Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability
Abstract
1. Introduction
2. Methods
2.1. Sampling and Cultivation and Phylogenetic Analysis of 16s rRNA
2.2. Phenotypic and Biochemical Tests of Strain HMX87T
2.3. Genome Sequencing and Analysis
2.4. Antibacterial Activity Assay
3. Results
3.1. Phylogenetic Analysis Based on 16s rRNA Gene Sequences
3.2. Phenotypic and Chemotaxonomic Characterization
3.3. Whole-Genome Sequencing of Strain HMX87T
3.4. Comparative Genomic Analysis of Three Streptomyces Species
3.5. Genomic Features for Adaptation to Extreme Environments of Strain HMX87T
3.6. Analysis of the Antibacterial Potential of Strain HMX87T
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez-Silva, B. Lithobiontic life: “Atacama rocks are well and alive”. Antonie Van Leeuwenhoek 2018, 111, 1333–1343. [Google Scholar] [CrossRef]
- Navarro-González, R.; Rainey, F.A.; Molina, P.; Bagaley, D.R.; Hollen, B.J.; de la Rosa, J.; Small, A.M.; Quinn, R.C.; Grunthaner, F.J.; Cáceres, L. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 2003, 302, 1018–1021. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Shu, W.-S.; Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Wagner, D.; Kounaves, S.P.; Mangelsdorf, K.; Devine, K.G.; de Vera, J.-P.; Schmitt-Kopplin, P.; Grossart, H.-P.; Parro, V.; Kaupenjohann, M. Transitory microbial habitat in the hyperarid Atacama Desert. Proc. Natl. Acad. Sci. USA 2018, 115, 2670–2675. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, G.; Zhang, W.; Liu, G. Distribution patterns and functional characteristics of soil bacterial communities in desert ecosystems of northern China. Sci. Total Environ. 2023, 905, 167081. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, B.S.; Bhatia, S.K.; Seo, H.-M.; Jeon, J.-M.; Kim, H.-J.; Yi, D.-H.; Lee, J.-H.; Choi, K.-Y.; Park, H.-Y.; et al. Production of rapamycin in Streptomyces hygroscopicus from glycerol-based media optimized by systemic methodology. J. Microbiol. Biotechnol. 2014, 24, 1319–1326. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef]
- Rateb, M.E.; Ebel, R.; Jaspars, M. Natural product diversity of actinobacteria in the Atacama Desert. Antonie Van. Leeuwenhoek 2018, 111, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Adeela, F.; Riaz, S.; Sajid, I. Anti-MRSA potential and metabolic fingerprinting of actinobacteria from Cholistan desert, Pakistan. Trop. J. Pharm. Res. 2018, 17, 2037–2046. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Letchumanan, V.; Tan, L.T.-H.; Ser, H.-L.; Goh, B.-H.; Lee, L.-H.; Biology, M. The rising of “modern actinobacteria” era. Prog. Microbes Mol. Biol. 2020, 3, a0000064. [Google Scholar] [CrossRef][Green Version]
- Almuhayawi, M.S.; Mohamed, M.S.; Abdel-Mawgoud, M.; Selim, S.; Al Jaouni, S.K.; AbdElgawad, H. Bioactive potential of several actinobacteria isolated from microbiologically barely explored desert habitat, Saudi Arabia. Biology 2021, 10, 235. [Google Scholar] [CrossRef]
- Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef]
- Xie, F.; Pathom-Aree, W. Actinobacteria from Desert: Diversity and Biotechnological Applications. Front. Microbiol. 2021, 12, 765531. [Google Scholar] [CrossRef]
- Bi, Y.; Yu, Z. Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J. Agric. Food Chem. 2016, 64, 8525–8529. [Google Scholar] [CrossRef] [PubMed]
- Rateb, M.E.; Houssen, W.E.; Harrison, W.T.; Deng, H.; Okoro, C.K.; Asenjo, J.A.; Andrews, B.A.; Bull, A.T.; Goodfellow, M.; Ebel, R.; et al. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J. Nat. Prod. 2011, 74, 1965–1971. [Google Scholar] [CrossRef]
- Merrouche, R.; Bouras, N.; Coppel, Y.; Mathieu, F.; Sabaou, N.; Lebrihi, A. New dithiolopyrrolone antibiotics induced by adding sorbic acid to the culture medium of Saccharothrix algeriensis NRRL B-24137. FEMS Microbiol. Lett. 2011, 318, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Something old, something new: Revisiting natural products in antibiotic drug discovery. Can. J. Microbiol. 2014, 60, 147–154. [Google Scholar] [CrossRef]
- Trenozhnikova, L.P.; Baimakhanova, G.B.; Baimakhanova, B.B.; Balgimbayeva, A.S.; Daugaliyeva, S.T.; Faizulina, E.R.; Tatarkina, L.G.; Spankulova, G.A.; Berillo, D.A.; Beutler, J.A. Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon 2024, 10, e40371. [Google Scholar] [CrossRef]
- Malvick, D.; Syverson, R.; Mollov, D.; Ishimaru, C.A. Goss’s bacterial blight and wilt of corn caused by Clavibacter michiganensis subsp. nebraskensis occurs in Minnesota. Am. Phytopathol. Soc. 2010, 94, 1064. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids MIDI technical note 101. Chem. Biol. Environ. Sci. 1990, 1–7. [Google Scholar]
- Minnikin, D.; Pirouz, T.; Goodfellow, M.; Microbiology, E. Polar lipid composition in the classification of some Actinomadura species. Int. J. Syst. Evol. Microbiol. 1977, 27, 118–121. [Google Scholar] [CrossRef]
- Staneck, J.L.; Roberts, G.D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 1974, 28, 226–231. [Google Scholar] [CrossRef]
- Collins, M.D. Isoprenoid quinone analyses in bacterial classification and identification. Soc. Appl. Bacteriol. Tech. Ser. 1985, 20, 267–287. [Google Scholar]
- Toh, H.; Shirane, K.; Miura, F.; Kubo, N.; Ichiyanagi, K.; Hayashi, K.; Saitou, M.; Suyama, M.; Ito, T.; Sasaki, H. Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genom. 2017, 18, 31. [Google Scholar] [CrossRef]
- Loman, N.J.; Quick, J.; Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Brief. Commun. 2015, 12, 733–735. [Google Scholar] [CrossRef]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, W451–W454. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Samal, K.C.; Sahoo, J.P.; Behera, L.; Dash, T. Understanding the BLAST (Basic Local Alignment Search Tool) program and a step-by-step guide for its use in life science research. Bhartiya Krishi Anusandhan Patrika 2021, 36, 55–61. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W. antiSMASH 3.0—A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dong, L.; Lian, W.H.; Lin, Z.L.; Lu, C.Y.; Xu, L.; Li, L.; Hozzein, W.N.; Li, W.J. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci. Total Environ. 2021, 790, 148235. [Google Scholar] [CrossRef]
- Galtier, N.; Tourasse, N.; Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 1999, 283, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, H.; Ren, M.; Ji, B.; Sun, K. The synthesis of ectoine enhance the assimilation of ammonia nitrogen in hypersaline wastewater by the salt-tolerant assimilation bacteria sludge. Sci. Total Environ. 2024, 913, 169694. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Yu, J.; Li, Q.; Zhang, Y.; Huang, L. Research Progress on Virulence Factors of Vibrio Alginolyticus: A Key Pathogenic Bacteria of Sepsis; IntechOpen: London, UK, 2022. [Google Scholar]
Test Characteristic | Strain HMX87T | S. bellus CGMCC 4.1376T | S. coerulescens DSM 40146T |
---|---|---|---|
Growth temperature | 37 °C | 25 °C | 25 °C |
pH tolerance | 5–12 | 5–12 | 5–12 |
NaCl tolerance (w/v) | 0–8 | 0–4 | 0–6 |
D-Trehalose | + | (+) | + |
D-Cellobiose | + | (+) | (+) |
Gentiobiose | + | (+) | + |
Sucrose | + | (+) | + |
D-Turanose | + | + | − |
Stachyose | + | (+) | − |
Raffinose | + | (+) | + |
α-d-Lactose | + | (+) | − |
Melibiose | + | + | + |
D-Galactose | + | (+) | + |
L-Fructose | + | (+) | − |
Inositol | + | − | + |
D-Sorbitol | + | (+) | + |
D-Arabitol | (+) | + | (+) |
Glycerol | + | + | + |
D-Glucose-6-phosphate | + | + | − |
D-Fructose-6-phosphate | + | + | − |
Pectin | + | (+) | (+) |
D-Galacturonic acid | + | + | − |
L-Galactonic acid lactone | + | + | − |
D-Gluconic acid | + | + | − |
Quinic acid | + | + | − |
β-Methyl-d-glucoside | + | (+) | − |
D-Salicin | + | + | + |
N-Acetyl-β-d-glucosamine | + | + | − |
N-Acetyl-d-galactosamine | + | (+) | − |
Citric acid | (+) | (+) | − |
Methyl D-lactate | (+) | + | (+) |
Bromo-succinic acid | − | + | − |
Acetoacetic acid | + | + | − |
Propionic acid | (+) | + | + |
Acetic acid | (+) | (+) | (+) |
Glycyl-l-proline | (+) | (+) | + |
L-Alanine | + | (+) | − |
L-Arginine | + | (+) | − |
L-Serine | + | (+) | − |
Aztreonam | + | + | + |
Nalidixic acid | (+) | + | + |
Lithium chloride | (+) | + | − |
Gelatin | (+) | − | + |
Tween 40 | + | + | + |
Antimicrobial activity | + | + | + |
Fatty Acid | Strain HMX87T | S. bellus CGMCC 4.1376T | S. coerulescens DSM 40146T |
---|---|---|---|
C12:0 | 0.11 | 0.11 | 0.50 |
C13:0 | 0.06 | 0.07 | - |
C14:0 | 0.79 | 0.82 | 1.46 |
C15:0 | 1.16 | 1.71 | 1.75 |
C16:0 | 10.3 | 6.41 | 11.16 |
C17:0 | 0.75 | 0.37 | 0.37 |
C18:0 | 0.27 | 0.10 | - |
iso-C12:0 | 0.22 | 0.1 | 0.18 |
iso-C13:0 | 0.24 | 0.33 | 0.48 |
iso-C14:0 | 3.90 | 4.35 | 4.11 |
iso-C15:0 | 7.01 | 15.69 | 14.7 |
iso-C15:1 F | - | 0.06 | - |
iso-C16:0 | 25.94 | 17.37 | 18.95 |
iso-C18:0 | 1.17 | 1.89 | 1.43 |
iso-C19:0 | - | 0.19 | - |
anteiso-C11:0 | 0.12 | - | - |
anteiso-C13:0 | 0.52 | 0.24 | 0.43 |
anteiso-C15:0 | 16.98 | 17.93 | 15.47 |
anteiso-C15:1 A | 0.20 | - | - |
anteiso-C16:0 | 0.16 | 0.11 | - |
anteiso-C19:0 | 0.04 | - | - |
iso-C16:0 3OH | 0.12 | - | - |
iso-C16:1 H | 3.45 | 4.05 | 3.12 |
Sum In Feature 3 | 2.27 | 3.92 | 5.49 |
Sum In Feature 5 | 2.16 | 0.14 | - |
Sum In Feature 7 | 0.06 | 0.05 | - |
Sum In Feature 8 | 0.06 | 0.18 | - |
Sum In Feature 9 | 1.26 | 5.97 | 4.16 |
iso-C17:0 | 3.25 | 2.90 | 2.92 |
anteiso-C17:0 | 12.37 | 5.49 | 5.41 |
cyclo-C17:0 | 0.95 | 2.25 | 2.51 |
anteiso-C17:1 Ꞷ9c | 2.29 | 4.90 | 3.56 |
Summed Feature 7 | 0.06 | - | - |
Summed Feature 8 | 0.06 | 0.23 | - |
Summed Feature 9 | 1.26 | 5.97 | 4.16 |
Strain 1 | Strain 2 | 16S rRNA Similarity (%) | ANI (%) | dDDH (%) |
---|---|---|---|---|
HMX87T | S. bellus CGMCC 4.1376T | 98.5 | 84.4 | 32.1 |
S. coerulescen DSM 40146T | 98.43 | 83.28 | 22.9 |
BGC | Type | Similar Known Cluster | Similarity |
---|---|---|---|
1 | NRPS | clipibicyclene/azabicyclene B/azabicyclene C/azabicyclene D | 16% |
2 | NRPS | zorbamycin | 8% |
3 | LAP, thiopeptide | toxoflavin/fervenulin | 10% |
4 | crocagin, T1PKS | - | - |
5 | terpene | - | - |
6 | RiPP-like | informatipeptin | 57% |
7 | NRPS-like, betalactone | longicatenamide B/longicatenamide C/longicatenamide A/longicatenamide D | 15% |
8 | terpene | hopene | 92% |
9 | T1PKS, hydrogen-cyanide | aborycin | 28% |
10 | CDPS | nogalamycin | 40% |
11 | terpene, NI-siderophore | isorenieratene | 85% |
12 | terpene | geosmin | 100% |
13 | RiPP-like | - | - |
14 | T1PKS | auroramycin | 8% |
15 | NI-siderophore | kinamycin | 16% |
16 | terpene | albaflavenone | 100% |
17 | NRP-metallophore, NRPS, lassopeptide | citrulassin D | 100% |
18 | redox-cofactor | berninamycin K/berninamycin J/berninamycin A/berninamycin B | 27% |
19 | phosphonate | - | - |
20 | lanthipeptide-class-i | - | - |
21 | NI-siderophore | desferrioxamin B/desferrioxamine E | 100% |
22 | melanin | melanin | 60% |
23 | NRPS | - | - |
24 | ectoine | ectoine | 100% |
25 | T3PKS | flaviolin/1,3,6,8-tetrahydroxynaphthalene | 100% |
26 | T1PKS | enduracidin | 10% |
27 | RiPP-like | streptamidine | 66% |
28 | melanin | melanin | 57% |
29 | indole | 5-isoprenylindole-3-carboxylate β-d-glycosyl ester | 23% |
30 | T3PKS | alkylresorcinol | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Wu, Y.; Yu, X.; Wu, S.; Zhang, G.; Liu, G.; Chen, T.; Zhang, W. Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability. Microorganisms 2025, 13, 2238. https://doi.org/10.3390/microorganisms13102238
Niu X, Wu Y, Yu X, Wu S, Zhang G, Liu G, Chen T, Zhang W. Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability. Microorganisms. 2025; 13(10):2238. https://doi.org/10.3390/microorganisms13102238
Chicago/Turabian StyleNiu, Xiaomin, Yujie Wu, Xue Yu, Shiyu Wu, Gaosen Zhang, Guangxiu Liu, Tuo Chen, and Wei Zhang. 2025. "Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability" Microorganisms 13, no. 10: 2238. https://doi.org/10.3390/microorganisms13102238
APA StyleNiu, X., Wu, Y., Yu, X., Wu, S., Zhang, G., Liu, G., Chen, T., & Zhang, W. (2025). Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability. Microorganisms, 13(10), 2238. https://doi.org/10.3390/microorganisms13102238