Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling and Determination of Physicochemical Soil Properties
2.3. DNA Extraction, Amplification, and Sequencing
2.4. Statistical and Bioinformatics Analysis
3. Results
3.1. Effects of Seawater Stress on the Content of Soil Chemical Properties
3.2. Effects of Seawater Stress on Microbial Community Structure and Diversity
3.3. Selective Enrichment of Microbial Genera in Tea Plant Rhizospheres Exposed to Seawater
3.4. Network Complexity of Rhizosphere Microbiota Influenced by Seawater Stress
3.5. Functional Shifts in Rhizosphere Microbiome Due to Seawater Stress
4. Discussion
4.1. The Microbial Diversity of Tea Rhizosphere Presents More Stable under Seawater Stress
4.2. The Rhizosphere Microorganisms of Tea Plant Are Screened by Seawater and Host
4.3. The Rhizosphere Microorganisms of Tea Plant Form Closely Linked under Seawater Stress
4.4. Functional Prediction Revealed the Conservation and Diversity of Tea Rhizosphere Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeen, S.-W.; Kang, J.; Jung, H.; Lee, J. Review of Seawater Intrusion in Western Coastal Regions of South Korea. Water 2021, 13, 761. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.H.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar]
- Xian, X.; Pang, M.; Zhang, J.; Zhu, M.; Kong, F.; Xi, M. Assessing the effect of potential water and salt intrusion on coastal wetland soil quality: Simulation study. J. Soils Sediments 2019, 19, 2251–2264. [Google Scholar]
- Paul, B.K.; Rashid, H. Chapter Five—Salinity Intrusion and Impacts. In Climatic Hazards in Coastal Bangladesh; Paul, B.K., Rashid, H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2017; pp. 153–182. [Google Scholar]
- Tully, K.; Gedan, K.; Epanchin-Niell, R.; Strong, A.; Bernhardt, E.S.; BenDor, T.; Mitchell, M.; Kominoski, J.; Jordan, T.E.; Neubauer, S.C.; et al. The Invisible Flood: The Chemistry, Ecology, and Social Implications of Coastal Saltwater Intrusion. BioScience 2019, 69, 368–378. [Google Scholar]
- Geilfus, C.-M. Chloride: From Nutrient to Toxicant. Plant Cell Physiol. 2018, 59, 877–886. [Google Scholar] [PubMed]
- Xiong, F.; Liao, J.; Ma, Y.; Wang, Y.; Fang, W.; Zhu, X. The Protective Effect of Exogenous Putrescine in the Response of Tea plant (Camellia sinensis) to Salt Stress. HortScience 2018, 53, 1640–1646. [Google Scholar] [CrossRef]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rousk, J. Comparative Toxicities of Salts on Microbial Processes in Soil. Appl. Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [PubMed]
- Mazhar, S.; Pellegrini, E.; Contin, M.; Bravo, C.; De Nobili, M. Impacts of salinization caused by sea level rise on the biological processes of coastal soils—A review. Front. Environ. Sci. 2022, 10, 909415. [Google Scholar]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar]
- Zhao, Q.Q.; Bai, J.H.; Gao, Y.C.; Zhao, H.X.; Zhang, G.L.; Cui, B.S. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degrad. Dev. 2020, 31, 2255–2267. [Google Scholar] [CrossRef]
- Hale, R.L.; Groffman, P.M. Chloride Effects on Nitrogen Dynamics in Forested and Suburban Stream Debris Dams. J. Environ. Qual. 2006, 35, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Che, R.X.; Wang, F.; Wang, W.J.; Zhang, J.; Zhao, X.; Rui, Y.C.; Xu, Z.H.; Wang, Y.F.; Hao, Y.B.; Cui, X.Y. Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry 2017, 136, 341–352. [Google Scholar] [CrossRef]
- Mobilian, C.; Wisnoski, N.I.; Lennon, J.T.; Alber, M.; Widney, S.; Craft, C.B. Differential effects of press vs. pulse seawater intrusion on microbial communities of a tidal freshwater marsh. Limnol. Oceanogr. Lett. 2023, 8, 154–161. [Google Scholar] [CrossRef]
- Sofia, I.A.P.; Helena, M.; Konstantinos, A.; Paula, M.L.C.; Ana, P.G.C.M. Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms. Appl. Soil Ecol. 2016, 105, 36–47. [Google Scholar]
- Matilla, M.A.; Espinosa-Urgel, M.; Rodríguez-Herva, J.J.; Ramos, J.L.; Ramos-González, M.I. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol. 2007, 8, R179. [Google Scholar] [CrossRef]
- Ezawa, T.; Saito, K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol. 2018, 220, 1116–1121. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, X.S.; Zhang, Q.B.; Li, S.Y.; Sun, Y.L.; Lu, W.H.; Ma, C.H. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. Amb. Express 2020, 10, 200. [Google Scholar] [CrossRef]
- Liu, H.; Tang, H.M.; Ni, X.Z.; Zhang, J.Z.; Zhang, X. Epichloe endophyte interacts with saline-alkali stress to alter root phosphorus-solubilizing fungal and bacterial communities in tall fescue. Front. Microbiol. 2022, 13, 1027428. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S. Degradation processes and nutrient constraints in sodic soils. Land Degrad. Dev. 2002, 13, 275–294. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.-M.; Lee, I.-J. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BioMed Res. Int. 2019, 2019, e9530963. [Google Scholar]
- Peng, J.; Ma, J.; Wei, X.; Zhang, C.; Jia, N.; Wang, X.; Wang, E.T.; Hu, D.; Wang, Z. Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Ann. Microbiol. 2021, 71, 40. [Google Scholar] [CrossRef]
- Shultana, R.; Zuan, A.T.K.; Naher, U.A.; Islam, A.; Rana, M.M.; Rashid, M.H.; Irin, I.J.; Islam, S.S.; Rim, A.A.; Hasan, A.K. The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy 2022, 12, 2266. [Google Scholar] [CrossRef]
- Jiang, X.; Li, W.-W.; Han, M.; Chen, G.; Wu, J.; Lai, S.; Fu, Z.; Zhang, S.; Deng, W.-W.; Gao, L.; et al. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress. Tree Physiol. 2022, 42, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Wu, Q.; Ji, D.; Cai, F.; Liu, C. Influences of arbuscular myrorrhizal fungi on plant growth and tea quality of fuding dabaicha seedlings under different water conditions. J. Tea Sci. 2020, 40, 588–596. [Google Scholar]
- Bhaduri, J.; Kundu, P.; Mitra, D.; Roy, S.K. Isolation and characterisation of Nitrogen Fixing Bacteria (Azotobacter sp.) from Tea field soil of Dooars and Darjeeling region of North Bengal, India. Int. J. Eng. Sci. Invent. 2016, 5, 46–51. [Google Scholar]
- Pratibha, H.; Bibhas, R.; Sharma, G. Screening of native bacteria isolated from tea garden soil of South Assam for their abiotic stress tolerance. J. Pure Appl. Microbiol. 2011, 5, 349–353. [Google Scholar]
- Han, L.Z.; Zhang, H.; Xu, Y.; Li, Y.; Zhou, J. Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere. Arch. Microbiol. 2021, 203, 2279–2290. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, M.; Xu, J.; Chen, X.; Shi, J. Differentiation of eight tea (Camellia sinensis) cultivars in China by elemental fingerprint of their leaves. J. Sci. Food Agric. 2009, 89, 2350–2355. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS Wagening. J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Imchen, M.; Mukherjee, T.; Haldar, S.; Mondal, S.; Mukherji, S.; Haldar, A.; Kumavath, R.; Ghosh, A. Rhizosphere impacts bacterial community structure in the tea (Camellia sinensis (L.) O. Kuntze.) estates of Darjeeling, India. Environ. Microbiol. 2022, 24, 2716–2731. [Google Scholar] [CrossRef]
- Ranasinghe, T.; Piyadasa, R.U.K. Optimising usage of salinized lands in the lower part of the river basin for the coastal community in Bentota, Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2020, 48, 379–396. [Google Scholar] [CrossRef]
- Pisa, G.; Magnani, G.S.; Weber, H.; Souza, E.M.; Faoro, H.; Monteiro, R.A.; Daros, E.; Baura, V.; Bespalhok, J.P.; Pedrosa, F.O.; et al. Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Braz. J. Med. Biol. Res. 2011, 44, 1215–1221. [Google Scholar] [CrossRef]
- Ramirez-Villanueva, D.A.; Bello-López, J.M.; Navarro-Noya, Y.E.; Luna-Guido, M.; Verhulst, N.; Govaerts, B.; Dendooven, L. Bacterial community structure in maize residue amended soil with contrasting management practices. Appl. Soil Ecol. 2015, 90, 49–59. [Google Scholar] [CrossRef]
- Ahmed, W.; Dai, Z.; Liu, Q.; Munir, S.; Yang, J.; Karunarathna, S.C.; Li, S.; Zhang, J.; Ji, G.; Zhao, Z. Microbial Cross-Talk: Dissecting the Core Microbiota Associated With Flue-Cured Tobacco (Nicotiana tabacum) Plants Under Healthy and Diseased State. Front. Microbiol. 2022, 13, 845310. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-J.; Ye, W.-W.; Yu, Z.; Shen, W.-L.; Li, S.-Z.; Wang, X.; Chen, J.-J.; Wang, Y.-C.; Zheng, X.-B. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome. J. Integr. Agric. 2023, 22, 2412–2425. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 20 October 2022).
- Roberts, D.W. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.1-0. 2023. Available online: https://CRAN.R-project.org/package=labdsv/ (accessed on 20 October 2022).
- R Package: Vegan: Community Ecology Package Version 1.8-7. Available online: https://www.researchgate.net/publication/262741730_R_Package_Vegan_Community_Ecology_Package_Version_18-7 (accessed on 20 October 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. 2019. Available online: https://www.R-project.org/ (accessed on 20 October 2022).
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Gustavsen, J.A.; Pai, S.; Isserlin, R.; Demchak, B.; Pico, A.R. RCy3: Network biology using Cytoscape from within R. F1000Research 2019, 8, 1774. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.-M.; Zhou, X.; Zhang, A.-M.; Cai, L. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Wang, C.; Xue, R.; Wang, L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Fitzpatrick, C.R.; Copeland, J.; Wang, P.W.; Guttman, D.S.; Kotanen, P.M.; Johnson, M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA 2018, 115, E1157–E1165. [Google Scholar] [CrossRef] [PubMed]
- Schneijderberg, M.; Cheng, X.; Franken, C.; de Hollander, M.; van Velzen, R.; Schmitz, L.; Heinen, R.; Geurts, R.; van der Putten, W.H.; Bezemer, T.M.; et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME J. 2020, 14, 2433–2448. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, M.; Ye, R.Z.; Huang, J.F.; Xiao, L.L.; Hu, Q.K.; Zhu, A.; Tong, C. Impacts of the rhizosphere effect and plant species on organic carbon mineralization rates and pathways, and bacterial community composition in a tidal marsh. Fems Microbiol. Ecol. 2019, 95, 15. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.S.; Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Holland, E.A.; Coleman, D.C. Litter Placement Effects on Microbial and Organic Matter Dynamics in an Agroecosystem. Ecology 1987, 68, 425–433. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Bååth, E.; Rousk, J. Functional implications of the pH-trait distribution of the microbial community in a re-inoculation experiment across a pH gradient. Soil Biol. Biochem. 2016, 93, 69–78. [Google Scholar] [CrossRef]
- Marschner, H.; Römheld, V.; Cakmak, I. Root-induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 1987, 10, 1175–1184. [Google Scholar] [CrossRef]
- Yang, X.-d.; Ni, K.; Shi, Y.-z.; Yi, X.-y.; Zhang, Q.-f.; Fang, L.; Ma, L.-f.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Mukhtar, S.; Mehnaz, S.; Mirza, M.S.; Malik, K.A. Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Braz. J. Microbiol. 2019, 50, 85–97. [Google Scholar] [CrossRef]
- Barcia-Piedras, J.M.; Pérez-Romero, J.A.; Mateos-Naranjo, E.; Parra, R.; Rodríguez-Llorente, I.D.; Camacho, M.; Redondo-Gómez, S. Stimulation of PGP Bacteria on the Development of Seeds, Plants and Cuttings of the Obligate Halophyte Arthrocaulon (Arthrocnemum) macrostachyum (Moric.) Piirainen & G. Kadereit. Plants 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Nedashkovskaya, O.I.; Mikhailov, V.V.; Han, S.K.; Kim, K.-O.; Rhee, M.-S.; Bae, K.S. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2004, 54, 1617–1620. [Google Scholar] [CrossRef]
- Afridi, M.S.; Fakhar, A.; Kumar, A.; Ali, S.; Medeiros, F.H.V.; Muneer, M.A.; Ali, H.; Saleem, M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol. Res. 2022, 265, 127199. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Mir, R.A.; Rather, I.A.; Anwar, Y.; Mahmoudi, H. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants. Front. Plant Sci. 2023, 14, 1266182. [Google Scholar] [CrossRef]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Ashaduzzaman, S.; Puneet, S.C.; Anandham, R.; Gwang-Hyun, H. Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil. J. Microbiol. Biotechnol. 2010, 20, 1577–1584. [Google Scholar]
- Razzaghi Komaresofla, B.; Alikhani, H.A.; Etesami, H.; Khoshkholgh-Sima, N.A. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Appl. Soil Ecol. 2019, 138, 160–170. [Google Scholar] [CrossRef]
- Li, X.; Sun, P.; Zhang, Y.; Jin, C.; Guan, C. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ. Exp. Bot. 2020, 174, 104023. [Google Scholar] [CrossRef]
- Saleh, M.Y.; Sarhan, M.S.; Mourad, E.F.; Hamza, M.A.; Abbas, M.T.; Othman, A.A.; Youssef, H.H.; Morsi, A.T.; Youssef, G.H.; El-Tahan, M.; et al. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome. J. Adv. Res. 2017, 8, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-S.; Sumayo, M.; Hwang, Y.-J.; Kim, B.-S.; Ghim, S.-Y. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 2014, 73, 1–8. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Li, L.; Abd-Allah, E.F.; Lindström, K. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 2017, 8, 433–438. [Google Scholar] [CrossRef]
- Sultana, S.; Paul, S.C.; Parveen, S.; Alam, S.; Rahman, N.; Jannat, B.; Hoque, S.; Rahman, M.T.; Karim, M.M. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can. J. Microbiol. 2020, 66, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Op den Camp, H.J.M.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.M.; Birkeland, N.K.; Pol, A.; Dunfield, P.F. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 2009, 1, 293–306. [Google Scholar] [CrossRef]
- Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 2011, 13, 2603–2622. [Google Scholar] [CrossRef] [PubMed]
- Carrión, V.J.; Perez-Jaramillo, J.; Cordovez, V.; Tracanna, V.; de Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.F.J.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef] [PubMed]
Group | PH | AN (mg/kg) | EC (μs/cm) | TN (mg/kg) | TC (%) | AP (mg/kg) | SOM (%) |
---|---|---|---|---|---|---|---|
SBS | 5.9 ± 0.04 c | 30 ± 2.98 ab | 40.07 ± 0.64 c | 0.82 ± 0.01 c | 1.7 ± 0.01 d | 22.86 ± 1.29 a | 0.58 ± 0.01 c |
ARS | 5.41 ± 0.05 d | 27 ± 4.71 b | 113.07 ± 1.9 b | 0.8 ± 0.01 c | 1.72 ± 0 c | 13.99 ± 1.19 b | 0.93 ± 0.1 b |
NBS | 6.59 ± 0.13 a | 36 ± 9.25 ab | 39.33 ± 0.47 c | 0.89 ± 0.03 b | 1.76 ± 0.01 a | 6.61 ± 0.25 c | 0.66 ± 0.03 c |
NRS | 6.04 ± 0.03 b | 42.09 ± 6.57 a | 171.73 ± 2.24 a | 1.01 ± 0 a | 1.74 ± 0.02 b | 13.05 ± 2.05 b | 1.24 ± 0.14 a |
Node | Edge | Positive Edge 1 | Negative Edge 2 | Average Degree 3 | Modularity 4 | Average Clustering Coefficient 5 | Average Path Distance 6 | ||
---|---|---|---|---|---|---|---|---|---|
Bacteria | ARS | 204 | 5032 | 3219 | 1813 | 49.333 | 1.654 | 0.582 | 1.936 |
NRS | 197 | 4706 | 3244 | 1462 | 47.77 | 1.142 | 0.61 | 1.94 | |
Fungi | ARS | 227 | 6134 | 3883 | 2251 | 54.004 | 1.694 | 0.56 | 1.952 |
NRS | 216 | 5500 | 3505 | 1995 | 50.92 | 1.68 | 0.571 | 1.948 |
Fungal Functional Groups | SBS | ARS | NBS | NRS |
---|---|---|---|---|
Animal Pathogen–Endophyte–Epiphyte–Fungal Parasite–Plant Pathogen–Wood Saprotroph | 0.046 ± 0.002 b | 0.068 ± 0.004 a | 0.036 ± 0.002 b | 0.032 ± 0.001 b |
Animal Pathogen–Endophyte–Fungal Parasite–Lichen Parasite–Plant Pathogen–Wood Saprotroph | 0.108 ± 0.002 b | 0.127 ± 0.002 b | 0.117 ± 0.006 b | 0.154 ± 0.003 a |
Animal Pathogen–Endophyte–Fungal Parasite–Plant Pathogen–Wood Saprotroph | 0.037 ± 0.001 a | 0.012 ± 0.002 b | 0.011 ± 0.001 b | 0.005 b |
Animal Pathogen–Endophyte–Lichen Parasite–Plant Pathogen–Soil Saprotroph–Wood Saprotroph | 0.001 d | 0.003 c | 0.008 a | 0.005 b |
Animal Pathogen–Endophyte–Plant Pathogen–Undefined Saprotroph | 0.007 ± 0.001 a | 0.008 ± 0.001 a | 0.005 ab | 0.002 b |
Animal Pathogen–Soil Saprotroph | 0.002 b | 0.002 b | 0.005 ± 0.001 ab | 0.008 ± 0.001 a |
Animal Pathogen–Undefined Saprotroph | 0.009 ± 0.001 b | 0.035 ± 0.001 a | 0.004 c | 0.002 c |
Arbuscular Mycorrhizal | 0.025 ± 0.001 b | 0.036 ± 0.002 ab | 0.007 ± 0.001 c | 0.037 ± 0.002 a |
Dung Saprotroph–Undefined Saprotroph–Wood Saprotroph | 0.032 ± 0.004 a | 0.045 ± 0.002 a | 0.004 b | 0.004 b |
Endophyte–Dung Saprotroph–Lichen Parasite–Litter Saprotroph–Plant Pathogen–Soil Saprotroph–Wood Saprotroph | 0 c | 0.001 c | 0.011 ± 0.001 a | 0.003 b |
Endophyte–Litter Saprotroph–Soil Saprotroph–Undefined Saprotroph | 0.266 ± 0.012 b | 0.149 ± 0.006 c | 0.487 ± 0.007 a | 0.486 ± 0.011 a |
Endophyte–Plant Pathogen | 0.006 ± 0.001 b | 0.009 ± 0.001 a | 0.001 c | 0.002 c |
Fungal Parasite | 0 b | 0.002 ± 0.001 b | 0.023 ± 0.005 a | 0.027 ± 0.001 a |
Fungal Parasite–Soil Saprotroph–Undefined Saprotroph–Wood Saprotroph | 0.002 c | 0.004 c | 0.042 ± 0.001 a | 0.019 ± 0.001 b |
Soil Saprotroph–Undefined Saprotroph | 0.012 ± 0.002 b | 0.019 ± 0.001 a | 0.001 c | 0.001 c |
Undefined Saprotroph | 0.321 ± 0.004 a | 0.355 ± 0.014 a | 0.142 ± 0.006 b | 0.106 ± 0.002 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, H.; Li, B.; Song, K.; Sha, Y.; Liu, Y.; Dong, S.; Wang, D.; Yang, L. Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa. Microorganisms 2024, 12, 1287. https://doi.org/10.3390/microorganisms12071287
Zhang X, Li H, Li B, Song K, Sha Y, Liu Y, Dong S, Wang D, Yang L. Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa. Microorganisms. 2024; 12(7):1287. https://doi.org/10.3390/microorganisms12071287
Chicago/Turabian StyleZhang, Xiaohua, Haozhen Li, Bin Li, Kangkang Song, Yuxue Sha, Ying Liu, Shaolin Dong, Di Wang, and Long Yang. 2024. "Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa" Microorganisms 12, no. 7: 1287. https://doi.org/10.3390/microorganisms12071287
APA StyleZhang, X., Li, H., Li, B., Song, K., Sha, Y., Liu, Y., Dong, S., Wang, D., & Yang, L. (2024). Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa. Microorganisms, 12(7), 1287. https://doi.org/10.3390/microorganisms12071287