Frequency and Molecular Identification of Cryptosporidium in Adult Prim’Holstein Dairy Cattle Farms in the North of France
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm Recruitment
2.2. Cows Selection
2.3. Sampling
2.4. Molecular Detection of Cryptosporidium
2.5. DNA Sequencing and Analysis
2.6. Phylogenetic Analysis
2.7. Statistical Analysis
2.8. Ethical Issues
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan, U.; Fayer, R.; Xiao, L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014, 141, 1667–1685. [Google Scholar] [CrossRef]
- Vermeulen, L.C.; Benders, J.; Medema, G.; Hofstra, N. Global Cryptosporidium loads from livestock manure. Environ. Sci. Technol. 2017, 51, 8663–8671. [Google Scholar] [CrossRef]
- Chappell, C.L.; Okhuysen, P.C.; Sterling, C.R.; DuPont, H.L. Cryptosporidium parvum: Intensity of infection and oocyst excretion patterns in healthy volunteers. J. Infect. Dis. 1996, 173, 232–236. [Google Scholar] [CrossRef]
- Benamrouz, S.; Guyot, K.; Gazzola, S.; Mouray, A.; Chassat, T.; Delaire, B.; Chabé, M.; Gosset, P.; Viscogliosi, E.; Dei-Cas, E.; et al. Cryptosporidium parvum infection in SCID mice infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer. PLoS ONE 2012, 7, e51232. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Qin, H.; Wang, L.; Li, J.; Zhang, L. Cryptosporidium parvum and gp60 genotype prevalence in dairy calves worldwide: A systematic review and meta-analysis. Acta Trop. 2023, 240, 106843. [Google Scholar] [CrossRef]
- Khan, S.M.; Witola, W.H. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Front. Cell. Infect. Microbiol. 2023, 24, 1115522. [Google Scholar] [CrossRef]
- Feng, Y.; Ryan, U.M.; Xiao, L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011. [Google Scholar] [CrossRef]
- Koyun, O.Y.; Balta, I.; Corcionivoschi, N.; Callaway, T.R. Disease occurrence in- and the transferal of zoonotic agents by North American feedlot cattle. Foods 2023, 12, 904. [Google Scholar] [CrossRef] [PubMed]
- De Pena, H.F.J.; Kasai, N.; Gennari, S.M. Cryptosporidium muris in dairy cattle in Brazil. Vet. Parasitol. 1997, 73, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Kváč, M.; Vitovec, J. Prevalence and pathogenicity of Cryptosporidium andersoni in one herd of beef cattle. J. Vet. Med. 2003, 50, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Santín, M.; Trout, J.M.; Xiao, L.; Zhou, L.; Greiner, E.; Fayer, R. Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet. Parasitol. 2004, 122, 103–117. [Google Scholar] [CrossRef]
- Wade, S.E.; Mohammed, H.O.; Schaaf, S.L. Prevalence of Giardia sp., Cryptosporidium parvum and Cryptosporidium muris (C. andersoni) in 109 dairy herds in five counties of southeastern New York. Vet. Parasitol. 2000, 93, 1–11. [Google Scholar] [CrossRef]
- Pinto, P.; Ribeiro, C.A.; Hoque, S.; Hammouma, O.; Leruste, H.; Détriché, S.; Canniere, E.; Daandels, Y.; Dellevoet, M.; Roemen, J.; et al. Cross-border investigations on the prevalence and transmission dynamics of Cryptosporidium species in dairy cattle farms in western mainland Europe. Microorganisms 2021, 9, 2394. [Google Scholar] [CrossRef]
- Shaw, H.J.; Innes, E.A.; Morrison, L.J.; Katzer, F.; Wells, B. Long-term production effects of clinical cryptosporidiosis in neonatal calves. Int. J. Parasitol. 2020, 50, 371–376. [Google Scholar] [CrossRef]
- En Hauts-de-France, un Élevage Bovin Avant Tout Laitier. Available online: https://www.action-agricole-picarde.com/en-hauts-de-france-un-elevage-bovin-avant-tout-laitier (accessed on 11 January 2024).
- Xiao, L.; Morgan, U.M.; Limor, J.; Escalante, A.; Arrowood, M.; Shulaw, W.; Thompson, R.C.; Fayer, R.; Lal, A.A. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl. Environ. Microbiol. 1999, 65, 3386–3391. [Google Scholar] [CrossRef]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW AND PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 1996, 12, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar]
- Guy, R.A.; Yanta, C.A.; Bauman, C.A. Molecular identification of Cryptosporidium species in Canadian post-weaned calves and adult dairy cattle. Vet. Parasitol. Reg. Stud. Rep. 2022, 34, 100777. [Google Scholar] [CrossRef]
- Hatam-Nahavandi, K.; Ahmadpour, E.; Carmena, D.; Spotin, A.; Bangoura, B.; Xiao, L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: A systematic review and meta-analysis. Parasit. Vectors 2019, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Wells, B.; Thomson, S.; Ensor, H.; Innes, E.A.; Katzer, F. Development of a sensitive method to extract and detect low numbers of Cryptosporidium oocysts from adult cattle faecal samples. Vet. Parasitol. 2016, 30, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Follet, J.; Guyot, K.; Leruste, H.; Follet-Dumoulin, A.; Hammouma-Ghelboun, O.; Certad, G.; Dei-Cas, E.; Halama, P. Cryptosporidium infection in a veal calf cohort in France: Molecular characterization of species in a longitudinal study. Vet. Res. 2011, 42, 116. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ma, G.; Zhao, J.; Lu, Q.; Wang, H.; Zhang, L.; Jian, F.; Ning, C.; Xiao, L. Cryptosporidium andersoni is the predominant species in post-weaned and adult dairy cattle in China. Parasitol. Int. 2011, 60, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; Navarro, E.; Prieto, A.; Pérez-Creo, A.; Viña, M.; Díaz-Cao, J.M.; López, C.M.; Panadero, R.; Fernández, G.; Díez-Baños, P.; et al. Cryptosporidium species in post-weaned and adult sheep and goats from N.W. Spain: Public and animal health significance. Vet. Parasitol. 2018, 254, 1–5. [Google Scholar] [CrossRef] [PubMed]
- O’Handley, R.M. Cryptosporidium parvum infection in cattle: Are current perceptions accurate? Trends Parasitol. 2007, 23, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Fiuza, V.R.S.; Almeida, A.J.; Frazão-Teixeira, E.; Santín, M.; Fayer, R.; Oliveira, F.C.R. Occurrence of Cryptosporidium andersoni in Brazilian cattle. J. Parasitol. 2011, 97, 952–953. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Chandra, D.; Tewari, A.K.; Banerjee, P.S.; Ray, D.D.; Raina, O.K.; Rao, J.R. Prevalence of Cryptosporidium andersoni: A molecular epidemiological survey among cattle in India. Vet. Parasitol. 2009, 161, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Rieux, A.; Chartier, C.; Pors, I.; Delafosse, A.; Paraud, C. Molecular characterization of Cryptosporidium isolates from high-excreting young dairy calves in dairy cattle herds in Western France. Parasitol. Res. 2013, 112, 3423–3431. [Google Scholar] [CrossRef]
- Mammeri, M.; Chevillot, A.; Chenafi, I.; Julien, C.; Vallée, I.; Polack, B.; Follet, J.; Adjou, K.T. Molecular characterization of Cryptosporidium isolates from diarrheal dairy calves in France. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100323. [Google Scholar] [CrossRef]
- Hoque, S.; Pinto, P.; Ribeiro, C.A.; Canniere, E.; Daandels, Y.; Dellevoet, M.; Bourgeois, A.; Hammouma, O.; Hunter, P.; Gentekaki, E.; et al. Follow-up investigation into Cryptosporidium prevalence and transmission in Western European dairy farms. Vet. Parasitol. 2023, 318, 109920. [Google Scholar] [CrossRef]
- Tarekegn, Z.S.; Tigabu, Y.; Dejene, H. Cryptosporidium infection in cattle and humans in Ethiopia: A systematic review and meta-analysis. Parasite Epidemiol. Control. 2021, 14, e00219. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guyot, K.; Dei-Cas, E.; Mallard, J.P.; Ballet, J.J.; Brasseur, P. Cryptosporidium oocysts in mussels (Mytilus edulis) from Normandy (France). Int. J. Food Microbiol. 2006, 108, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, K.; Ayana, D.; Megersa, B.; Ashenafi, H.; Waktole, H. Cryptosporidium in human-animal-environment interphase at Adama and Asella areas of Oromia regional state, Ethiopia. BMC Vet. Res. 2022, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Ralston, B.J.; McAllister, T.A.; Olson, M.E. Prevalence and infection pattern of naturally acquired giardiasis and cryptosporidiosis in range beef calves and their dams. Vet. Parasitol. 2003, 114, 113–122. [Google Scholar] [CrossRef]
- Thomson, S.; Hamilton, C.A.; Hope, J.C.; Katzer, F.; Mabbott, N.A.; Morrison, L.J.; Innes, E.A. Bovine cryptosporidiosis: Impact, host-parasite interaction and control strategies. Vet. Res. 2017, 48, 42. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Upton, S.J.; Owens, D.S.; Morgan, U.M.; Mead, J.R.; Blagburn, B.L. Cryptosporidium andersoni n. sp. (Apicomplexa: Cryptosporiidae) from cattle, Bos taurus. J. Eukaryot. Microbiol. 2000, 47, 91–95. [Google Scholar] [CrossRef]
Farms Identification | N° of Animals/Farm | N° of Tested Samples/Farm | N° of Cryptosporidium Positive Animals (%) | 95% Confidence Intervals (C.I. 95%) | Cryptosporidium Species |
---|---|---|---|---|---|
F1 | 249 | 205 | 0 | NA a | NA |
F2 | 154 | 136 | 0 | NA | NA |
F3 | 204 | 137 | 0 | NA | NA |
F4 | 245 | 96 | 0 | NA | NA |
F5 | 153 | 117 | 0 | NA | NA |
F6 | 82 | 54 | 0 | NA | NA |
F7 | 70 | 33 | 0 | NA | NA |
F8 | 136 | 11 | 0 | NA | NA |
F9 | 244 | 60 | 0 | NA | NA |
F10 | 112 | 24 | 0 | NA | NA |
F11 | 219 | 71 | 0 | NA | NA |
F12 | 208 | 157 | 5 (3.18) | 1.17–7.66 | C. andersoni |
F13 | 409 | 128 | 0 | NA | NA |
F14 | 312 | 43 | 0 | NA | NA |
F15 | 110 | 55 | 1 (1.81) | 0.10–11.00 | C. ryanae |
F16 | 233 | 67 | 0 | NA | NA |
F17 | 230 | 149 | 4 (2.68) | 0.86–7.16 | C. andersoni |
F18 | 123 | 112 | 1 (0.89) | 0.47–5.60 | C. andersoni |
F19 | 275 | 166 | 2 (1.20) | 0.21–4-74 | C. andersoni |
F20 | 107 | 95 | 1 (1.05) | 0.6–6.56 | C. bovis/xiaoi |
Total | 3875 | 1916 | 14 (0.73) | 0.42–1.26 | C. andersoni, C. ryanae, C. bovis/xiaoi |
Sample Identification | Age in Months (Age Class) c | Number of Delivery | Weeks for Sample Collection after Last Delivery | Sampling Season | Cryptosporidium Species | Gene Accession Number | % of Identity with Reference Sequence |
---|---|---|---|---|---|---|---|
F17-E06 | 21 (heifer) | 0 | NA a | Fall | C. andersoni | OR610758 | 100 (MK982465.1) |
F20-B09 | 11 (heifer) | 0 | NA | Fall | C. bovis/xiaoi | - | 100/forward (MF074602/FJ896046) 100/reverse (MF074602) |
F19-E08 | 29 (cow) | 1 | 4 | Winter | C. andersoni | OR610759 | 100 (MK982465.1) |
F15-A12 | 19 (heifer) | 0 | NA | Fall | C. ryanae | OR610760 | 100 (MF671873) |
F17-H09 | 18 (heifer) | 0 | NA | Winter | C. andersoni | OR610761 | 100 (MK982465.1) |
F17-A02 | 88 (cow) | 5 | 8 | Fall | C. andersoni | OR610762 | 100 (MK982465.1) |
F19-G07 | 28 (cow) | 1 | 1 | Winter | C. andersoni | OR610763 | 100 (MK841325.1) |
F12-A04 b | 29 (heifer) | 0 | NA | Spring | C. andersoni | OR610764 | 100 (MK982465.1) |
F17-A05 | 46 (cow) | 2 | 9 | Summer | C. andersoni | OR610765 | 100 (MK982465.1) |
F18-B03 | 24 (heifer) | 0 | NA | Summer | C. andersoni | OR610766 | 100 (MK982465.1) |
F12-A10 | 33 (heifer) | 0 | NA | Spring | C. andersoni | OR610767 | 100 (MK841325.1) |
F12-D12 b | 31 (cow) | 1 | 5 | Spring | C. andersoni | OR610768 | 100 (MK982465.1) |
F12-E02 | 25 (heifer) | 0 | NA | Fall | C. andersoni | OR610769 | 100 (MK982465.1) |
F12-D05 | 20 (heifer) | 0 | NA | Fall | C. andersoni | OR610770 | 100 (MK841325.1) |
Localization | Method of Detection | Age of Animals | C. parvum | C. ryanae | C. bovis | C. xiaoi | C. andersoni | ND | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N° of Positive | Prevalence (%) | N° of Positive | Prevalence | N° of Positive | Prevalence | N° of Positive | Prevalence | N° of Positive | Prevalence | N° of Positive | Prevalence | ||||
Britanny | PCR and sequencing | 5 weeks | 59/68 | 87 | 3/68 | 4 | 1/68 | 2 | 0 | 0 | 0 | 0 | 5/68 | 7% | [23] |
15 weeks | 1/59 | 1.69 | 26/59 | 44 | 27/59 | 45 | 0 | 0 | 0 | 0 | 5/59 | 9% | |||
22 weeks | 0/20 | 0 | 10/20 | 50 | 9/20 | 45 | 0 | 0 | 0 | 0 | 1/20 | 5% | |||
Normandy | PCR and sequencing | <21 days | 80/82 | 97.6 | 0 | 0 | 2/82 | 2.4 | 0 | 0 | 0 | 0 | 2/82 | 0 | [29] |
Allier Ardèche, Côte-d’Or, Moselle, Saône et-Loire, Yonne | PCR and sequencing | ≤45 days | 29/31 | 93.54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [30] |
Hauts-de-France | PCR and sequencing | <3 months | 49/72 | 68.1 | 3/72 | 4.2 | 19/72 | 26.4 | 1/72 | 14.3 | 0 | 0 | 0 | 0 | [13] |
Adult a | 2/7 | 28.6 | 1/7 | 14.3 | 3/7 | 42.8 | 0 | 0 | 1/7 | 14.3 | 0 | 0 | |||
Hauts-de-France | PCR and sequencing | <3 months | 28/38 | 73.6 | 4/38 | 10.52 | 5/38 | 13.15 | 0 | 0 | 1/38 | 2.63 | 0 | 0 | [29] |
Adult a | 1/7 | 14.28 | 0 | 0 | 2/7 | 28.57 | 0 | 0 | 4/7 | 57.14 | 0 | 0 | |||
Hauts-de-France | PCR and sequencing | 11–33 months | 0 | 0 | 1/9 | 11.11 | 0 | 0 | 0 | 0 | 7/9 | 77.78 | 1/9 | 11.11 | Present study |
28–88 months | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5/5 | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Certad, G.; Gantois, N.; Merlin, S.; Martel, S.; Even, G.; Viscogliosi, E.; Audebert, C.; Chabé, M. Frequency and Molecular Identification of Cryptosporidium in Adult Prim’Holstein Dairy Cattle Farms in the North of France. Microorganisms 2024, 12, 335. https://doi.org/10.3390/microorganisms12020335
Certad G, Gantois N, Merlin S, Martel S, Even G, Viscogliosi E, Audebert C, Chabé M. Frequency and Molecular Identification of Cryptosporidium in Adult Prim’Holstein Dairy Cattle Farms in the North of France. Microorganisms. 2024; 12(2):335. https://doi.org/10.3390/microorganisms12020335
Chicago/Turabian StyleCertad, Gabriela, Nausicaa Gantois, Sophie Merlin, Sophie Martel, Gaël Even, Eric Viscogliosi, Christophe Audebert, and Magali Chabé. 2024. "Frequency and Molecular Identification of Cryptosporidium in Adult Prim’Holstein Dairy Cattle Farms in the North of France" Microorganisms 12, no. 2: 335. https://doi.org/10.3390/microorganisms12020335
APA StyleCertad, G., Gantois, N., Merlin, S., Martel, S., Even, G., Viscogliosi, E., Audebert, C., & Chabé, M. (2024). Frequency and Molecular Identification of Cryptosporidium in Adult Prim’Holstein Dairy Cattle Farms in the North of France. Microorganisms, 12(2), 335. https://doi.org/10.3390/microorganisms12020335