Virus: Case Series and Literature Review. Open Forum Infect. Dis. 2015, 2, ofv090. [Google Scholar] [CrossRef]
- Kim, W.Y.; Jang, S.J.; Ok, T.; Kim, G.U.; Park, H.S.; Leem, J.; Kang, B.H.; Park, S.J.; Oh, D.K.; Kang, B.J.; et al. Disseminated Mycobacterium intracellulare Infection in an Immunocompetent Host. Tuberc. Respir. Dis. 2012, 72, 452–456. [Google Scholar] [CrossRef]
- Riccardi, N.; Monticelli, J.; Antonello, R.M.; Luzzati, R.; Gabrielli, M.; Ferrarese, M.; Codecasa, L.; Di Bella, S.; Giacobbe, D.R. Mycobacterium chimaera Infections: An Update. J. Infect. Chemother. 2020, 26, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zeng, W.; Qiu, Y.; Fang, G.; Pan, M.; Li, W.; Zhang, J. Clinical Features of Rare Disseminated Mycobacterium colombiense Infection in Nine Patients Who Are HIV-Negative in Guangxi, China. Int. J. Infect. Dis. 2023, 128, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Daley, C.L.; Griffith, D.E.; Loebinger, M.R. Management of Mycobacterium avium Complex and Mycobacterium abscessus Pulmonary Disease: Therapeutic Advances and Emerging Treatments. Eur. Respir. Rev. 2022, 31, 210212. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Koh, W.J.; Daley, C.L. Treatment of Mycobacterium avium Complex Pulmonary Disease. Tuberc. Respir. Dis. 2019, 82, 15–26. [Google Scholar] [CrossRef]
- Zegri-Reiriz, I.; Cobo-Marcos, M.; Rodriguez-Alfonso, B.; Millán, R.; Dominguez, F.; Forteza, A.; Garcia-Pavia, P.; Ramos-Martinez, A. Successful Treatment of Healthcare-Associated Mycobacterium chimaera Prosthetic Infective Endocarditis: The First Spanish Case Report. Eur. Heart J. Case Rep. 2018, 2, yty142. [Google Scholar] [CrossRef] [PubMed]
- Sacco, K.A.; Burton, M.C. Persistent Immune Thrombocytopenia Heralds the Diagnosis of Mycobacterium chimaera Prosthetic Valve Endocarditis. IDCases 2017, 7, 1–3. [Google Scholar] [CrossRef]
- Dautzenberg, B.; Piperno, D.; Diot, P.; Truffot-Pernot, C.; Chauvin, J.-P. Clarithromycin in the Treatment of Mycobacterium avium Lung Infections in Patients Without AIDS*. Chest 1995, 107, 1035–1040. [Google Scholar] [CrossRef]
- Chae, G.; Park, Y.E.; Chong, Y.P.; Lee, H.J.; Shim, T.S.; Jo, K.W. Treatment Outcomes of Cavitary Nodular Bronchiectatic-Type Mycobacterium avium Complex Pulmonary Disease. Antimicrob. Agents Chemother. 2022, 66, e0226121. [Google Scholar] [CrossRef]
- Chang, C.-L.; Yu, C.-J.; Hsueh, P.-R.; Chien, J.-Y. Treatment Outcomes and Relapse in Patients with Mycobacterium avium-intracellulare Complex Pulmonary Disease. Microbiol. Spectr. 2023, 11, e0164023. [Google Scholar] [CrossRef]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT) a Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Asakura, T.; Suzuki, S.; Fukano, H.; Okamori, S.; Kusumoto, T.; Uwamino, Y.; Ogawa, T.; So, M.; Uno, S.; Namkoong, H.; et al. Sitafloxacin-Containing Regimen for the Treatment of Refractory Mycobacterium avium Complex Lung Disease. Open Forum Infect. Dis. 2019, 6, ofz108. [Google Scholar] [CrossRef]
- Moon, S.M.; Park, H.Y.; Kim, S.Y.; Jhun, B.W.; Lee, H.; Jeon, K.; Kim, D.H.; Huh, H.J.; Ki, C.S.; Lee, N.Y.; et al. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrob. Agents Chemother. 2016, 60, 6758–6765. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Brown-Elliott, B.A.; Langsjoen, B.; Zhang, Y.; Pan, X.; Girard, W.; Nelson, K.; Caccitolo, J.; Alvarez, J.; Shepherd, S.; et al. Clinical and Molecular Analysis of Macrolide Resistance in Mycobacterium avium Complex Lung Disease. Am. J. Respir. Crit. Care Med. 2006, 174, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Kadota, T.; Matsui, H.; Hirose, T.; Suzuki, J.; Saito, M.; Akaba, T.; Kobayashi, K.; Akashi, S.; Kawashima, M.; Tamura, A.; et al. Analysis of Drug Treatment Outcome in Clarithromycin-Resistant Mycobacterium avium Complex Lung Disease. BMC Infect. Dis. 2016, 16, 31. [Google Scholar] [CrossRef]
- Meier, A.; Heifets, L.; Wallace, R.J.; Zhang, Y.; Brown, B.A.; Sander, P.; Bottger, E.C. Molecular Mechanisms of Clarithromycin Resistance in Mycobacterium avium: Observation of Multiple 23S rRNA Mutations in a Clonal Population. J. Infect. Dis. 1996, 174, 354–360. [Google Scholar] [CrossRef]
- Meier, A.; Kirschner, P.; Springer, B.; Steingrube, V.A.; Brown, B.A.; Wallace, R.J.; Bottgeri, E.C. Identification of Mutations in 23S rRNA Gene of Clarithromycin-Resistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 1994, 38, 381–384. [Google Scholar] [CrossRef]
- Nash, K.A.; Inderlied, C.B. Genetic Basis of Macrolide Resistance in Mycobacterium avium Isolated from Patients with Disseminated Disease. Antimicrob. Agents Chemother. 1995, 39, 2625–2630. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Iakhiaeva, E.; Griffith, D.E.; Woods, G.L.; Stout, J.E.; Wolfe, C.R.; Turenne, C.Y.; Wallace, R.J. In Vitro Activity of Amikacin against Isolates of Mycobacterium avium Complex with Proposed MIC Breakpoints and Finding of a 16S rRNA Gene Mutation in Treated Isolates. J. Clin. Microbiol. 2013, 51, 3389–3394. [Google Scholar] [CrossRef]
- Nessar, R.; Reyrat, J.M.; Murray, A.; Gicquel, B. Genetic Analysis of New 16s RRNA Mutations Conferring Aminoglycoside Resistance in Mycobacterium abscessus. J. Antimicrob. Chemother. 2011, 66, 1719–1724. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, D.H.; Moon, S.M.; Song, J.Y.; Huh, H.J.; Lee, N.Y.; Shin, S.J.; Koh, W.J.; Jhun, B.W. Association between 16S rRNA Gene Mutations and Susceptibility to Amikacin in Mycobacterium avium Complex and Mycobacterium abscessus Clinical Isolates. Sci. Rep. 2021, 11, 6108. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Hua, W.; Wang, S.; Zhang, Y.; Chen, X.; Liu, H.; Shao, L.; Chen, J.; Zhang, W. In Vitro Assessment of 17 Antimicrobial Agents against Clinical Mycobacterium avium Complex Isolates. BMC Microbiol. 2022, 22, 175. [Google Scholar] [CrossRef]
- Ho, I.I.Y.; Chan, C.Y.; Cheng, A.F.B. Aminoglycoside Resistance in Mycobacterium kansasii, Mycobacterium avium-M. intracellulare, and Mycobacterium fortuitum: Are Aminoglycoside-Modifying Enzymes Responsible? ASM J. 2000, 44, 39–42. [Google Scholar] [CrossRef]
- Williams, D.L.; Waguespack, C.; Eisenach, K.; Crawford, J.T.; Portaels, F.; Salfinger, M.; Nolan, C.M.; Abe, C.; Sticht-Groh, V.; Gillis1, T.P. Characterization of Rifampin Resistance in Pathogenic Mycobacteria. Antimicrob. Agents Chemother. 1994, 38, 2380–2386. [Google Scholar] [CrossRef]
- Obata, S.; Zwolska, Z.; Toyota, E.; Kudo, K.; Nakamura, A.; Sawai, T.; Kuratsuji, T.; Kirikae, T. Association of rpoB Mutations with Rifampicin Resistance in Mycobacterium avium. Int. J. Antimicrob. Agents 2006, 27, 32–39. [Google Scholar] [CrossRef]
- Thapa, J.; Chizimu, J.Y.; Kitamura, S.; Akapelwa, M.L.; Suwanthada, P.; Miura, N.; Toyting, J.; Nishimura, T.; Hasegawa, N.; Nishiuchi, Y.; et al. Characterization of DNA Gyrase Activity and Elucidation of the Impact of Amino Acid Substitution in gyrA on Fluoroquinolone Resistance in Mycobacterium avium. Microbiol. Spectr. 2023, 11, e0508822. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Woo Jhun, B.; Mi Moon, S.; Hye Shin, S.; Jeon, K.; Jung Kwon, O.; Young Yoo, I.; Jae Huh, H.; Ki, C.-S.; Yong Lee, N.; et al. Mutations in gyrA and gyrB in Moxifloxacin-Resistant Mycobacterium avium Complex and Mycobacterium abscessus Complex Clinical Isolates. Antimicrob. Agents Chemother. 2018, 62, e00527-18. [Google Scholar] [CrossRef] [PubMed]
- Jarand, J.; Paul Davis, J.; Cowie, R.L.; Field, S.K.; Fisher, D.A. Long-Term Follow-up of Mycobacterium avium Complex Lung Disease in Patients Treated with Regimens Including Clofazimine and/or Rifampin. Chest 2016, 149, 1285–1293. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Gumbo, T. Linezolid as Treatment for Pulmonary Mycobacterium avium Disease. J. Antimicrob. Chemother. 2017, 72, ii24–ii29. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.M.; Sangen, J.J.N.; Remmers, K.; Pennings, L.J.; Svensson, E.; Aarnoutse, R.E.; Zweijpfenning, S.M.H.; Hoefsloot, W.; Kuipers, S.; Magis-Escurra, C.; et al. A Bedaquiline/Clofazimine Combination Regimen Might Add Activity to the Treatment of Clinically Relevant Non-Tuberculous Mycobacteria. J. Antimicrob. Chemother. 2019, 74, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Fröberg, G.; Maurer, F.P.; Chryssanthou, E.; Fernström, L.; Benmansour, H.; Boarbi, S.; Mengshoel, A.T.; Keller, P.M.; Viveiros, M.; Machado, D.; et al. Towards Clinical Breakpoints for Non-Tuberculous Mycobacteria—Determination of Epidemiological Cut off Values for the Mycobacterium avium Complex and Mycobacterium abscessus Using Broth Microdilution. Clin. Microbiol. Infect. 2023, 29, 758–764. [Google Scholar] [CrossRef]
- Kobashi, Y.; Abe, M.; Mouri, K.; Obase, Y.; Kato, S.; Oka, M. Relationship between Clinical Efficacy for Pulmonary MAC and Drug-Sensitivity Test for Isolated MAC in a Recent 6-Yearperiod. J. Infect. Chemother. 2012, 18, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Perronne, C.; Gikas, A.; Truffot-Pernot, C.; Grosset, J.; Pocidalo, J.-J.; Vilde’, J.-L. Activities of Clarithromycin, Sulfisoxazole, and Rifabutin against Mycobacterium avium Complex Multiplication within Human Macrophages. Antimicrob. Agents Chemother. 1990, 34, 1508–1511. [Google Scholar] [CrossRef]
- Falkinham III, J.O.; Iseman, M.D.; de Haas, P.; van Soolingen, D. Mycobacterium avium in a Shower Linked to Pulmonary Disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [CrossRef]
- Machado, D.; Cannalire, R.; Santos Costa, S.; Manfroni, G.; Tabarrini, O.; Cecchetti, V.; Couto, I.; Viveiros, M.; Sabatini, S. Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against Mycobacterium smegmatis and Mycobacterium avium. ACS Infect. Dis. 2016, 1, 593–603. [Google Scholar] [CrossRef]
- Uchiya, K.I.; Tomida, S.; Nakagawa, T.; Asahi, S.; Nikai, T.; Ogawa, K. Comparative Genome Analyses of Mycobacterium avium Reveal Genomic Features of Its Subspecies and Strains That Cause Progression of Pulmonary Disease. Sci. Rep. 2017, 7, 39750. [Google Scholar] [CrossRef]
- Tateishi, Y.; Hirayama, Y.; Ozeki, Y.; Nishiuchi, Y.; Yoshimura, M.; Kang, J.; Shibata, A.; Hirata, K.; Kitada, S.; Maekura, R.; et al. Virulence of Mycobacterium avium Complex Strains Isolated from Immunocompetent Patients. Microb. Pathog. 2009, 46, 6–12. [Google Scholar] [CrossRef]
- Horsburgh, C.R. The Pathophysiology of Disseminated Mycobacterium avium Complex Disease in AIDS. J. Infect. Dis. 1999, 179, 461–465. [Google Scholar] [CrossRef]
- Bodmer, T.; Miltner, E.; Bermudez, L.E. Mycobacterium avium Resists Exposure to the Acidic Conditions of the Stomach. FEMS Microbiol. Lett. 2000, 182, 45–49. [Google Scholar] [CrossRef]
- Sangari, F.J.; Goodman, J.; Petrofsky, M.; Kolonoski, P.; Bermudez, L.E. Mycobacterium avium Invades the Intestinal Mucosa Primarily by Interacting with Enterocytes. Infect. Immun. 2001, 69, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, J.; Bermudez, L.E.; Bermudez, L.E. Pathogenesis of Nontuberculous Mycobacteria Infections. Clin. Chest Med. 2002, 23, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.I.; Owen, R.L.; Keren, D.F.; Volberding, P.A. Intestinal Infection with Mycobacterium avium in Acquired Immune Deficiency Syndrome (AIDS) Histological and Clinical Comparison with Whipple’s Disease. Dig. Dis. Sci. 1985, 30, 497–504. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Danelishvili, L.; Wu, M.; Hidaka, E.; Katsuyama, T.; Stang, B.; Petrofsky, M.; Bildfell, R.; Bermudez, L.E. The Ability to Form Biofilm Influences Mycobacterium avium Invasion and Translocation of Bronchial Epithelial Cells. Cell Microbiol. 2006, 8, 806–814. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Goodman, J. Mycobacterium tuberculosis Invades and Replicates within Type II Alveolar Cells. Infect. Immun. 1996, 64, 1400–1406. [Google Scholar] [CrossRef]
- Middleton, A.M.; Chadwick, M.V.; Nicholson, A.G.; Dewar, A.; Groger, R.K.; Brown, E.J.; Wilson, R. The Role of Mycobacterium avium Complex Fibronectin Attachment Protein in Adherence to the Human Respiratory Mucosa. Mol. Microbiol. 2000, 38, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.; Becker, R.; Franzen, C.; Schell-Frederick, E.; Rö, J.; Jacobs, M.; Fä, G.; Plum, G. Phagocytosis and Killing of Mycobacterium avium Complex by Human Neutrophils. J. Leukoc. Biol. 2001, 69, 397–404. [Google Scholar] [CrossRef]
- Petrofsky, M.; Bermudez, L.E. Neutrophils from Mycobacterium avium-Infected Mice Produce TNF-α, IL-12, and IL-1β and Have a Putative Role in Early Host Response. Clin. Immunol. 1999, 91, 354–358. [Google Scholar] [CrossRef]
- Lefrancois, L.H.; Cochard, T.; Branger, M.; Peuchant, O.; Conde, C.; Pastuszka, A.; Locht, C.; Lanotte, P.; Biet, F. Feature of Adhesins Produced by Human Clinical Isolates of Mycobacterium intracellulare, Mycobacterium intracellulare subsp. chimaera and Closely Related Species. Microorganisms 2020, 8, 1154. [Google Scholar] [CrossRef]
- Sangari, F.J.; Goodman, J.; Bermudez, L.E. Mycobacterium avium Enters Intestinal Epithelial Cells through the Apical Membrane, but Not by the Basolateral Surface, Activates Small GTPase Rho and, Once within Epithelial Cells, Expresses an Invasive Phenotype. Cell Microbiol. 2000, 2, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Young, L.S. Factors Affecting Invasion of HT-29 and HEp-2 Epithelial Cells by Organisms of the Mycobacterium avium Complex. Infect. Immun. 1994, 62, 2021–2026. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, M.; Barnes, P.F. Chemokine Production by a Human Alveolar Epithelial Cell Line in Response to Mycobacterium tuberculosis. Infect. Immun. 1998, 66, 1121–1126. [Google Scholar] [CrossRef]
- Sangari, F.J.; Petrofsky, M.; Bermudez, L.E. Mycobacterium avium Infection of Epithelial Cells Results in Inhibition or Delay in the Release of Interleukin-8 and RANTES. Infect. Immun. 1999, 67, 5069–5075. [Google Scholar] [CrossRef]
- Mukherjee, S.; Zheng, H.; Derebe, M.G.; Callenberg, K.M.; Partch, C.L.; Rollins, D.; Propheter, D.C.; Rizo, J.; Grabe, M.; Jiang, Q.X.; et al. Antibacterial Membrane Attack by a Pore-Forming Intestinal C-Type Lectin. Nature 2014, 505, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Kopp, Z.A.; Jain, U.; Van Limbergen, J.; Stadnyk, A.W. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa? Front. Immunol. 2015, 6, 17. [Google Scholar] [CrossRef]
- Herr, C.; Shaykhiev, R.; Bals, R. The Role of Cathelicidin and Defensins in Pulmonary Inflammatory Diseases. Expert. Opin. Biol. Ther. 2007, 7, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, N.; Danelishvili, L.; Bermudez, L.E. Identification of Mycobacterium avium Genes Associated with Resistance to Host Antimicrobial Peptides. J. Med. Microbiol. 2014, 63, 923–930. [Google Scholar] [CrossRef]
- Saito, H.; Tomioka, H.; Sato, K.; Tasaka, H.; Dawson, D.J. Identification of Various Serovar Strains of Mycobacterium avium Complex by Using DNA Probes Specific for Mycobacterium avium and Mycobacterium intracellulare. J. Clin. Microbiol. 1990, 28, 1694–1697. [Google Scholar] [CrossRef]
- Schorey, J.S.; Sweet, L. The Mycobacterial Glycopeptidolipids: Structure, Function, and Their Role in Pathogenesis. Glycobiology 2008, 18, 832–841. [Google Scholar] [CrossRef]
- Chatterjee, D.; Khoo, K.-H. The Surface Glycopeptidolipids of Mycobacteria: Structures and Biological Properties. Cell Mol. Life Sci. 2001, 58, 2018–2042. [Google Scholar] [CrossRef]
- Shimada, K.I.; Takimoto, H.; Yano, I.; Kumazawa, Y. Involvement of Mannose Receptor in Glycopeptidolipid-Mediated Inhibition of Phagosome-Lysosome Fusion. Microbiol. Immunol. 2006, 50, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Rocco, J.M.; Irani, V.R. Mycobacterium avium and Modulation of the Host Macrophage Immune Mechanisms. Int. J. Tuberc. Lung Dis. 2011, 15, 447–452. [Google Scholar] [CrossRef]
- Sweet, L.; Schorey, J.S. Glycopeptidolipids from Mycobacterium avium Promote Macrophage Activation in a TLR2- and MyD88-Dependent Manner. J. Leukoc. Biol. 2006, 80, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Gabriel Gutierrez, M.; Mishra, B.B.; Jordao, L.; Elliott, E.; Anes, E.; Griffiths, G. NF-B Activation Controls Phagolysosome Fusion-Mediated Killing of Mycobacteria by Macrophages. J. Immunol. 2008, 181, 2651–2663. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Parker, A.; Goodman, J.R. Growth within Macrophages Increases the Efficiency of Mycobacterium avium in Invading Other Macrophages by a Complement Receptor-Independent Pathway. Infect. Immun. 1997, 65, 1916–1925. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Wu, M.; Young, L.S. Interleukin-12-Stimulated Natural Killer Cells Can Activate Human Macrophages To Inhibit Growth of Mycobacterium avium. Infect. Immun. 1995, 63, 4099–4104. [Google Scholar] [CrossRef]
- Hansch, H.C.R.; Smith, D.A.; Mielke, M.E.A.; Hahn, H.; Bancroft, G.J.; Ehlers, S. Mechanisms of Granuloma Formation in Murine Mycobacterium avium Infection: The Contribution of CD4+ T Cells. Int. Immunol. 1996, 8, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, M.; Ishii, Y.; Yageta, Y.; Ohtsuka, S.; Ano, S.; Matsuno, Y.; Morishima, Y.; Yoh, K.; Takahashi, S.; Ogawa, K.; et al. Role of Th1/Th17 Balance Regulated by T-Bet in a Mouse Model of Mycobacterium avium Complex Disease. J. Immunol. 2014, 192, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.P.; Zembower, T.R.; Qi, C. Relapse versus Reinfection of Mycobacterium avium Complex Pulmonary Disease: Patient Characteristics and Macrolide Susceptibility. Ann. Am. Thorac. Soc. 2016, 13, 1956–1961. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Goswami, T.; Evans, C.A.W.; Sibthorpe, D.; Papo, N.; White, J.K.; Searle, S.; Miller, E.N.; Peacock, C.S.; Mohammed, H.; et al. SLC11A1 (Formerly NRAMP1) and Disease Resistance. Cell Microbiol. 2001, 3, 773–784. [Google Scholar] [CrossRef]
- Archer, N.S.; Nassif, N.T.; O’Brien, B.A. Genetic Variants of SLC11A1 Are Associated with Both Autoimmune and Infectious Diseases: Systematic Review and Meta-Analysis. Genes. Immun. 2015, 16, 275–283. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The Future of Cystic Fibrosis Care: A Global Perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.A.; Kim, S.Y.; Jeong, B.H.; Park, H.Y.; Jeon, K.; Kim, J.W.; Ki, C.S.; Koh, W.J. Association of CFTR Gene Variants with Nontuberculous Mycobacterial Lung Disease in a Korean Population with a Low Prevalence of Cystic Fibrosis. J. Hum. Genet. 2013, 58, 298–303. [Google Scholar] [CrossRef]
- Binder, A.M.; Adjemian, J.; Olivier, K.N.; Rebecca Prevots, D. Epidemiology of Nontuberculous Mycobacterial Infections and Associated Chronic Macrolide Use among Persons with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2013, 188, 807–812. [Google Scholar] [CrossRef]
- Naghavi, M.; Ong, K.L.; Aali, A.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbasi-Kangevari, M.; Abbastabar, H.; et al. Global Burden of 288 Causes of Death and Life Expectancy Decomposition in 204 Countries and Territories and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef]
- Munjal, S.; Munjal, S.; Gao, J.; Venketaraman, V. Exploring Potential COPD Immunosuppression Pathways Causing Increased Susceptibility for MAC Infections among COPD Patients. Clin. Pract. 2021, 11, 619–630. [Google Scholar] [CrossRef]
- Brode, S.K.; Campitelli, M.A.; Kwong, J.C.; Lu, H.; Marchand-Austin, A.; Gershon, A.S.; Jamieson, F.B.; Marras, T.K. The Risk of Mycobacterial Infections Associated with Inhaled Corticosteroid Use. Eur. Respir. J. 2017, 50, 1700037. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J. Mendelian Susceptibility to Mycobacterial Disease: Recent Discoveries. Hum. Genet. 2020, 139, 993–1000. [Google Scholar] [CrossRef]
- Al-Muhsen, S.; Casanova, J.L. The Genetic Heterogeneity of Mendelian Susceptibility to Mycobacterial Diseases. J. Allergy Clin. Immunol. 2008, 122, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The Gut-Lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc. 2015, 12, 150–156. [Google Scholar] [CrossRef]
- Barcik, W.; Boutin, R.C.T.; Sokolowska, M.; Finlay, B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 2020, 52, 241–255. [Google Scholar] [CrossRef]
- Burke, D.G.; Fouhy, F.; Harrison, M.J.; Rea, M.C.; Cotter, P.D.; O’Sullivan, O.; Stanton, C.; Hill, C.; Shanahan, F.; Plant, B.J.; et al. The Altered Gut Microbiota in Adults with Cystic Fibrosis. BMC Microbiol. 2017, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, K.L.; Rehman, S.F.; Vaughan, A.; Lachner, N.; Budden, K.F.; Kim, R.Y.; Wood, D.L.A.; Gellatly, S.L.; Shukla, S.D.; Wood, L.G.; et al. Disease-Associated Gut Microbiome and Metabolome Changes in Patients with Chronic Obstructive Pulmonary Disease. Nat. Commun. 2020, 11, 5886. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Erb-Downward, J.R.; Martinez, F.J.; Huffnagle, G.B. The Microbiome and the Respiratory Tract. Annu. Rev. Physiol. 2016, 78, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered Microbial Communities in Asthmatic Airways. PLoS ONE 2010, 5, e8578. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.S.; Mellett, M.; Jarand, J.; Barss, L.; Field, S.K.; Fisher, D.A. The Respiratory Microbiome and Nontuberculous Mycobacteria: An Emerging Concern in Human Health. Eur. Respir. Rev. 2021, 30, 200299. [Google Scholar] [CrossRef]
- He, Y.; Wen, Q.; Yao, F.; Xu, D.; Huang, Y.; Wang, J. Gut–Lung Axis: The Microbial Contributions and Clinical Implications. Crit. Rev. Microbiol. 2017, 43, 81–95. [Google Scholar] [CrossRef]
- Lin, T.L.; Kuo, Y.L.; Lai, J.H.; Lu, C.C.; Yuan, C.T.; Hsu, C.Y.; Yan, B.S.; Wu, L.S.H.; Wu, T.S.; Wang, J.Y.; et al. Gut Microbiota Dysbiosis-Related Susceptibility to Nontuberculous Mycobacterial Lung Disease. Gut Microbes 2024, 16, 2361490. [Google Scholar] [CrossRef]
- Karakousis, P.C.; Moore, R.D.; Chaisson, R.E. Mycobacterium Avium Complex in Patients with HIV Infection in the Era of Highly Active Antiretroviral Therapy. Lancet Infect. Dis. 2004, 4, 557–565. [Google Scholar] [CrossRef]
- Heidary, M.; Nasiri, M.J.; Mirsaeidi, M.; Jazi, F.M.; Khoshnood, S.; Drancourt, M.; Darban-Sarokhalil, D. Mycobacterium avium Complex Infection in Patients with Human Immunodeficiency Virus: A Systematic Review and Meta-Analysis. J. Cell Physiol. 2019, 234, 9994–10001. [Google Scholar] [CrossRef]
Species | Clinical Manifestations |
---|---|
Mycobacterium avium subsp. hominissuis | Disseminated disease in |
immunocompromised individuals | |
Pulmonary disease | |
Lymphadenitis | |
Mycobacterium intracellulare | Pulmonary disease in immunocompetent individuals |
Mycobacterium intracellulare subsp. chimaera | Endocarditis |
Pulmonary disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, S.; Portugal, I.; Perdigão, J. The Mycobacterium avium Complex: Genomics, Disease, and Beyond. Microorganisms 2025, 13, 2329. https://doi.org/10.3390/microorganisms13102329
Matos S, Portugal I, Perdigão J. The Mycobacterium avium Complex: Genomics, Disease, and Beyond. Microorganisms. 2025; 13(10):2329. https://doi.org/10.3390/microorganisms13102329
Chicago/Turabian StyleMatos, Sofia, Isabel Portugal, and João Perdigão. 2025. "The Mycobacterium avium Complex: Genomics, Disease, and Beyond" Microorganisms 13, no. 10: 2329. https://doi.org/10.3390/microorganisms13102329
APA StyleMatos, S., Portugal, I., & Perdigão, J. (2025). The Mycobacterium avium Complex: Genomics, Disease, and Beyond. Microorganisms, 13(10), 2329. https://doi.org/10.3390/microorganisms13102329