Lower Semen Quality Among Men in the Modern Era—Is There a Role for Diet and the Microbiome?
Abstract
:1. Introduction
2. Impact of the Male Genital Tract Microbiome on Infertility
2.1. Male Genital Tract Infections
2.2. Penile and Urinary-Tract Microbiome
2.3. Testicular and Seminal Microbiomes
3. Dietary Intake—A Potential Modifier of the Male Genital Tract Microbiome
3.1. BMI
3.2. Gut Microbiome
3.3. Antioxidants
3.4. Fatty Acids
4. Limitations of Previous Research
5. Conclusions
Funding
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Esteves, S.C. Novel concepts in male factor infertility: Clinical and laboratory perspectives. J. Assist. Reprod. Genet. 2016, 33, 1319–1335. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S.; Du Plessis, S.; Sharma, R.; Esteves, S.C.; Cirenza, C.; Eliwa, J.; Al-Najjar, W.; Kumaresan, D.; Haroun, N.; et al. Abstinence Time and Its Impact on Basic and Advanced Semen Parameters. Urology 2016, 94, 102–110. [Google Scholar] [CrossRef]
- Weng, S.-L.; Chiu, C.-M.; Lin, F.-M.; Huang, W.-C.; Liang, C.; Yang, T.; Yang, T.-L.; Liu, C.-Y.; Wu, W.-Y.; Chang, Y.-A. Bacterial communities in semen from men of infertile couples: Metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS ONE 2014, 9, e110152. [Google Scholar] [CrossRef]
- Skakkebæk, N.E.; Lindahl-Jacobsen, R.; Levine, H.; Andersson, A.M.; Jørgensen, N.; Main, K.M.; Lidegaard, Ø.; Priskorn, L.; Holmboe, S.A.; Bräuner, E.V.; et al. Environmental factors in declining human fertility. Nat. Rev. Endocrinol. 2022, 18, 139–157. [Google Scholar] [CrossRef]
- Faja, F.; Esteves, S.; Pallotti, F.; Cicolani, G.; Di Chiano, S.; Delli Paoli, E.; Lenzi, A.; Lombardo, F.; Paoli, D. Environmental disruptors and testicular cancer. Endocrine 2022, 78, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, R.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Mechanistic insights and potential new downstream effects. Fertil. Steril. 2008, 89 (Suppl. 2), e33–e38. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 2022, 29, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Nwagha, U.; Dutta, S.; Krajewska-Kulak, E.; Izuka, E. Evidence for decreasing sperm count in African population from 1965 to 2015. Afr. Health Sci. 2017, 17, 418–427. [Google Scholar] [CrossRef]
- Bahri, H.; Ben Khalifa, M.; Ben Rhouma, M.; Abidi, Z.; Abbassi, E.; Ben Rhouma, K.; Benkhalifa, M. Decline in semen quality of North African men: A retrospective study of 20,958 sperm analyses of men from different North African countries tested in Tunisia over a period of 6 years (2013–2018). Ann. Hum. Biol. 2021, 48, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Condorelli, R.A.; Gusmano, C.; Barone, N.; Burrello, N.; Aversa, A.; Calogero, A.E.; La Vignera, S. Temporal trend of conventional sperm parameters in a sicilian population in the decade 2011. J. Clin. Med. 2021, 10, 993. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, L.; Song, X.-H.; Zhang, H.-B.; Xu, C.-Y.; Chen, Z.-J. Decline of semen quality among Chinese sperm bank donors within 7 years (2008–2014). Asian J. Androl. 2017, 19, 521–525. [Google Scholar] [PubMed]
- Huang, C.; Li, B.; Xu, K.; Liu, D.; Hu, J.; Yang, Y.; Nie, H.; Fan, L.; Zhu, W. Decline in semen quality among 30,636 young Chinese men from 2001 to 2005. Fertil. Steril. 2017, 107, 83–88.e2. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.K.Y.; Venetis, C.; Ledger, W.; Havard, A.; Harris, K.; Norman, R.J.; Jorm, L.R.; Chambers, G.M. Population-wide contribution of medically assisted reproductive technologies to overall births in Australia: Temporal trends and parental characteristics. Hum. Reprod. 2022, 37, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Bouloorchi Tabalvandani, M.; Saeidpour, Z.; Habibi, Z.; Javadizadeh, S.; Firoozabadi, S.A.; Badieirostami, M. Microfluidics as an emerging paradigm for assisted reproductive technology: A sperm separation perspective. Biomed. Microdevices 2024, 26, 23. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.B.A.; Petersen, C.G.; Mauri, A.L.; Vagnini, L.D.; Renzi, A.; Petersen, B.; Mattila, M.; Dieamant, F.; Baruffi, R.L.R.; Franco, J.G., Jr. Association between body mass index and sperm quality and sperm DNA integrity. A large population study. Andrologia 2018, 50, e12889. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, X.; Di Zhang, X.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020, 69, 1608–1619. [Google Scholar] [CrossRef]
- Campbell, J.M.; Lane, M.; Owens, J.A.; Bakos, H.W. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: A systematic review and meta-analysis. Reprod. BioMedicine 2015, 31, 593–604. [Google Scholar] [CrossRef]
- Crean, A.J.; Senior, A.M. High-fat diets reduce male reproductive success in animal models: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 921–933. [Google Scholar] [CrossRef]
- Palmer, N.O.; Bakos, H.W.; Fullston, T.; Lane, M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2012, 2, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Lundy, S.D.; Sangwan, N.; Parekh, N.V.; Selvam, M.K.P.; Gupta, S.; McCaffrey, P.; Bessoff, K.; Vala, A.; Agarwal, A.; Sabanegh, E.S. Functional and taxonomic dysbiosis of the gut, urine, and semen microbiomes in male infertility. Eur. Urol. 2021, 79, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.D. The Effects of Medical Male Circumcision on Female Partners’ Sexual and Reproductive Health. Curr. HIV/AIDS Rep. 2022, 19, 501–507. [Google Scholar] [CrossRef]
- Mehta, S.D.; Nandi, D.; Agingu, W.; Green, S.J.; Otieno, F.O.; Bhaumik, D.K.; Bailey, R.C. Longitudinal Changes in the Composition of the Penile Microbiome Are Associated With Circumcision Status, HIV and HSV-2 Status, Sexual Practices, and Female Partner Microbiome Composition. Front. Cell. Infect. Microbiol. 2022, 12, 916437. [Google Scholar] [CrossRef] [PubMed]
- Boeri, L.; Pederzoli, F.; Capogrosso, P.; Abbate, C.; Alfano, M.; Mancini, N.; Clementi, M.; Montanari, E.; Montorsi, F.; Salonia, A. Semen infections in men with primary infertility in the real-life setting. Fertil. Steril. 2020, 113, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Henkel, R.; Offor, U.; Fisher, D. The role of infections and leukocytes in male infertility. Andrologia 2021, 53, e13743. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhu, H.L.; Xu, K.R.; Wang, S.Y.; Fan, L.Q.; Zhu, W.B. Mycoplasma and ureaplasma infection and male infertility: A systematic review and meta-analysis. Andrology 2015, 3, 809–816. [Google Scholar] [CrossRef]
- Ko, E.Y.; Sabanegh, E.S.; Agarwal, A. Male infertility testing: Reactive oxygen species and antioxidant capacity. Fertil. Steril. 2014, 102, 1518–1527. [Google Scholar] [CrossRef]
- Weidner, W.; Ludwig, M.; Brähler, E.; Schiefer, H.G. Outcome of antibiotic therapy with ciprofloxacin in chronic bacterial prostatitis. Drugs 1999, 58 (Suppl. 2), 103–106. [Google Scholar] [CrossRef] [PubMed]
- Paira, D.A.; Molina, G.; Tissera, A.D.; Olivera, C.; Molina, R.I.; Motrich, R.D. Results from a large cross-sectional study assessing Chlamydia trachomatis, Ureaplasma spp. and Mycoplasma hominis urogenital infections in patients with primary infertility. Sci. Rep. 2021, 11, 13655. [Google Scholar] [CrossRef] [PubMed]
- Domes, T.; Lo, K.C.; Grober, E.D.; Mullen, J.B.; Mazzulli, T.; Jarvi, K. The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil. Steril. 2012, 97, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Mens Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Ali, S.A.; Behare, P.; Kaul, G. Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food Funct. 2022, 13, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.E.; John Aitken, R.; Conner, S.J.; Iuliis, G.D.; Evenson, D.P.; Henkel, R.; Giwercman, A.; Gharagozloo, P. The impact of sperm DNA damage in assisted conception and beyond: Recent advances in diagnosis and treatment. Reprod. Biomed. 2013, 27, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.R.; Martin-Hidalgo, D.; Silva, M.B.F.; Oliveira, P.G.; Alves, M. Endogenous and exogenous antioxidants as a tool to ameliorate male infertility induced by reactive oxygen species. Antioxid. Redox Signal. 2020, 33, 767–785. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arce, E.; Vizmanos, B.; Babio, N.; Márquez-Sandoval, F.; Salas-Huetos, A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. Biology 2021, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Dong, Q.; Van Der Pol, B.; Toh, E.; Fan, B.; Katz, B.P.; Mi, D.; Rong, R.; Weinstock, G.M.; Sodergren, E.; et al. Bacterial Communities of the Coronal Sulcus and Distal Urethra of Adolescent Males. PLoS ONE 2012, 7, e36298. [Google Scholar] [CrossRef]
- Galiwango, R.M.; Park, D.E.; Huibner, S.; Onos, A.; Aziz, M.; Roach, K.; Anok, A.; Nnamutete, J.; Isabirye, Y.; Wasswa, J.B.; et al. Immune milieu and microbiome of the distal urethra in Ugandan men: Impact of penile circumcision and implications for HIV susceptibility. Microbiome 2022, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Prodger, J.L.; Abraham, A.G.; Tobian, A.A.R.; Park, D.E.; Aziz, M.; Roach, K.; Gray, R.H.; Buchanan, L.; Kigozi, G.; Galiwango, R.M.; et al. Penile bacteria associated with HIV seroconversion, inflammation, and immune cells. JCI Insight 2021, 6, e147363. [Google Scholar] [CrossRef]
- Maust, B.S.; Petkov, S.; Herrera, C.; Feng, C.; Brown, B.P.; Lebina, L.; Opoka, D.; Ssemata, A.; Pillay, N.; Serwanga, J.; et al. Bacterial microbiome and host inflammatory gene expression in foreskin tissue. Heliyon 2023, 9, e22145. [Google Scholar] [CrossRef]
- Osadchiy, V.; Belarmino, A.; Kianian, R.; Sigalos, J.T.; Furtado, T.P.; Ancira, J.S.; Kanie, T.; Mangum, S.F.; Tipton, C.D.; Hsieh, T.-C.M.; et al. Urine microbes and predictive metagenomic profiles associate with abnormalities in sperm parameters: Implications for male subfertility. FS Sci. 2024, 5, 163–173. [Google Scholar] [CrossRef]
- Petricevic, L.; Domig, K.J.; Nierscher, F.J.; Sandhofer, M.J.; Fidesser, M.; Krondorfer, I.; Husslein, P.; Kneifel, W.; Kiss, H. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci. Rep. 2014, 4, 5136. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Guo, R.; Wang, J.; Zhou, W.; Ling, Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front. Cell. Infect. Microbiol. 2021, 11, 792787. [Google Scholar] [CrossRef] [PubMed]
- Alfano, M.; Ferrarese, R.; Locatelli, I.; Ventimiglia, E.; Ippolito, S.; Gallina, P.; Cesana, D.; Canducci, F.; Pagliardini, L.; Viganò, P.; et al. Testicular microbiome in azoospermic men—First evidence of the impact of an altered microenvironment. Hum. Reprod. 2018, 33, 1212–1217. [Google Scholar] [CrossRef]
- Osadchiy, V.; Belarmino, A.; Kianian, R.; Sigalos, J.T.; Ancira, J.S.; Kanie, T.; Mangum, S.F.; Tipton, C.D.; Hsieh, T.-C.M.; Mills, J.N.; et al. Semen microbiota are dramatically altered in men with abnormal sperm parameters. Sci. Rep. 2024, 14, 1068. [Google Scholar] [CrossRef]
- Arbelaez, M.C.S.; Israeli, J.M.; Tipton, C.D.; Loloi, J.; Deebel, N.; Leong, J.Y.; Ramasamy, R. Pilot Study: Next-generation Sequencing of the Semen Microbiome in Vasectomized Versus Nonvasectomized Men. Eur. Urol. Focus 2023, 9, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Qiu, X.J.; Wang, D.S.; Luo, J.K.; Tang, T.; Li, Y.H.; Zhang, C.H.; Liu, H.; Zhou, L.; Zhao, L.L. Semen microbiota in normal and leukocytospermic males. Asian J. Androl. 2022, 24, 398–405. [Google Scholar] [CrossRef]
- Monteiro, C.; Marques, P.I.; Cavadas, B.; Damião, I.; Almeida, V.; Barros, N.; Barros, A.; Carvalho, F.; Gomes, S.; Seixas, S. Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. Am. J. Reprod. Immunol. 2018, 79, e12838. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Durán, A.; Fuentes-López, A.; Salazar Ad Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, A.U.; Khan, F.U.; Khongorzul, P.; Ahmad, K.A.; Naveed, M.; Yasmeen, S.; Cao, Y.; Taleb, A.; Maiti, R.; Akhter, F.; et al. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed. Pharmacother. 2018, 106, 714–723. [Google Scholar]
- Okwelogu, S.I.; Ikechebelu, J.I.; Agbakoba, N.R.; Anukam, K.C. Microbiome Compositions From Infertile Couples Seeking In Vitro Fertilization, Using 16S rRNA Gene Sequencing Methods: Any Correlation to Clinical Outcomes? Front. Cell. Infect. Microbiol. 2021, 11, 709372. [Google Scholar] [CrossRef] [PubMed]
- Štšepetova, J.; Baranova, J.; Simm, J.; Parm, Ü.; Rööp, T.; Sokmann, S.; Korrovits, P.; Jaagura, M.; Rosenstein, K.; Salumets, A.; et al. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure. Reprod. Biol. Endocrinol. 2020, 18, 3. [Google Scholar] [CrossRef]
- Chen, H.; Luo, T.; Chen, T.; Wang, G. Seminal bacterial composition in patients with obstructive and non-obstructive azoospermia. Exp. Ther. Med. 2018, 15, 2884–2890. [Google Scholar] [CrossRef] [PubMed]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm microbiota and its impact on semen parameters. Front. Microbiol. 2019, 10, 234. [Google Scholar] [CrossRef]
- Mändar, R.; Punab, M.; Korrovits, P.; Türk, S.; Ausmees, K.; Lapp, E.; Preem, J.-K.; Oopkaup, K.; Salumets, A.; Truu, J. Seminal microbiome in men with and without prostatitis. Int. J. Urol. 2017, 24, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Mändar, R.; Punab, M.; Borovkova, N.; Lapp, E.; Kiiker, R.; Korrovits, P.; Metspalu, A.; Krjutškov, K.; Nolvak, H.; Preem, J.-K. Complementary seminovaginal microbiome in couples. Res. Microbiol. 2015, 166, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Song, S.D.; Acharya, K.D.; Zhu, J.E.; Deveney, C.; Walther-Antonio, M.; Tetel, M.; Chia, N. Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. mSphere 2020, 5, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Di Paola, M.; Ramazzotti, M.; Albanese, D.; Pieraccini, G.; Banci, E.; Miglietta, F.; Cavalieri, D.; Lionetti, P. Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Front. Microbiol. 2017, 8, 1979. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Xu, M.; Zhou, Q.; Wu, C.; Ju, R.; Dai, J. Is low body mass index a risk factor for semen quality? A PRISMA-compliant meta-analysis. Medicine 2019, 98, e16677. [Google Scholar] [CrossRef] [PubMed]
- Ramlau-Hansen, C.H.; Thulstrup, A.M.; Nohr, E.A.; Bonde, J.P.; Sørensen, T.I.A.; Olsen, J. Subfecundity in overweight and obese couples. Hum. Reprod. 2007, 22, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Overweight and Obesity. Canberra2023. Available online: https://www.aihw.gov.au/reports/overweight-obesity/overweight-and-obesity (accessed on 20 September 2023).
- Andersen, J.M.; Rønning, P.O.; Herning, H.; Bekken, S.D.; Haugen, T.B.; Witczak, O. Fatty acid composition of spermatozoa is associated with BMI and with semen quality. Andrology 2016, 4, 857–865. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240030787. Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 7 January 2025).
- Aminuddin, A.; Salamt, N.; Ahmad Fuad, A.F.; Chin, K.-Y.; Ugusman, A.; Soelaiman, I.N.; Wan Ngah, W.Z. Vascular Dysfunction among Malaysian Men with Increased BMI: An Indication of Synergistic Effect of Free Testosterone and Inflammation. Medicina 2019, 55, 575. [Google Scholar] [CrossRef] [PubMed]
- Christin-Maitre, S.; Young, J. Androgens and spermatogenesis. Ann. Endocrinol. 2022, 83, 155–158. [Google Scholar] [CrossRef]
- Ma, J.; Wu, L.; Zhou, Y.; Zhang, H.; Xiong, C.; Peng, Z.; Bao, W.; Meng, T.; Liu, Y. Association between BMI and semen quality: An observational study of 3966 sperm donors. Hum. Reprod. 2019, 34, 155–162. [Google Scholar] [CrossRef]
- Manfredo Vieira, S.; Hiltensperger, M.; Kumar, V.; Zegarra-Ruiz, D.; Dehner, C.; Khan, N.; Costa, F.R.C.; Tiniakou, E.; Greiling, T.; Ruff, W.; et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018, 359, 1156–1161. [Google Scholar] [CrossRef]
- Raoul, P.; Cintoni, M.; Palombaro, M.; Basso, L.; Rinninella, E.; Gasbarrini, A.; Mele, M.C. Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T. Diet and sperm quality: Nutrients, foods and dietary patterns. Reprod. Biol. 2019, 19, 219–224. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Hao, Y.; Feng, Y.; Yan, X.; Chen, L.; Ma, X.; Tang, X.; Zhong, R.; Sun, Z.; Agarwal, M.; Zhang, H.; et al. Gut Microbiota-Testis Axis: FMT Mitigates High-Fat Diet-Diminished Male Fertility via Improving Systemic and Testicular Metabolome. Microbiol. Spectr. 2022, 10, e0002822. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, P.; Geng, Q.; Fan, H.; Gong, Y.; Hu, Y.; Shan, L.; Sun, Y.; Shen, W.; Zhou, Y. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut-testis axis. Gut 2022, 71, 78–87. [Google Scholar] [CrossRef]
- Eskenazi, B.; Kidd, S.A.; Marks, A.R.; Sloter, E.; Block, G.; Wyrobek, A.J. Antioxidant intake is associated with semen quality in healthy men. Hum. Reprod. 2005, 20, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Mendiola, J.; López-Espín, J.J.; Sarabia-Cos, L.; Vivero-Salmerón, G.; Vioque, J.; Navarrete-Muñoz, E.M.; Torres-Cantero, A.M. Dietary intake of antioxidant nutrients is associated with semen quality in young university students. Hum. Reprod. 2012, 27, 2807–2814. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.E.; Eskenazi, B.; Marchetti, F.; Young, S.; Weldon, R.H.; Baumgartner, A.; Anderson, D.; Wyrobek, A.J. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil. Steril. 2012, 98, 1130–1137e1. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Qu, H.; Cao, Y.; Zhu, J.; Zhang, S.-z.; Wu, J.; Jiao, Y.-z. Effect of Antioxidants on Sperm Quality Parameters in Subfertile Men: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Alahmar, A.T.; Sengupta, P. Impact of Coenzyme Q10 and Selenium on Seminal Fluid Parameters and Antioxidant Status in Men with Idiopathic Infertility. Biol. Trace Elem. Res. 2021, 199, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R.; Safarinejad, S.; Shafiei, N.; Safarinejad, S. Effects of the Reduced Form of Coenzyme Q10 (Ubiquinol) on Semen Parameters in Men with Idiopathic Infertility: A Double-Blind, Placebo Controlled, Randomized Study. J. Urol. 2012, 188, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Balercia, G.; Buldreghini, E.; Vignini, A.; Tiano, L.; Paggi, F.; Amoroso, S.; Ricciardo-Lamonica, G.; Boscaro, M.; Lenzi, A.; Littarru, G. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: A placebo-controlled, double-blind randomized trial. Fertil. Steril. 2009, 91, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Cakiroglu, B.; Eyyupoglu, S.E.; Gozukucuk, R.; Uyanik, B.S. Ubiquinol Effect on Sperm Parameters in Subfertile Men Who Have Astheno-Teratozoospermia With Normal Sperm Concentration [Research Article]. Nephro Urol. Mon. 2014, 6, e16870. [Google Scholar] [CrossRef]
- Humaidan, P.; Haahr, T.; Povlsen, B.B.; Kofod, L.; Laursen, R.J.; Alsbjerg, B.; Elbaek, H.O.; Esteves, S.C. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: A pilot study. Int. Braz. J. Urol. 2022, 48, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, Y.; Aksoy, H.; Altınkaynak, K.; Aydın, H.R.; Özkan, A. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Conquer, J.A.; Martin, J.B.; Tummon, I.; Watson, L.; Tekpetey, F. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. Asthernozoospermic males. Lipids 1999, 34, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Gavrizi, S.Z.; Hosseinzadeh, P.; Brush, R.S.; Tytanic, M.; Eckart, E.; Peck, J.D.; Craig, L.B.; Diamond, M.P.; Agbaga, M.-P.; Hansen, K.R. Sperm very long-chain polyunsaturated fatty acids: Relation to semen parameters and live birth outcome in a multicenter trial. Fertil. Steril. 2023, 119, 753–760. [Google Scholar] [CrossRef]
- Nassan, F.L.; Chavarro, J.E.; Tanrikut, C. Diet and men’s fertility: Does diet affect sperm quality? Fertil. Steril. 2018, 110, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Di Giacomo, M.; Moscatelli, N.; Zara, V. Obesity and Male Infertility: Role of Fatty Acids in the Modulation of Sperm Energetic Metabolism. Eur. J. Lipid Sci. Technol. 2018, 120, 1700451. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update 2017, 23, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.-R.; Baghestani, A.-R.; Hekmatdoost, A. Dietary fatty acid intakes and asthenozoospermia: A case-control study. Fertil. Steril. 2015, 103, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liang, Y.; Yang, S.; Zhang, T.; Gong, Z.; Li, M.; Yang, J. Bariatric Surgery Does Not Improve Semen Quality: Evidence from a Meta-analysis. Obes. Surg. 2022, 32, 1341–1350. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Rato, L.; Jarak, I.; Silva, B.M.; Raposo, J.F.; Batterham, R.L.; Oliveira, P.F.; Alves, M.G. A switch from high-fat to normal diet does not restore sperm quality but prevents metabolic syndrome. Reproduction 2019, 158, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Keelan, J.A.; Payne, M.S. Characterization of the bacterial microbiome in first-pass meconium using propidium monoazide (PMA) to exclude nonviable bacterial DNA. Lett. Appl. Microbiol. 2019, 68, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Keelan, J.A.; Payne, M.S. Identification and removal of contaminating microbial DNA from PCR reagents: Impact on low-biomass microbiome analyses. Lett. Appl. Microbiol. 2019, 68, 2–8. [Google Scholar] [CrossRef]
- Francis, S.C.; Crucitti, T.; Smekens, T.; Hansen, C.H.; Andreasen, A.; Jespers, V.; Hardy, L.; Irani, J.; Changalucha, J.; Baisley, K.; et al. The Vaginal Microbiota Among Adolescent Girls in Tanzania Around the Time of Sexual Debut. Front. Cell. Infect. Microbiol. 2020, 10, 305. [Google Scholar] [CrossRef]
- Mändar, R.; Türk, S.; Korrovits, P.; Ausmees, K.; Punab, M. Impact of sexual debut on culturable human seminal microbiota. Andrology 2018, 6, 510–512. [Google Scholar] [CrossRef]
- Dabee, S.; Passmore, J.-A.S.; Heffron, R.; Jaspan, H.B. The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infect. Immun. 2021, 89, e00487-20. [Google Scholar] [CrossRef]
- Neto, F.T.L.; Viana, M.C.; Cariati, F.; Conforti, A.; Alviggi, C.; Esteves, S.C. Effect of environmental factors on seminal microbiome and impact on sperm quality. Front. Endocrinol. 2024, 15, 1348186. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.B.; Carter, K.A.; Ravel, J.; Brotman, R.M. Lactobacillus iners and genital health: Molecular clues to an enigmatic vaginal species. Curr. Infect. Dis. Rep. 2023, 25, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Holdcroft, A.M.; Ireland, D.; Payne, M. The Vaginal Microbiome in Health and Disease—What Role Do Common Intimate Hygiene Practices Play? Microorganisms 2023, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Plummer, E.L.; Vodstrcil, L.A.; Doyle, M.; Danielewski, J.A.; Murray, G.L.; Fehler, G.; Fairley, C.K.; Bulach, D.M.; Garland, S.M.; Chow, E.P.F.; et al. A Prospective, Open-Label Pilot Study of Concurrent Male Partner Treatment for Bacterial Vaginosis. mBio 2021, 12, e0232321. [Google Scholar] [CrossRef]
Study | Racial/ Demographic Focus | Sample Size | Sample Type | 16S Hypervariable Region | Contamination Control | Key Findings |
---|---|---|---|---|---|---|
Osadchiy et al. [44] | USA | Normal semen analysis (n = 42) Abnormal semen analysis (n = 31) | Semen | V1–V2 region | None | Enterococcus faecalis, Corynebacterium tuberculostearicum, Lactobacillus iners, Staphylococcus epidermidis and Finegoldia magna were the most abundant seminal microbes. L. iners was associated with men with abnormal sperm motility. Men with abnormal sperm concentration had higher abundance of Pseudomonas stutzeri (2.1% vs. 1.0% p = 0.024) and P. fluroescens (0.9% vs. 0.7%, p = 0.010) and lower P. putida (0.5% vs. 0.8%, p = 0.020). |
Arbelaez et al. [45] | USA | Normozoospermic (n = 22) Pre-vasectomy (n = 18) Post-vasectomy (n = 18) | Semen | V1–V2 Region | None | A significant difference in alpha-diversity was reported between pre-vasectomy and post-vasectomy samples (p = 0.007). Sphingomonas, Brevundimonas and Paracoccus abundance decreased post vasectomy, while Corynebacterium increased. |
Lundy et al. [21] | USA | Primary idiopathic infertility (n = 25) Men with proven paternity (controls, n = 12) | Semen, mid-stream urine, and rectal swabs | V3–V4 Region | Mid-stream urine samples were used to identify cross-contamination with semen samples | Infertile men had increased alpha-diversity, increased abundance of seminal Aerococcus and decreased Collinsella. Prevotella was positively associated with BMI and negatively associated with sperm concentration; Pseudomonas was positively associated with motile sperm count and negatively associated with semen pH. |
Chen et al. [52] | Chinese | Fertile donors (control, n = 5) Obstructive azoospermia (n = 6) Non-obstructive azoospermia (n = 6) | Semen | V4 region | None | 398 common OTUs were identified and 27 belonged to Lactobacillus. Obstructive and non-obstructive azoospermic patients had an increased abundance of Bacteroidetes and Firmicutes, while the control group had decreased Proteobacteria and Actinobacteria. |
Monteiro et al. [47] | Portuguese | Fertile controls (n = 29) Infertile cases (n = 89) | Semen | V3–V6 region | Instructed to wash the glans of the penis with warm soapy water and urinate before masturbation. | Higher prevalence of pathogenic bacteria such as Neisseria, Klebsiella and Pseudomonas, and a reduction in Lactobacillus in men with hyperviscosity and oligoasthenoteratzoospermia. |
Yao et al. [46] | Chinese | Normozoospermia (controls, n = 20) Asthenozoospermia with normal leukocyte count (n = 20) Leukocytospermia with normal semen parameters (n = 22) Leukocytospermia and asthenozoospermia (n = 32) | Semen | V3-V4 region | None | Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes were the most common phyla. Lactobacillus-rich microbiomes were more likely to have normal seminal leukocyte count, whereas Streptococcus-rich were more likely to have leukocytospermia. |
Okwelogu et al. [50] | Nigerian | Couples (male and female; n = 36) | Semen Vaginal swab | V4 region | None | Species diversity was higher in seminal fluid versus the vaginal swabs. Lactobacillus was the most abundant microbe in men with normal semen parameters, followed by Gardnerella. Couples with positive IVF were significantly colonised by Lactobacillus jensenii and Faecalibacterium and less colonised by Proteobacteria, Prevotella, and Bacteroides, with lower Firmicutes/Bacteroidetes ratios compared to negative IVF. |
Štšepetova et al. [51] | Estonian | Couples (male and female; n = 50) | Semen | V2–V3 region | Instructed to wash the glans of the penis with warm soapy water and urinate before masturbation. | Lactobacillus, Incertae sedis XI, Staphylococcus and Prevotella were the most common genera in semen samples. Staphylococcus was only found in patients with inflammation. Bacteroidetes had a negative correlation with sperm motility (r = −0.52, p < 0.05). |
Baud et al. [53] | Swiss | Normal semen parameters (controls, n = 26) At least 1 abnormal parameter (n = 68) | Semen | V1–V2 region | None | Prevotella relative abundance was increased in samples with abnormal sperm motility, Staphylococcus was increased in the control group, and Lactobacillus was increased in samples with normal morphology. |
Mändar et al. [54] | Estonian | Prostatitis positive (n = 21) Prostatitis negative (n = 46) | Semen, first catch urine | V6 region | First-void urine samples were used as a control to identify cross-contamination with semen samples. | Men with prostatitis had an increased species diversity compared with healthy men. Most abundant genera in all samples were Lactobacillus, Prevotella, Corynebacterium and Gardnerella. One third of first-void urine microbes were detected in semen samples. |
Mändar et al. [55] | Estonian | Couples (male and female; n = 23) | Semen, vaginal swabs | V6 region | None | Semen samples were more diverse but had less bacterial concentration than vaginal samples, with 85% similarity between the communities. Semen samples were composed of Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. |
Weng et al. [4] | Chinese | Men from couples with infertility (n = 96) | Semen | V4 region | None | Lactobacillus, Pseudomonas, Prevotella and Gardnerella were the most abundant genera among samples. The majority of normozoospermic samples were Lactobacillus-rich. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magoutas, K.; Leathersich, S.; Hart, R.; Ireland, D.; Walls, M.; Payne, M. Lower Semen Quality Among Men in the Modern Era—Is There a Role for Diet and the Microbiome? Microorganisms 2025, 13, 147. https://doi.org/10.3390/microorganisms13010147
Magoutas K, Leathersich S, Hart R, Ireland D, Walls M, Payne M. Lower Semen Quality Among Men in the Modern Era—Is There a Role for Diet and the Microbiome? Microorganisms. 2025; 13(1):147. https://doi.org/10.3390/microorganisms13010147
Chicago/Turabian StyleMagoutas, Kristina, Sebastian Leathersich, Roger Hart, Demelza Ireland, Melanie Walls, and Matthew Payne. 2025. "Lower Semen Quality Among Men in the Modern Era—Is There a Role for Diet and the Microbiome?" Microorganisms 13, no. 1: 147. https://doi.org/10.3390/microorganisms13010147
APA StyleMagoutas, K., Leathersich, S., Hart, R., Ireland, D., Walls, M., & Payne, M. (2025). Lower Semen Quality Among Men in the Modern Era—Is There a Role for Diet and the Microbiome? Microorganisms, 13(1), 147. https://doi.org/10.3390/microorganisms13010147