Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome
Abstract
:1. Introduction
2. Materials and Methods
- Purified water;
- Xylitol;
- Saline;
- Grapefruit seed extract.
3. Results
Akkermansia muciniphila |
Rhodococcus qingshengii |
Streptomyces sp. ICC1 |
Streptomyces armeniacus |
Actinomyces sp. oral taxon 414 |
Klebsiella oxytoca |
Acinetobacter ursingii |
Klebsiella variicola |
Enterobacter hormaechei |
Brevundimonas diminuta |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salo, P.M.; Arbes, S.J., Jr.; Jaramillo, R.; Calatroni, A.; Weir, C.H.; Sever, M.L.; Hoppin, J.A.; Rose, K.M.; Liu, A.H.; Gergen, P.J.; et al. Prevalence of allergic sensitization in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. J. Allergy Clin. Immunol. 2014, 134, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, L.M.; Togias, A. Clinical practice. Allergic rhinitis. N. Engl. J. Med. 2015, 372, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Settipane, R.A. Demographics and epidemiology of allergic and nonallergic rhinitis. Allergy Asthma Proc. 2001, 22, 185–189. [Google Scholar] [PubMed]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; van Weel, C.; et al. (Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008, 63 (Suppl. S86), 8–160. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.A.; Popov, T.; Pawankar, R.; Annesi-Maesano, I.; Fokkens, W.; Kemp, J.; Ohta, K.; Price, D.; Bousquet, J.; ARIA Initiative Scientific Committee. Common characteristics of upper lower airways in rhinitis asthma: ARIA update in collaboration with, GA(2)LEN. Allergy 2007, 62 (Suppl. S84), 1–41. [Google Scholar] [CrossRef]
- Shaaban, R.; Zureik, M.; Soussan, D.; Neukirch, C.; Heinrich, J.; Sunyer, J.; Wjst, M.; Cerveri, I.; Pin, I.; Bousquet, J.; et al. Rhinitis and onset of asthma: A longitudinal population-based study. Lancet 2008, 372, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Chirakalwasan, N.; Ruxrungtham, K. The linkage of allergic rhinitis and obstructive sleep apnea. Asian Pac. J. Allergy Immunol. 2014, 32, 276–286. [Google Scholar] [PubMed]
- Zheng, M.; Wang, X.; Ge, S.; Gu, Y.; Ding, X.; Zhang, Y.; Ye, J.; Zhang, L. Allergic and non-allergic rhinitis are common in obstructive sleep apnea but not associated with disease severity. J. Clin. Sleep Med. 2017, 13, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Wang, X.; Zhang, L. Association between allergic and nonallergic rhinitis and obstructive sleep apnea. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 16–25. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, S.; Zhang, L.; Yang, Y.; Cao, S.; Li, Q. Association of allergic rhinitis with obstructive sleep apnea: A meta-analysis. Medicine 2018, 97, e13783. [Google Scholar] [CrossRef]
- Lavigne, F.; Petrof, B.J.; Johnson, J.R.; Lavigne, P.; Binothman, N.; Kassissia, G.O.; Al Samri, M.; Giordano, C.; Dubé, N.; Hercz, D.; et al. Effect of topical corticosteroids on allergic airway inflammation and disease severity in obstructive sleep apnoea. Clin. Exp. Allergy 2013, 43, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Jiang, J. What is normal nasal airflow? A computational study of 22 healthy adults. Int. Forum Allergy Rhinol. 2014, 4, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Seppänen, T.M.; Alho, O.P.; Seppänen, T. Concomitant dynamic changes in autonomic nervous system function and nasal airflow resistance during allergen provocation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3339–3342. [Google Scholar] [CrossRef]
- Hanif, J.; Jawad, S.S.; Eccles, R. The nasal cycle in health and disease. Clin. Otolaryngol. Allied Sci. 2000, 25, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Letzel, J.; Darbinjan, A.; Hummel, T. The nasal cycle before and after nasal septoplasty. Eur. Arch. Otorhinolaryngol. 2022, 279, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Soler, E.; de Mendoza, A.; Cuello, V.I.; Silva-Vetri, M.G.; Núñez, Z.H.; Ortega, R.G.; Rizvi, S.A.; Sanchez-Gonzalez, M.; Ferrer, G. Intranasal xylitol for the treatment of COVID-19 in the outpatient setting: A pilot study. Cureus 2022, 14, e27182. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.L.; Westover, J.B.; Bleher, R.; Sanchez-Gonzalez, M.A.; Ferrer, G. In vitro Analysis of the antiviral Potential of nasal spray constituents against SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Winchester, S.; John, S.; Jabbar, K.; John, I. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection. J. Infect. 2021, 83, 237–279. [Google Scholar] [CrossRef] [PubMed]
- Tomonobu, N.; Komalasari, N.L.G.Y.; Sumardika, I.W.; Jiang, F.; Chen, Y.; Yamamoto, K.I.; Kinoshita, R.; Murata, H.; Inoue, Y.; Sakaguchi, M. Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chem. Biol. Interact. 2020, 324, 109085. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Yu, C.H.; Yu, W.Y.; Ying, H.Z. Gut-lung microbiota in chronic pulmonary diseases: Evolution, pathogenesis, and therapeutics. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 9278441. [Google Scholar] [CrossRef]
- Li, R.; Dee, D.; Li, C.M.; Hoffman, H.J.; Grummer-Strawn, L.M. Breastfeeding and risk of infections at 6 years. Pediatrics 2014, 134 (Suppl. S1), S13–S20. [Google Scholar] [CrossRef]
- Rashidi, K.; Darand, M.; Garousi, N.; Dehghani, A.; Alizadeh, S. Effect of infant formula supplemented with prebiotics and probiotics on incidence of respiratory tract infections: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2021, 63, 102795. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, K.S.; Sjödin, A.; Ruszczyński, M.; Kristensen, M.B.; Hernell, O.; Szajewska, H.; West, C.E. Targeting the gut-lung axis by synbiotic feeding to infants in a randomized controlled trial. BMC Biol. 2023, 21, 38. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Cahú, T.B.; Isay Saad, S.M.; Blennow, A.; Jespersen, L. The effect of pectins on survival of probiotic Lactobacillus spp. in gastrointestinal juices is related to their structure and physical properties. Food Microbiol. 2018, 74, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Ramette, A.; Tiedje, J.M. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. B 2006, 361, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.F.S.D.; Silva, F.E.R.D.; Pauna, H.F.; Hurtado, J.G.G.M.; Dos Santos, M.C.J. Symptom assessment after nasal irrigation with xylitol in the postoperative period of endonasal endoscopic surgery. Braz. J. Otorhinolaryngol. 2022, 88, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Salli, K.; Lehtinen, M.J.; Tiihonen, K.; Ouwehand, A.C. Xylitol’s health benefits beyond Dental Health: A comprehensive review. Nutrients 2019, 11, 1813. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improve Metagenomic Anal Kraken. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Azarpazhooh, A.; Lawrence, H.P.; Shah, P.S. Xylitol for preventing acute otitis media in children up to 12 years of age. Cochrane Database Syst. Rev. 2016, 2016, CD007095. [Google Scholar] [CrossRef]
- Uhari, M.; Tapiainen, T.; Kontiokari, T. Xylitol in preventing acute otitis media. Vaccine 2000, 19 (Suppl. S1), S144–S147. [Google Scholar] [CrossRef] [PubMed]
- Hernández, P.; Sánchez, M.C.; Llama-Palacios, A.; Ciudad, M.J.; Collado, L. Strategies to combat caries by maintaining the integrity of biofilm and homeostasis during the rapid phase of supragingival plaque formation. Antibiotics 2022, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Gasmi Benahmed, A.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the gut and oral microbiome with obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.; Yamazaki, K. Can oral bacteria affect the microbiome of the gut? J. Oral Microbiol. 2019, 11, 1586422. [Google Scholar] [CrossRef] [PubMed]
- Bassis, C.M.; Tang, A.L.; Young, V.B.; Pynnonen, M.A. The nasal cavity microbiota of healthy adults. Microbiome 2014, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Rawls, M.; Ellis, A.K. The microbiome of the nose. Ann. Allergy Asthma Immunol. 2019, 122, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.; Shalit, T.; Markus, B.; Yuan, C.; Nachum-Biala, Y.; Elad, D.; Harrus, S. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int. J. Syst. Evol. Microbiol. 2020, 70, 1656–1665. [Google Scholar] [CrossRef]
- Marean, C.W. When the sea saved humanity. Sci. Am. 2010, 303, 54–61. [Google Scholar] [CrossRef]
- Marlowe, F.W.; Berbesque, J.C. Tubers as fallback foods and their impact on Hadza hunter-gatherers. Am. J. Phys. Anthropol. 2009, 140, 751–758. [Google Scholar] [CrossRef]
- Jones, A.M.; Dodd, M.E.; Webb, A.K. Burkholderia cepacia: Current clinical issues, environmental controversies and ethical dilemmas. Eur. Respir. J. 2001, 17, 295–301. [Google Scholar] [CrossRef]
- Kalish, L.A.; Waltz, D.A.; Dovey, M.; Potter-Bynoe, G.; McAdam, A.J.; LiPuma, J.J.; Gerard, C.; Goldmann, D. Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2006, 173, 421–425. [Google Scholar] [CrossRef]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter infections and treatment options. Antimicrob. Agents Chemother. 2020, 64, e01025-20. [Google Scholar] [CrossRef] [PubMed]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Sakallioğlu, Ö.; Güvenç, I.A.; Cingi, C. Xylitol and its usage in ENT practice. J. Laryngol. Otol. 2014, 128, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Hornick, D.; Fedler, J.; Launspach, J.L.; Teresi, M.E.; Santacroce, T.R.; Cavanaugh, J.E.; Horan, R.; Nelson, G.; Starner, T.D.; et al. Randomized controlled study of aerosolized hypertonic xylitol versus hypertonic saline in hospitalized patients with pulmonary exacerbation of cystic fibrosis. J. Cyst. Fibros. 2020, 19, 108–113. [Google Scholar] [CrossRef]
- Cai, Y.; Goldberg, A.N.; Chang, J.L. The nose and nasal breathing in sleep apnea. Otolaryngol. Clin. N. Am. 2020, 53, 385–395. [Google Scholar] [CrossRef]
- Nosetti, L.; Piacentini, G.; Macchi, A.; De Bernardi, F.; Simoncini, D.; Nicoloso, M.; Agosti, M.; Zaffanello, M. Nasal cytology in children with primary snoring and obstructive sleep apnoea syndrome. Int. J. Pediatr. Otorhinolaryngol. 2019, 122, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Rosier, B.T.; Takahashi, N.; Zaura, E.; Krom, B.P.; Martínez-Espinosa, R.M.; van Breda, S.G.J.; Marsh, P.D.; Mira, A. The importance of nitrate reduction for Oral Health. J. Dent. Res. 2022, 101, 887–897. [Google Scholar] [CrossRef]
- de Farias, J.O.; de Freitas Lima, S.M.; Rezende, T.M.B. Physiopathology of nitric oxide in the oral environment and its biotechnological potential for new oral treatments: A literature review. Clin. Oral Investig. 2020, 24, 4197–4212. [Google Scholar] [CrossRef] [PubMed]
- Altemani, F.; Barrett, H.L.; Callaway, L.K.; McIntyre, H.D.; Dekker Nitert, M. Reduced abundance of nitrate-reducing bacteria in the oral microbiota of women with future preeclampsia. Nutrients 2022, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Owusu Darkwa, E.; Djagbletey, R.; Sottie, D.; Owoo, C.; Vanderpuye, N.M.; Essuman, R.; Aryee, G. Serum nitric oxide levels in healthy pregnant women: A case- control study in a tertiary facility in Ghana. Matern. Health Neonatol. Perinatol. 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Vanterpool, S.F.; Been, J.V.; Houben, M.L.; Nikkels, P.G.; De Krijger, R.R.; Zimmermann, L.J.; Kramer, B.W.; Progulske-Fox, A.; Reyes, L. Porphyromonas gingivalis within Placental Villous Mesenchyme and Umbilical Cord stroma Is Associated with Adverse Pregnancy Outcome. PLoS ONE 2016, 11, e0146157. [Google Scholar] [CrossRef] [PubMed]
- León, R.; Silva, N.; Ovalle, A.; Chaparro, A.; Ahumada, A.; Gajardo, M.; Martinez, M.; Gamonal, J. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J. Periodontol. 2007, 78, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Arnold, H.K.; Hanselmann, R.; Duke, S.M.; Sharpton, T.J.; Beechler, B.R. Chronic clinical signs of upper respiratory tract disease associate with gut and respiratory microbiomes in a cohort of domestic felines. PLoS ONE 2022, 17, e0268730. [Google Scholar] [CrossRef] [PubMed]
- Miraglia Del Giudice, M.; Parisi, G.F.; Indolfi, C.; Manti, S.; Leonardi, S.; Decimo, F.; Ciprandi, G. Nasal microbiome in chronic rhinosinusitis. Minerva Pediatr. 2022, 74, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Hunter, R.C.; Ramakrishnan, V.R. The microbiome and chronic rhinosinusitis. Immunol. Allergy Clin. N. Am. 2020, 40, 251–263. [Google Scholar] [CrossRef]
- Tramper-Stranders, G.; Ambrożej, D.; Arcolaci, A.; Atanaskovic-Markovic, M.; Boccabella, C.; Bonini, M.; Karavelia, A.; Mingomataj, E.; O’ Mahony, L.; Sokolowska, M.; et al. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021, 76, 3276–3291. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Peng, S.; Li, M.; Ao, X.; Liu, Z. The efficacy and safety of probiotics for allergic rhinitis: A systematic review and meta-analysis. Front. Immunol. 2022, 13, 848279. [Google Scholar] [CrossRef]
- Ren, Z.; Jeckel, H.; Simon-Soro, A.; Xiang, Z.; Liu, Y.; Cavalcanti, I.M.; Xiao, J.; Tin, N.N.; Hara, A.; Drescher, K.; et al. Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions. Proc. Natl. Acad. Sci. USA 2022, 119, e2209699119. [Google Scholar] [CrossRef]
- Alamoudi, N.M.; Hanno, A.G.; Sabbagh, H.J.; Masoud, M.I.; Almushayt, A.S.; El Derwi, D.A. Impact of maternal xylitol consumption on mutans streptococci, plaque and caries levels in children. J. Clin. Pediatr. Dent. 2012, 37, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Talattof, Z.; Azad, A.; Zahed, M.; Shahradnia, N. Antifungal activity of xylitol against Candida albicans: An in vitro study. J. Contemp. Dent. Pract. 2018, 19, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Sarah, L.; Oerlemans, E.F.M.; Claes, I.; Wuyts, S.; Henkens, T.; Spacova, I.; van den Broek, M.F.L.; Tuyaerts, I.; Wittouck, S.; De Boeck, I.; et al. Topical cream with live lactobacilli modulates the skin microbiome and reduce acne symptoms. bioRxiv 2018. [Google Scholar] [CrossRef]
- De Boeck, I.; van den Broek, M.F.L.; Allonsius, C.N.; Spacova, I.; Wittouck, S.; Martens, K.; Wuyts, S.; Cauwenberghs, E.; Jokicevic, K.; Vandenheuvel, D.; et al. Lactobacilli have a niche in the human nose. Cell Rep. 2020, 31, 107674. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; He, S.; Miles, P.; Li, C.; Ge, Y.; Yu, X.; Wang, L.; Huang, W.; Kong, X.; Ma, S.; et al. Nasal Bacterial Microbiome Differs between Healthy Controls and Those with Asthma and Allergic Rhinitis. Front. Cell. Infect. Microbiol. 2022, 12, 841995. [Google Scholar] [CrossRef]
- Yang, G.; Liu, Z.Q.; Yang, P.C. Treatment of allergic rhinitis with probiotics: An alternative approach. N. Am. J. Med. Sci. 2013, 5, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.; McKennan, C.G.; Pedersen, C.T.; Stokholm, J.; Chawes, B.L.; Malby Schoos, A.M.; Naughton, K.A.; Thorsen, J.; Mortensen, M.S.; Vercelli, D.; et al. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J. Allergy Clin. Immunol. 2020, 146, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Nakahashi-Ouchida, R.; Fujihashi, K.; Kurashima, Y.; Yuki, Y.; Kiyono, H. Nasal vaccines: Solutions for respiratory infectious diseases. Trends Mol. Med. 2023, 29, 124–140. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vora, L.K.; Pandya, A.K.; Patravale, V.B. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug Discov. Today 2021, 26, 2619–2636. [Google Scholar] [CrossRef]
- Yahalom-Ronen, Y.; Melamed, S.; Politi, B.; Erez, N.; Tamir, H.; Bar-On, L.; Ryvkin, J.; Leshkowitz, D.; Israeli, O.; Weiss, S.; et al. Induction of Superior Systemic and Mucosal Protective Immunity to SARS-CoV-2 by Nasal Administration of a VSV-ΔG-Spike Vaccine. Vaccines 2024, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- van der Ley, P.A.; Zariri, A.; van Riet, E.; Oosterhoff, D.; Kruiswijk, C.P. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity against a SARS-CoV-2 Infection. Front. Immunol. 2021, 12, 781280. [Google Scholar] [CrossRef] [PubMed]
- Nian, X.; Zhang, J.; Huang, S.; Duan, K.; Li, X.; Yang, X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022, 14, 1983. [Google Scholar] [CrossRef] [PubMed]
Microbe | log2FoldChange | lfcSE | Stat | p Value |
---|---|---|---|---|
Akkermansia muciniphila | −21.42441822 | 2.967913092 | −7.218681128 | 5.25 × 10−13 |
Rhodococcus qingshengii | 20.77410089 | 2.97113001 | 6.991986491 | 2.71 × 10−12 |
Streptomyces sp. ICC1 | 6.922848082 | 1.548527233 | 4.470601442 | 7.80 × 10−6 |
Streptomyces armeniacus | −3.191007111 | 0.919334063 | −3.470998453 | 0.000518527 |
Actinomyces sp. oral | −3.771603944 | 1.615989861 | −2.333927976 | 0.019599494 |
Klebsiella oxytoca | 5.272476299 | 2.286510228 | 2.305905408 | 0.021115918 |
Acinetobacter ursingii | 6.534219931 | 2.968012555 | 2.201547268 | 0.027697304 |
Klebsiella variicola | 1.349165754 | 0.630129643 | 2.141092342 | 0.032266592 |
Enterobacter hormaechei | 2.117319005 | 1.007575689 | 2.101399458 | 0.035605916 |
Brevundimonas diminuta | −5.607547967 | 2.699838683 | −2.076993712 | 0.03780214 |
Staphylococcus aureus |
Vibrio sp. Scap24 |
Corynebacterium segmentosum |
Aeromona scaviae |
Cutibacterium acnes |
Salmonella enterica |
Streptomyces sp. ICC1 |
Dolosigranulum pigrum |
Klebsiella pneumoniae |
Delftia lacustris |
Corynebacteriumm kefirresidentii |
Corynebacterium propinquum |
Staphylococcus epidermidis |
Finegoldia magna |
Corynebacterium tuberculostearicum |
Lawsonella clevelandensis |
Corynebacterium macginleyi |
Bartonella krasnovii |
Peptoniphilus harei |
Cutibacterium granulosum |
Pseudomonas aeruginosa |
Enterococcus faecium |
Xanthobacter autotrophicus |
Aeromonas hydrophila |
Haemophilus ducreyi |
Streptococcus mitis |
Burkholderia dolosa |
Xanthomonas citri |
Staphylococcus capitis |
Klebsiella grimontii |
Escherichia coli |
Cutibacterium avidum |
Corynebacterium striatum |
Klebsiella variicola |
Streptomyces armeniacus |
Enterococcus faecalis |
Delftia acidovorans |
Citrobacter koseri |
Alistipes communis |
Streptococcus oralis |
Corynebacterium diphtheriae |
Actinomyces oris |
Streptococcus pneumoniae |
Mycolicibacter sp. MYC340 |
Streptococcus sanguinis |
Micrococcus luteus |
Ralstonia pickettii |
Mycolicibacterium austroafricanum |
Bacillus sp. BD59S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannon, M.; Ferrer, G.; Tesch, M.; Schipma, M. Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms 2024, 12, 1407. https://doi.org/10.3390/microorganisms12071407
Cannon M, Ferrer G, Tesch M, Schipma M. Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms. 2024; 12(7):1407. https://doi.org/10.3390/microorganisms12071407
Chicago/Turabian StyleCannon, Mark, Gustavo Ferrer, Mari Tesch, and Matthew Schipma. 2024. "Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome" Microorganisms 12, no. 7: 1407. https://doi.org/10.3390/microorganisms12071407
APA StyleCannon, M., Ferrer, G., Tesch, M., & Schipma, M. (2024). Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms, 12(7), 1407. https://doi.org/10.3390/microorganisms12071407