Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects
Abstract
:1. Introduction
2. Current State of Research on the Anaerobic Fermentation of Sludge
3. Anaerobic Fermentation to Produce MCFAs
3.1. Research Related to Pretreatment
3.2. The Typical Pathways for Generating MCFAs
3.3. Comparison of EDs
3.4. The Technique for Enhancing Product Synthesis
3.5. MCFA Production Constraints and Solutions
4. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Moreira, D.; Pires, J.C.M. Atmospheric CO2 Capture by Algae: Negative Carbon Dioxide Emission Path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, N.; Najafpour-Darzi, G. A Comprehensive Review on Biological Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Camargo, M.; Commenge, J.-M.; Falk, L.; Gil, I.D. Trends in Design of Distributed Energy Systems Using Hydrogen as Energy Vector: A Systematic Literature Review. Int. J. Hydrogen Energy 2019, 44, 9486–9504. [Google Scholar] [CrossRef]
- Guo, S.; Yu, S.; Che, D.; Liu, H.; Sun, B. Migration Characteristics of Heavy Metals during Co-Combustion of Dehydrated Sludge with Straw. J. Fuel Chem. Technol. 2022, 50, 283–294. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen Production from Biomass Using Dark Fermentation. Renew. Sust. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, L.; Lin, R.; Yue, L.; Liu, J.; Zhou, J.; Cen, K. Fermentative Biohydrogen and Biomethane Co-Production from Mixture of Food Waste and Sewage Sludge: Effects of Physiochemical Properties and Mix Ratios on Fermentation Performance. Appl. Energy 2016, 184, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Gu, J.; Liu, Y. Energy Self-Sufficient Biological Municipal Wastewater Reclamation: Present Status, Challenges and Solutions Forward. Bioresour. Technol. 2018, 269, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Callegari, A. Energy and Resources Recovery from Excess Sewage Sludge: A Holistic Analysis of Opportunities and Strategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wang, X.; Guo, H.; Zhu, T.; Zhao, Y.; Lu, X.; Zhang, Y.; Ni, B.-J.; Liu, Y. Medium-Chain Fatty Acids Production from Sewage Sludge through Anaerobic Fermentation: A Critical Review. Chem. Eng. J. 2023, 477, 147138. [Google Scholar] [CrossRef]
- Manish, S.; Banerjee, R. Comparison of Biohydrogen Production Processes. Int. J. Hydrogen Energy 2008, 33, 279–286. [Google Scholar] [CrossRef]
- Boodhun, B.S.F.; Mudhoo, A.; Kumar, G.; Kim, S.-H.; Lin, C.-Y. Research Perspectives on Constraints, Prospects and Opportunities in Biohydrogen Production. Int. J. Hydrogen Energy 2017, 42, 27471–27481. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-Solid Anaerobic Digestion of Sewage Sludge: Challenges and Opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Wu, Q.; Bao, X.; Guo, W.; Wang, B.; Li, Y.; Luo, H.; Wang, H.; Ren, N. Medium Chain Carboxylic Acids Production from Waste Biomass: Current Advances and Perspectives. Biotechnol. Adv. 2019, 37, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Agler, M.T.; Spirito, C.M.; Usack, J.G.; Werner, J.J.; Angenent, L.T. Chain Elongation with Reactor Microbiomes: Upgrading Dilute Ethanol to Medium-Chain Carboxylates. Energy Environ. Sci. 2012, 5, 8189–8192. [Google Scholar] [CrossRef]
- Jeon, B.S.; Moon, C.; Kim, B.-C.; Kim, H.; Um, Y.; Sang, B.-I. In Situ Extractive Fermentation for the Production of Hexanoic Acid from Galactitol by Clostridium Sp BS-1. Enzyme Microb. Technol. 2013, 53, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kucek, L.A.; Spirito, C.M.; Angenent, L.T. High N-Caprylate Productivities and Specificities from Dilute Ethanol and Acetate: Chain Elongation with Microbiomes to Upgrade Products from Syngas Fermentation. Energy Environ. Sci. 2016, 9, 3482–3494. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.; Bao, S.; Liang, J.; Wu, Y.; Chen, N.; Wang, S.; Cai, Y. Chain Elongation Performances with Anaerobic Fermentation Liquid from Sewage Sludge with High Total Solid as Electron Acceptor. Bioresour. Technol. 2020, 306, 123188. [Google Scholar] [CrossRef]
- De Leeuw, K.D.; Buisman, C.J.N.; Strik, D.P.B.T.B. Branched Medium Chain Fatty Acids: Iso-Caproate Formation from Iso-Butyrate Broadens the Product Spectrum for Microbial Chain Elongation. Environ. Sci. Technol. 2019, 53, 7704–7713. [Google Scholar] [CrossRef]
- de Araújo Cavalcante, W.; Leitão, R.C.; Gehring, T.A.; Angenent, L.T.; Santaella, S.T. Anaerobic Fermentation for N-Caproic Acid Production: A Review. Process Biochem. 2017, 54, 106–119. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, Y.; Chen, Y.; Liu, M.; Bao, X.; Guo, W. Opportunities and Challenges in Microbial Medium Chain Fatty Acids Production from Waste Biomass. Bioresour. Technol. 2021, 340, 125633. [Google Scholar] [CrossRef]
- Xu, J.; Hao, J.; Guzman, J.J.L.; Spirito, C.M.; Harroff, L.A.; Angenent, L.T. Temperature-Phased Conversion of Acid Whey Waste Into Medium-Chain Carboxylic Acids via Lactic Acid: No External e-Donor. Joule 2018, 2, 280–295. [Google Scholar] [CrossRef]
- Pan, Y.; Zhi, Z.; Zhen, G.; Lu, X.; Bakonyi, P.; Li, Y.-Y.; Zhao, Y.; Rajesh Banu, J. Synergistic Effect and Biodegradation Kinetics of Sewage Sludge and Food Waste Mesophilic Anaerobic Co-Digestion and the Underlying Stimulation Mechanisms. Fuel 2019, 253, 40–49. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Fermentative Hydrogen Production from Sewage Sludge. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1219–1281. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, X.; Chen, H.; Zhou, Y.; Zhou, Y.; Wang, D. Advances in Enhanced Volatile Fatty Acid Production from Anaerobic Fermentation of Waste Activated Sludge. Sci. Total Environ. 2019, 694, 133741. [Google Scholar] [CrossRef] [PubMed]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A Critical Review of Pretreatment Technologies to Enhance Anaerobic Digestion and Energy Recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Huang, X.; Dong, W.; Wang, H.; Feng, Y. Role of Acid/Alkali-Treatment in Primary Sludge Anaerobic Fermentation: Insights into Microbial Community Structure, Functional Shifts and Metabolic Output by High-Throughput Sequencing. Bioresour. Technol. 2018, 249, 943–952. [Google Scholar] [CrossRef]
- Toreci, I.; Kennedy, K.J.; Droste, R.L. Evaluation of Continuous Mesophilic Anaerobic Sludge Digestion after High Temperature Microwave Pretreatment. Water Res. 2009, 43, 1273–1284. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, J.; Yan, F.; Gao, Y.; Meng, Y.; Aihemaiti, A.; Ju, T. Enhancement of Volatile Fatty Acid Production and Biogas Yield from Food Waste Following Sonication Pretreatment. J. Environ. Manag. 2018, 217, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment Methods to Enhance Anaerobic Digestion of Organic Solid Waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. The Effects of Substrate Pre-Treatment on Anaerobic Digestion Systems: A Review. Waste Manag. 2012, 32, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Jiao, Q.; He, J.; Zhang, Z.; Wang, L.; Yan, Z.; Lu, J. Enhanced Short-Chain Fatty Acids Production through a Short-Term Anaerobic Fermentation of Waste Activated Sludge: Synergistic Pretreatment of Alkali and Alkaline Hydrolase Blend. J. Clean. Prod. 2022, 342, 130954. [Google Scholar] [CrossRef]
- Bhatt, S.M.; Shilpa. Lignocellulosic Feedstock Conversion, Inhibitor Detoxification and Cellulosic Hydrolysis—A Review. Biofuels 2014, 5, 633–649. [Google Scholar] [CrossRef]
- Xu, Q.; Fu, Q.; Liu, X.; Wang, D.; Wu, Y.; Li, Y.; Yang, J.; Yang, Q.; Wang, Y.; Li, H.; et al. Mechanisms of Potassium Permanganate Pretreatment Improving Anaerobic Fermentation Performance of Waste Activated Sludge. Chem. Eng. J. 2021, 406, 126797. [Google Scholar] [CrossRef]
- Xi, S.; Dong, X.; Lin, Q.; Li, X.; Ma, J.; Zan, F.; Biswal, B.K.; Awasthi, M.K.; Wang, Z.; Chen, G.; et al. Enhancing Anaerobic Fermentation of Waste Activated Sludge by Investigating Multiple Electrochemical Pretreatment Conditions: Performance, Modeling and Microbial Dynamics. Bioresour. Technol. 2023, 368, 128364. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in Pre-Treatment Methods to Improve Anaerobic Digestion of Sewage Sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Brémond, U.; de Buyer, R.; Steyer, J.-P.; Bernet, N.; Carrere, H. Biological Pretreatments of Biomass for Improving Biogas Production: An Overview from Lab Scale to Full-Scale. Renew. Sust. Energy Rev. 2018, 90, 583–604. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Parsa Yeganeh, L.; Angelidaki, I.; Nizami, A.-S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of Lignocelluloses for Enhanced Biogas Production: A Review on Influencing Mechanisms and the Importance of Microbial Diversity. Renew. Sust. Energy Rev. 2021, 135, 110173. [Google Scholar] [CrossRef]
- Steinbusch, K.J.J.; Arvaniti, E.; Hamelers, H.V.M.; Buisman, C.J.N. Selective Inhibition of Methanogenesis to Enhance Ethanol and n-Butyrate Production through Acetate Reduction in Mixed Culture Fermentation. Bioresour. Technol. 2009, 100, 3261–3267. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, C.; Lu, H.; Yang, G.; Zhang, G.; Wang, A. Enhanced Anaerobic Fermentation of Potato Waste for Volatile Fatty Acid Production by Dilute Sulfuric Acid Pretreatment: Performance, Microbial Community, and Gene Expression. J. Water Process Eng. 2024, 59, 105054. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, H.; Yin, B.; Zu, Y.; Liu, H.; Fu, B.; Ma, H. Enhanced Volatile Fatty Acid Production by a Modified Biological Pretreatment in Anaerobic Fermentation of Waste Activated Sludge. Chem. Eng. J. 2016, 284, 194–201. [Google Scholar] [CrossRef]
- Pang, H.; Pan, X.; Li, L.; He, J.; Zheng, Y.; Qu, F.; Ma, Y.; Cui, B.; Nan, J.; Liu, Y. An Innovative Alkaline Protease-Based Pretreatment Approach for Enhanced Short-Chain Fatty Acids Production via a Short-Term Anaerobic Fermentation of Waste Activated Sludge. Bioresour. Technol. 2020, 312, 123397. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, Y.; Xu, Q.; Liu, X.; Yang, Q.; Li, X. Free Ammonia Aids Ultrasound Pretreatment to Enhance Short-Chain Fatty Acids Production from Waste Activated Sludge. Bioresour. Technol. 2019, 275, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Yang, Q.; Yu, J.; Li, X.; Yang, G.; Xie, B.; Yang, F.; Zheng, W.; Zeng, G. Combined Effect of Sodium Dodecyl Sulfate and Enzyme on Waste Activated Sludge Hydrolysis and Acidification. Bioresour. Technol. 2011, 102, 7103–7110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, D.; Li, X.; Yang, Q.; Chen, H.; Zhong, Y.; Zeng, G. Free Nitrous Acid Serving as a Pretreatment Method for Alkaline Fermentation to Enhance Short-Chain Fatty Acid Production from Waste Activated Sludge. Water Res. 2015, 78, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Alloul, A.; Ganigué, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. Capture–Ferment–Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. Environ. Sci. Technol. 2018, 52, 6729–6742. [Google Scholar] [CrossRef] [PubMed]
- Angenent, L.T.; Richter, H.; Buckel, W.; Spirito, C.M.; Steinbusch, K.J.J.; Plugge, C.M.; Strik, D.P.B.T.B.; Grootscholten, T.I.M.; Buisman, C.J.N.; Hamelers, H.V.M. Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. Environ. Sci. Technol. 2016, 50, 2796–2810. [Google Scholar] [CrossRef]
- Janßen, H.J.; Steinbüchel, A. Fatty Acid Synthesis in Escherichia Coli and Its Applications towards the Production of Fatty Acid Based Biofuels. Biotechnol. Biofuels 2014, 7, 7. [Google Scholar] [CrossRef]
- Torella, J.P.; Ford, T.J.; Kim, S.N.; Chen, A.M.; Way, J.C.; Silver, P.A. Tailored Fatty Acid Synthesis via Dynamic Control of Fatty Acid Elongation. Proc. Natl. Acad. Sci. USA 2013, 110, 11290–11295. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R. Functional Group of Coenzyme A and Its Metabolic Relations, Especially in the Fatty Acid Cycle: Discussion. Fed. Proc. 1953, 12, 692–693. [Google Scholar]
- Kim, H.; Jeon, B.S.; Sang, B.-I. An Efficient New Process for the Selective Production of Odd-Chain Carboxylic Acids by Simple Carbon Elongation Using Megasphaera Hexanoica. Sci. Rep. 2019, 9, 11999. [Google Scholar] [CrossRef]
- Ge, S.; Usack, J.G.; Spirito, C.M.; Angenent, L.T. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction. Environ. Sci. Technol. 2015, 49, 8012–8021. [Google Scholar] [CrossRef] [PubMed]
- Jawed, K.; Mattam, A.J.; Fatma, Z.; Wajid, S.; Abdin, M.Z.; Yazdani, S.S. Engineered Production of Short Chain Fatty Acid in Escherichia Coli Using Fatty Acid Synthesis Pathway. PLoS ONE 2016, 11, e0160035. [Google Scholar] [CrossRef]
- Gu, H.; Jinkerson, R.E.; Davies, F.K.; Sisson, L.A.; Schneider, P.E.; Posewitz, M.C. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus Sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase. Front. Plant Sci. 2016, 7, 187241. [Google Scholar] [CrossRef]
- Heil, C.S.; Wehrheim, S.S.; Paithankar, K.S.; Grininger, M. Fatty Acid Biosynthesis: Chain-Length Regulation and Control. ChemBioChem 2019, 20, 2298–2321. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; He, P.; Shao, L.; Lu, F. Metabolic Interactions of a Chain Elongation Microbiome. Appl. Environ. Microbiol. 2018, 84, e01614-18. [Google Scholar] [CrossRef]
- Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N. Methanol as an Alternative Electron Donor in Chain Elongation for Butyrate and Caproate Formation. Biomass Bioenergy 2016, 93, 201–208. [Google Scholar] [CrossRef]
- He, P.; Han, W.; Shao, L.; Lu, F. One-Step Production of C6-C8 Carboxylates by Mixed Culture Solely Grown on CO. Biotechnol. Biofuels 2018, 11, 4. [Google Scholar] [CrossRef]
- Veras, S.T.S.; Cavalcante, W.A.; Gehring, T.A.; Ribeiro, A.R.; Ferreira, T.J.T.; Kato, M.T.; Rojas-Ojeda, P.; Sanz-Martin, J.L.; Leitão, R.C. Anaerobic Production of Valeric Acid from Crude Glycerol via Chain Elongation. Int. J. Environ. Sci. Technol. 2020, 17, 1847–1858. [Google Scholar] [CrossRef]
- Walker, G.M.; Walker, R.S.K. Enhancing Yeast Alcoholic Fermentations. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 105, pp. 87–129. ISBN 978-0-12-815181-5. [Google Scholar]
- Arslan, K.; Bayar, B.; Nalakath Abubackar, H.; Veiga, M.C.; Kennes, C. Solventogenesis in Clostridium Aceticum Producing High Concentrations of Ethanol from Syngas. Bioresour. Technol. 2019, 292, 121941. [Google Scholar] [CrossRef]
- Reddy, M.V.; Mohan, S.V.; Chang, Y.-C. Medium-Chain Fatty Acids (MCFA) Production Through Anaerobic Fermentation Using Clostridium Kluyveri: Effect of Ethanol and Acetate. Appl. Biochem. Biotechnol. 2018, 185, 594–605. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, X.; Chen, Y.; Liu, M.; Bao, X. Continuous Medium Chain Carboxylic Acids Production from Excess Sludge by Granular Chain-Elongation Process. J. Hazard. Mater. 2021, 402, 123471. [Google Scholar] [CrossRef] [PubMed]
- San-Valero, P.; Abubackar, H.N.; Veiga, M.C.; Kennes, C. Effect of pH, Yeast Extract and Inorganic Carbon on Chain Elongation for Hexanoic Acid Production. Bioresour. Technol. 2020, 300, 122659. [Google Scholar] [CrossRef] [PubMed]
- Spirito, C.M.; Richter, H.; Rabaey, K.; Stams, A.J.; Angenent, L.T. Chain Elongation in Anaerobic Reactor Microbiomes to Recover Resources from Waste. Curr. Opin. Biotechnol. 2014, 27, 115–122. [Google Scholar] [CrossRef]
- Roghair, M.; Hoogstad, T.; Strik, D.P.B.T.B.; Plugge, C.M.; Timmers, P.H.A.; Weusthuis, R.A.; Bruins, M.E.; Buisman, C.J.N. Controlling Ethanol Use in Chain Elongation by CO2 Loading Rate. Environ. Sci. Technol. 2018, 52, 1496–1505. [Google Scholar] [CrossRef]
- Jungermann, K.; Thauer, R.K.; Decker, K. The Synthesis of One-Carbon Units from CO2 in Clostridium Kluyveri. Eur. J. Biochem. 1968, 3, 351–359. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, Y.; Liang, C.; Li, X.; Wei, N.; Zhang, W.; Zhou, Y.; Yang, Y.; Bo, T. The Synthesis of N-Caproate from Lactate: A New Efficient Process for Medium-Chain Carboxylates Production. Sci. Rep. 2015, 5, 14360. [Google Scholar] [CrossRef]
- Mariën, Q.; Ulčar, B.; Verleyen, J.; Vanthuyne, B.; Ganigué, R. High-Rate Conversion of Lactic Acid-Rich Streams to Caproic Acid in a Fermentative Granular System. Bioresour. Technol. 2022, 355, 127250. [Google Scholar] [CrossRef]
- Elsden, S.R.; Volcani, B.E.; Gilchrist, F.M.C.; Lewis, D. Properties of a Fatty Acid Forming Organism Isolated from the Rumen of Sheep. J. Bacteriol. 1956, 72, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Kucek, L.A.; Nguyen, M.; Angenent, L.T. Conversion of L-Lactate into n-Caproate by a Continuously Fed Reactor Microbiome. Water Res. 2016, 93, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.J.; Moen, G.N. Quantitative Analysis of Growth and Volatile Fatty Acid Production by the Anaerobic Ruminal Bacterium Megasphaera Elsdenii T81. Appl. Microbiol. Biotechnol 2013, 97, 4075–4081. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhou, Y.; Wang, Y.; Wu, T.; Li, X.; Li, D.; Tao, Y. Production of High-Concentration n-Caproic Acid from Lactate through Fermentation Using a Newly Isolated Ruminococcaceae Bacterium CPB6. Biotechnol. Biofuels 2017, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Popp, D.; Mueller, N.; Straeuber, H.; Harms, H.; Kleinsteuber, S. Three Novel Clostridia Isolates Produce N-Caproate and Iso-Butyrate from Lactate: Comparative Genomics of Chain-Elongating Bacteria. Microorganisms 2020, 8, 1970. [Google Scholar] [CrossRef]
- Iglesias-Iglesias, R.; Portela-Grandío, A.; Treu, L.; Campanaro, S.; Kennes, C.; Veiga, M.C. Co-Digestion of Cheese Whey with Sewage Sludge for Caproic Acid Production: Role of Microbiome and Polyhydroxyalkanoates Potential Production. Bioresour. Technol. 2021, 337, 125388. [Google Scholar] [CrossRef] [PubMed]
- Candry, P.; Radić, L.; Favere, J.; Carvajal-Arroyo, J.M.; Rabaey, K.; Ganigué, R. Mildly Acidic pH Selects for Chain Elongation to Caproic Acid over Alternative Pathways during Lactic Acid Fermentation. Water Res. 2020, 186, 116396. [Google Scholar] [CrossRef] [PubMed]
- orline Nzeteu, C.; Coelho, F.; Trego, A.C.; Abram, F.; Ramiro-Garcia, J.; Paulo, L.; O’Flaherty, V. Development of an Enhanced Chain Elongation Process for Caproic Acid Production from Waste-Derived Lactic Acid and Butyric acid. J. Clean. Prod. 2022, 338, 130655. [Google Scholar] [CrossRef]
- Kang, S.; Kim, H.; Jeon, B.S.; Choi, O.; Sang, B.-I. Chain Elongation Process for Caproate Production Using Lactate as Electron Donor in Megasphaera Hexanoica. Bioresour. Technol. 2022, 346, 126660. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, W.; Bao, X.; Meng, X.; Yin, R.; Du, J.; Zheng, H.; Feng, X.; Luo, H.; Ren, N. Upgrading Liquor-Making Wastewater into Medium Chain Fatty Acid: Insights into Co-Electron Donors, Key Microflora, and Energy Harvest. Water Res. 2018, 145, 650–659. [Google Scholar] [CrossRef]
- Lonkar, S.; Fu, Z.; Holtzapple, M. Optimum Alcohol Concentration for Chain Elongation in Mixed-Culture Fermentation of Cellulosic Substrate. Biotechnol. Bioeng. 2016, 113, 2597–2604. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Zhou, M.; Vassilev, I.; Freguia, S.; Zhang, Y.; Keller, J.; Ledezma, P.; Virdis, B. Selective Extraction of Medium-Chain Carboxylic Acids by Electrodialysis and Phase Separation. ACS Omega 2021, 6, 7841–7850. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Wang, Y.; Yang, C. Impacts of Different Biochar Types on the Anaerobic Digestion of Sewage Sludge. RSC Adv. 2019, 9, 42375–42386. [Google Scholar] [CrossRef]
- Salvador, A.F.; Martins, G.; Melle-Franco, M.; Serpa, R.; Stams, A.J.M.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Carbon Nanotubes Accelerate Methane Production in Pure Cultures of Methanogens and in a Syntrophic Coculture: CNT Accelerate Methanogenesis in Pure Cultures. Environ. Microbiol. 2017, 19, 2727–2739. [Google Scholar] [CrossRef]
- Liu, Y.; He, P.; Han, W.; Shao, L.; Lü, F. Outstanding Reinforcement on Chain Elongation through Five-Micrometer-Sized Biochar. Renew. Energy 2020, 161, 230–239. [Google Scholar] [CrossRef]
- Wu, S.-L.; Wei, W.; Xu, Q.; Huang, X.; Sun, J.; Dai, X.; Ni, B.-J. Revealing the Mechanism of Biochar Enhancing the Production of Medium Chain Fatty Acids from Waste Activated Sludge Alkaline Fermentation Liquor. ACS EST Water 2021, 1, 1014–1024. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, W.; Wu, S.-L.; Ni, B.-J. Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. Environ. Sci. Technol. 2020, 54, 10904–10915. [Google Scholar] [CrossRef]
- Kong, X.; Niu, J.; Zhang, W.; Liu, J.; Yuan, J.; Li, H.; Yue, X. Mini Art Review for Zero Valent Iron Application in Anaerobic Digestion and Technical Bottlenecks. Sci. Total Environ. 2021, 791, 148415. [Google Scholar] [CrossRef]
- Fu, X.; Jin, X.; Ye, R.; Lu, W. Nano Zero-Valent Iron: A pH Buffer, Electron Donor and Activator for Chain Elongation. Bioresour. Technol. 2021, 329, 124899. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ye, R.; Jin, X.; Lu, W. Effect of Nano Zero-Valent Iron Addition on Caproate Fermentation in Carboxylate Chain Elongation System. Sci. Total Environ. 2020, 743, 140664. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Dong, H.; Zeng, G.; Tang, L.; Jiang, Z.; Zhang, C.; Deng, J.; Zhang, L.; Zhang, Y. The Interactions between Nanoscale Zero-Valent Iron and Microbes in the Subsurface Environment: A Review. J. Hazard. Mater. 2017, 321, 390–407. [Google Scholar] [CrossRef] [PubMed]
- Cordova Lizama, A.; Carrera Figueiras, C.; Zepeda Pedreguera, A.; Ruiz Espinoza, J.E. Enhancing the Performance and Stability of the Anaerobic Digestion of Sewage Sludge by Zero Valent Iron Nanoparticles Dosage. Bioresour. Technol. 2019, 275, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Chidthaisong, A. Specificity of Chloroform, 2-Bromoethanesulfonate and Fluoroacetate to Inhibit Methanogenesis and Other Anaerobic Processes in Anoxic Rice Field Soil. Soil Biol. Biochem. 2000, 32, 977–988. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.-F.; Pan, X.-W.; Tan, J.-Y.; Yang, S.-S.; Wu, J.-T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage Sludge Derived Biochar for Environmental Improvement: Advances, Challenges, and Solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guzman, J.J.L.; Angenent, L.T. Direct Medium-Chain Carboxylic Acid Oil Separation from a Bioreactor by an Electrodialysis/Phase Separation Cell. Environ. Sci. Technol. 2021, 55, 634–644. [Google Scholar] [CrossRef]
- Grootscholten, T.I.M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N. Improving Medium Chain Fatty Acid Productivity Using Chain Elongation by Reducing the Hydraulic Retention Time in an Upflow Anaerobic Filter. Bioresour. Technol. 2013, 136, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, Y.; Zheng, K.; Wei, W.; Ngo, H.H.; Guo, W.; Ni, B.-J.; Zhu, T.; Horn, H.; Liu, Y. Ferric Oxide Stimulates Medium-Chain Carboxylic Acids Synthesis from Waste Activated Sludge via Ethanol-Driven Chain Elongation: Mechanisms and Implications. J. Clean. Prod. 2023, 389, 136044. [Google Scholar] [CrossRef]
- Lou, T.; Yin, Y.; Wang, J. Promotion of Medium-Chain Fatty Acids and Long-Chain Alcohols Production by Zero-Valent Iron: Effect of Particle Sizes. J. Environ. Chem. Eng. 2024, 12, 111652. [Google Scholar] [CrossRef]
- Liu, Y.; He, P.; Shao, L.; Zhang, H.; Lü, F. Significant Enhancement by Biochar of Caproate Production via Chain Elongation. Water Res. 2017, 119, 150–159. [Google Scholar] [CrossRef]
- Luo, T.; Xu, Q.; Wei, W.; Sun, J.; Dai, X.; Ni, B.-J. Performance and Mechanism of Fe3O4 Improving Biotransformation of Waste Activated Sludge into Liquid High-Value Products. Environ. Sci. Technol. 2022, 56, 3658–3668. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, J.; Guo, H.; Zhu, T.; Zhang, Y.; Liu, Y. New Insight into Mechanisms of Ferroferric Oxide Enhancing Medium-Chain Fatty Acids Production from Waste Activated Sludge through Anaerobic Fermentation. Bioresour. Technol. 2022, 360, 127629. [Google Scholar] [CrossRef] [PubMed]
Resource Technology | Process Temperature (°C) | Products | Advantages | Disadvantages |
---|---|---|---|---|
Incineration | ˃850 | Electric energy | Reduces 90% of sludge volume with the simultaneous destruction of pathogens | Produces harmful gases, high investment cost |
Sludge composting | - | Organic fertilizer | Provides nutrients for plant growth | Low efficiency, long cycle required |
Gasification | Up to 1100 | Syngas (H2, CO, CH4, CxHy) | Produces combustible gases for energy recovery | Environmental pollution risk |
Pyrolysis | 400~800 | Syngas (H2, CO, CO2, CH4, C1–C4) | Reduces 50% of volume and all byproducts have energy and circular economy value | Environmental pollution risk |
Anaerobic digestion | - | MCFAs | Widely used, high economic value | Separation and purification process is not perfect |
Anaerobic digestion | - | H2 | As a clean energy, alleviates the greenhouse effect | Low efficiency |
Anaerobic digestion | - | CH4 | Eases dependence on fossil fuels | Single application, compared with MCFAs economic value is low |
Pretreatment Method | Pretreatment Conditions | Pretreatment Results | References |
---|---|---|---|
EDTA-2Na hydrolysis (EH) and protease hydrolysis (PH) | PH: 25 mg/L dry sludge EH: 0.2 g/L dry sludge Stirring speed: 120 rpm Temperature: 25 °C | SCFA concentration of 12,704.44 mg COD/L, about 9.3 times the control WAS without pretreatment | [43] |
Alkaline protease (AP) and alkaline treatment | AP: 5% g/g VSS pH: 10 Pretreatment time: 2 h Temperature: 35 °C | SCFA concentration of 607 mg COD/g VSS was produced over an anaerobic fermentation of 3 days, which was 5.4 times higher than the control | [44] |
Free ammonia (FA) and aided ultrasound pretreatment | Ultrasound (2 w/mL): 15 min FA (60 mg/L): 2 d | SCFA concentration of 316.7 mg COD/g VSS, which was 1.7 times higher than that of pretreatment using ultrasound (FA) alone | [45] |
Sodium dodecyl sulphate (SDS) and mixed enzymes | SDS: 0.20 g/g dry sludge Enzymes: 0.06 g/g dry sludge (protease: a-amylase = 3:1) Temperature: 50 °C | SCFA concentration increased by 1.82 (6th day), 2.04 (5th day), and 2.32 (7th day) times | [46] |
Free nitrous acid and alkaline treatment | pH: 10 Free nitrous acid: 1.54 mg/L Pretreatment time: 2 d Temperature: 20 °C | SCFA concentration of 370.1 mg COD/g VSS, which was 4.7 times higher than the control | [47] |
ED Level (Ethanol) | Conditions | Strategy | Maximal MCFA Production | References |
---|---|---|---|---|
140 mmol/L | Initial pH = 5.5 Temperature = 37 °C | 20 g/L ZVI | 15.4 g COD/L | [88] |
170 mmol/L | Initial pH = 6.9 Temperature = 35 °C | 20 g/L Fe2O3 | 9162 mg COD/L | [98] |
360 mmol/L | Initial pH = 7 Temperature = 36 °C | 10 g/L ZVI (75 µm) | 4782.88 mg COD/L | [99] |
50 mmol/L | Experiment used upflow blanket filter reactors Temperature = 35 °C | 20 g/L biochar | 46.69 g COD/L * | [100] |
140 mmol/L | Initial pH = 7 Temperature = 35 ± 2 °C | 5 g/L Fe3O4 (20 nm) | 9614.26 mg COD/L | [101] |
170 mmol/L | Temperature = 35 °C | 20 g/L Fe3O4 | 7953.6 mg COD/L | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Duan, Y.; Chen, L.; Yang, Z.; Yang, X.; Liu, S.; Song, G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024, 12, 680. https://doi.org/10.3390/microorganisms12040680
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms. 2024; 12(4):680. https://doi.org/10.3390/microorganisms12040680
Chicago/Turabian StyleLiu, Yuhao, Yacong Duan, Long Chen, Ziyan Yang, Xiaoli Yang, Shuli Liu, and Gangfu Song. 2024. "Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects" Microorganisms 12, no. 4: 680. https://doi.org/10.3390/microorganisms12040680
APA StyleLiu, Y., Duan, Y., Chen, L., Yang, Z., Yang, X., Liu, S., & Song, G. (2024). Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms, 12(4), 680. https://doi.org/10.3390/microorganisms12040680