Diversity and Composition of the Airborne Fungal Community in Mexico City with a Metagenomic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Air Bioaerosol Sampling
2.3. DNA Extraction
2.4. Bioinformatic Analysis
3. Results
3.1. Meteorological Parameters
3.2. Sequencing Data
3.3. Fungal Community Composition
3.4. Main Groups of Airborne Fungi Identified in the South, Center, and North of Mexico City
3.5. Taxonomic Approximation at the Species Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, H.; Martinez, L.R. Relationship of environmental disturbances and the infectious potential of fungi. Microbiol. Read. 2018, 164, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Bowers, R.M.; Clements, N.; Emerson, J.B.; Wiedinmyer, C.; Hannigan, M.P.; Fierer, N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 2013, 47, 12097–12106. [Google Scholar] [CrossRef]
- Li, D.W.; Yang, C.S. Fungal contamination as a major contributor to sick building syndrome. Adv. Appl. Microbiol. 2004, 55, 31–112. [Google Scholar] [CrossRef] [PubMed]
- Despres, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Violaki, K.; Nenes, A.; Tsagkaraki, M.; Paglione, M.; Jacquet, S.; Sempéré, R.; Panagiotopoulos, C. Bioaerosols and dust are the dominant sources of organic P in atmospheric particles. NPJ Clim. Atmos. Sci. 2021, 4, 63. [Google Scholar] [CrossRef]
- Mosalaei, S.; Amiri, H.; Rafiee, A.; Abbasi, A.; Baghani, A.N.; Hoseini, M. Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. J. Environ. Health Sci. Eng. 2021, 19, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, L.; Qi, W.; Liu, Y.; Lin, J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. Micromachines 2021, 12, 798. [Google Scholar] [CrossRef]
- Taş, N.; de Jong, A.E.E.; Li, Y.; Trubl, G.; Xue, Y.; Dove, N.C. Metagenomic tools in microbial ecology research. J. Microb. Ecol. 2022, 45, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, X.; Pecoraro, L. Environmental factors shaping the diversity and spatial-temporal distribution of indoor and outdoor culturable airborne fungal communities in Tianjin University campus, Tianjin, China. Front. Microbiol. 2022, 13, 928921. [Google Scholar] [CrossRef] [PubMed]
- Yooseph, S.; Andrews-Pfannkoch, C.; Tenney, A.; McQuaid, J.; Williamson, S.; Thiagarajan, M.; Brami, D.; Zeigler-Allen, L.; Hoffman, J.; Goll, J.B.; et al. A metagenomic framework for the study of airborne microbial communities. PLoS ONE 2013, 8, e81862. [Google Scholar] [CrossRef]
- Fang, Z.; Ouyang, Z.; Hu, L.; Wang, X.; Zheng, H.; Lin, X. Diversity and dynamics of airborne fungi in Beijing during summer and winter seasons. Sci. Total Environ. 2005, 407, 6217–6222. [Google Scholar] [CrossRef]
- Lee, Y.G.; Lee, P.H.; Choi, S.M.; An, M.H.; Jang, A.S. Effects of air pollutants on airway diseases. Int. J. Environ. Res. Public Health 2021, 18, 9905. [Google Scholar] [CrossRef] [PubMed]
- Custovic, A.; Simpson, A. The role of inhalant allergens in allergic airways disease. J. Investig. Allergol. Clin. Immunol. 2012, 22, 393–401. [Google Scholar]
- Zukiewicz-Sobczak, W.A. The role of fungi in allergic diseases. Postep. Dermatol. Alergol. 2013, 30, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, M.; Zhang, Y.; Feng, Y. How does urbanization affect public health? New evidence from 175 countries worldwide. Front. Public Health 2023, 10, 1096964. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Ezquerro, M.C.; Serrano-Silva, N.; Brunner-Mendoza, C. Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia 2020, 36, 493–505. [Google Scholar] [CrossRef]
- Calderón-Ezquerro, M.C.; Serrano-Silva, N.; Brunner-Mendoza, C. Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environ. Pollut. 2021, 278, 116858. [Google Scholar] [CrossRef]
- Calderón-Ezquerro, M.C.; Gómez-Acata, E.S.; Brunner-Mendoza, C. Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health. Front. Environ. Sci. Eng. 2022, 16, 120. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Su, X.; Pan, W.; Song, B.; Xu, J.; Ning, K. Parallel-META 2.0: Enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS ONE 2014, 9, e89323. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Richardson, R.T.; Meola, M.; Wurzbacher, C.; Tremblay, D.E.; Thorell, K.; Kanger, K.; Eriksson, K.M.; Bilodeau, G.J.; Johnson, R.M.; et al. Metaxa2 Database Builder: Enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinformatics 2018, 34, 4027–4033. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Zepeda, A.; Godoy-Lozano, E.E.; Raggi, L.; Segovia, L.; Merino, E.; Gutiérrez-Rios, R.M.; Juarez, K.; Licea-Navarro, A.F.; Pardo-Lopez, L.; Sanchez-Flores, A. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Sci. Rep. 2018, 8, 12034. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Kandlikar, G.S.; Gold, Z.J.; Cowen, M.C.; Meyer, R.S.; Freise, A.C.; Kraft, N.J.B.; Moberg-Parker, J.; Sprague, J.; Kushner, D.J.; Curd, E.E. ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research 2018, 7, 1734. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.6.0. 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 7 November 2023).
- Dray, S.; Dufour, A.B.; Chessel, D. The ade4 package-II: Two-table and K-table methods. R News 2007, 7, 47–52. [Google Scholar]
- Wickham, H.; Wickham, H. Getting Started with ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; pp. 11–31. [Google Scholar]
- Ggvenn. Available online: https://github.com/NicolasH2/ggvenn (accessed on 6 January 2024).
- Šantl-Temkiv, T.; Amato, P.; Casamayor, E.O.; Lee, P.K.; Pointing, S.B. Microbial ecology of the atmosphere. FEMS Microbiol. Rev. 2022, 46, 4. [Google Scholar] [CrossRef]
- Nageen, Y.; Asemoloye, M.D.; Põlme, S.; Wang, X.; Xu, S.; Ramteke, P.W.; Pecoraro, L. Analysis of culturable airborne fungi in outdoor environments in Tianjin, China. BMC Microbiol. 2021, 21, 134. [Google Scholar] [CrossRef] [PubMed]
- Van Rhijn, N.; Bromley, M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J. Fungi 2021, 7, 367. [Google Scholar] [CrossRef]
- Van Rhijn, N.; Coleman, J.; Collier, L.; Moore, C.; Richardson, M.D.; Bright-Thomas, R.J.; Jones, A.M. Meteorological factors influence the presence of fungi in the air; A 14-month surveillance study at an adult Cystic Fibrosis center. Front. Cell. Infect. Microbiol. 2021, 11, 759944. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hameed, A.A.; Khoder, M.I.; Ibrahim, Y.H.; Saeed, Y.; Osman, M.E.; Ghanem, S. Study on some factors affecting the concentration of indoor and outdoor airborne fungi at different sites in Cairo, Egypt. Indoor Built Environ. 2009, 18, 447–455. [Google Scholar] [CrossRef]
- Jones, E.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015, 73, 1–72. [Google Scholar] [CrossRef]
- Ortega Rosas, C.I.; Calderón-Ezquerro, M.D.C.; Gutiérrez-Ruacho, O.G. Fungal spores and pollen are correlated with meteorological variables: Effects in human health at Hermosillo, Sonora, Mexico. Int. J. Environ. Health Res. 2020, 30, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Nageen, Y.; Wang, X.; Pecoraro, L. Seasonal variation of airborne fungal diversity and community structure in urban outdoor environments in Tianjin, China. Front. Microbiol. 2023, 13, 1043224. [Google Scholar] [CrossRef] [PubMed]
- Dye, M.H.; Vernon, T.R. Air-borne mould spores. N. Z. J. Sci. Technol. 2005, 34, 118–127. [Google Scholar]
- Rosas, I.; Calderón, C.; Gutiérrez, B.; Mosiño, P. Airborne fungi isolated from rain water collected in Mexico City. Contam. Ambient. 1986, 2, 13–23. [Google Scholar]
- Aira, M.J.; Rodríguez-Rajo, F.J.; Fernández-González, M.; Seijo, C.; Elvira-Rendueles, B.; Gutiérrez-Bustillo, M.; Muñoz-Rodríguez, A.F. Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana 2012, 51, 293–304. [Google Scholar] [CrossRef]
- Olsen, Y.; Skjøth, C.A.; Hertel, O.; Rasmussen, K.; Sigsgaard, T.; Gosewinkel, U. Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark. Aerobiologia 2020, 36, 141–157. [Google Scholar] [CrossRef]
- Ballero, M.; Piu, G.; Ariu, A. The impact of the botanical gardens on the aeroplankton of the city of Cagliari, Italy. Aerobiologia 2000, 16, 143–147. [Google Scholar] [CrossRef]
- Calderón-Ezquerro, M.C.; Martinez-Lopez, B.; Guerrero-Guerra, C.; López-Espinosa, E.D.; Cabos-Narvaez, W.D. Behaviour of Quercus Pollen in the Air, Determination of Its Sources and Transport through the Atmosphere of Mexico City and Conurbated Areas. Int. J. Biometeorol. 2018, 62, 1721–1732. [Google Scholar] [CrossRef]
- De Foy, B.; Clappier, A.; Molina, L.T.; Molina, M.J. Distinct Wind Convergence Patterns in the Mexico City Basin Due to the Interaction of the Gap Winds with the Synoptic Flow. Atmos. Chem. Phys. 2006, 6, 1249–1265. [Google Scholar] [CrossRef]
- Kirkland, T.N.; Fierer, J. Coccidioides immitis and C. posadasii: A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2019, 10, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Priyamvada, H.; Singh, R.K.; Akila, M.; Ravikrishna, R.; Verma, R.S.; Gunthe, S.S. Seasonal variation of the dominant allergenic fungal aerosols–One year study from southern Indian region. Sci. Rep. 2017, 7, 11171. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Qiu, Y.; Pei, T.; Qin, Y. Specific Sources Exert Influence on the Community Structures of Bioaerosols. Aerobiology 2024, 2, 72–84. [Google Scholar] [CrossRef]
- Morrissey, C.O.; Kim, H.Y.; Duong, T.-M.N.; Moran, E.; Alastruey-Izquierdo, A.; Denning, D.W.; Perfect, J.R.; Nucci, M.; Chakrabarti, A.; Rickerts, V.; et al. Aspergillus fumigatus—A Systematic Review to Inform the World Health Organization Priority List of Fungal Pathogens. Med. Mycol. 2024, 62, myad129. [Google Scholar] [CrossRef] [PubMed]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Jin, L.; Li, X. On the Triad of Air PM Pollution, Pathogenic Bioaerosols, and Lower Respiratory Infection. Environ. Geochem. Health 2023, 45, 1067–1077. [Google Scholar] [CrossRef]
- Simon-Nobbe, B.; Denk, U.; Pöll, V.; Rid, R.; Breitenbach, M. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2008, 145, 58–86. [Google Scholar] [CrossRef] [PubMed]
- Corzo-León, D.E.; Armstrong-James, D.; Denning, D.W. Burden of serious fungal infections in Mexico. Mycoses 2015, 58, 34–44. [Google Scholar] [CrossRef]
- Abrego, N.; Crosier, B.; Somervuo, P.; Ivanova, N.; Abrahamyan, A.; Abdi, A.; Hämäläinen, K.; Junninen, K.; Maunula, M.; Purhonen, J.; et al. Fungal communities decline with urbanization—More in air than in soil. ISME J. 2020, 14, 2806–2815. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhong, Y.; Ao, S.; Wu, H. Exploring the Relevance of Green Space and Epidemic Diseases Based on Panel Data in China from 2007 to 2016. Int. J. Environ. Res. Public Health 2019, 16, 2551. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A. Disturbance and Diversity: An Ecological Chicken and Egg Problem. Nat. Educ. Knowl. 2010, 3, 48. [Google Scholar]
Zone | Urban Area * % | Green Area * % | Number of Inhabitants ** | Population Percentage *** | Area (km2) ** | Population Density **** |
---|---|---|---|---|---|---|
North site | 83.53 | 16.31 | 1,173,351 | 12.74 | 87.38 | 72.9 |
South site | 93.05 | 6.95 | 620,416 | 6.74 | 53.62 | 49.9 |
Center site | 100 | 0.00 | 545,684 | 5.92 | 32.24 | 32.24 |
South Site | Center Site | North Site | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry Season | SD | Rainy Season | SD | Dry Season | SD | Rainy Season | SD | Dry Season | SD | Rainy Season | SD | |
Average Temperature (°C) | 16.2 | 2.2 | 15.9 | 1.7 | 17.7 | 2.3 | 17.4 | 1.5 | 16.6 | 2.3 | 16.8 | 1.5 |
Maximum Temperature (°C) | 23.7 | 2.3 | 22.7 | 2.5 | 24.5 | 2.5 | 23.6 | 2.2 | 24.5 | 2.4 | 23.4 | 2.3 |
Minimum Temperature (°C) | 9.2 | 2.4 | 10.6 | 1.9 | 11.8 | 2.4 | 12.6 | 1.6 | 9.3 | 2.4 | 11.0 | 1.8 |
Relative Humidity (%) | 47.8 | 11.6 | 63.3 | 10.6 | 45.4 | 11.6 | 61.2 | 9.5 | 46.9 | 11.9 | 62.5 | 10.1 |
Average Precipitation (mm) | 0.3 | 1.3 | 1.3 | 6.5 | 0.2 | 0.9 | 1.5 | 5.2 | 0.2 | 0.9 | 1.6 | 6.9 |
Characteristic | Center Site | North Site | South Site | |||
---|---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | Dry | Rainy | |
Raw reads | 1,261,767 | 676,479 | 1,238,508 | 568,477 | 1,445,707 | 650,097 |
Post-filtering | 1,260,162 | 675,577 | 1,236,925 | 567,806 | 1,444,137 | 649,329 |
Post-merging reads | 1,224,560 | 660,289 | 1,201,360 | 556,023 | 1,393,755 | 634,446 |
Total taxonomy annotations (TTas) | 998,114 | 633,457 | 953,462 | 543,263 | 1,233,856 | 623,805 |
Total taxonomy annotations at genus level (TTaGs) | 1242 | 1175 | 1148 | 1129 | 1174 | 1117 |
Unclassified taxa at genus level | 4 | 4 | 4 | 3 | 4 | 2 |
Classified taxa at genus level | 1238 | 1171 | 1144 | 1126 | 1170 | 1115 |
Uniqueknown genera | 91 | 86 | 39 | 62 | 60 | 73 |
Dry Season | Rainy Season | |||||
---|---|---|---|---|---|---|
Phylum | South | Center | North | South | Center | North |
Ascomycota | 80 | 90 | 86 | 74 | 83 | 80 |
Basidiomycota | 18 | 10 | 13 | 26 | 17 | 20 |
Mucormycota | 2 | --- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunner-Mendoza, C.; Calderón-Ezquerro, M.d.C.; Guerrero-Guerra, C.; Sanchez-Flores, A.; Salinas-Peralta, I.; Toriello, C. Diversity and Composition of the Airborne Fungal Community in Mexico City with a Metagenomic Approach. Microorganisms 2024, 12, 2632. https://doi.org/10.3390/microorganisms12122632
Brunner-Mendoza C, Calderón-Ezquerro MdC, Guerrero-Guerra C, Sanchez-Flores A, Salinas-Peralta I, Toriello C. Diversity and Composition of the Airborne Fungal Community in Mexico City with a Metagenomic Approach. Microorganisms. 2024; 12(12):2632. https://doi.org/10.3390/microorganisms12122632
Chicago/Turabian StyleBrunner-Mendoza, Carolina, María del Carmen Calderón-Ezquerro, César Guerrero-Guerra, Alejandro Sanchez-Flores, Ilse Salinas-Peralta, and Conchita Toriello. 2024. "Diversity and Composition of the Airborne Fungal Community in Mexico City with a Metagenomic Approach" Microorganisms 12, no. 12: 2632. https://doi.org/10.3390/microorganisms12122632
APA StyleBrunner-Mendoza, C., Calderón-Ezquerro, M. d. C., Guerrero-Guerra, C., Sanchez-Flores, A., Salinas-Peralta, I., & Toriello, C. (2024). Diversity and Composition of the Airborne Fungal Community in Mexico City with a Metagenomic Approach. Microorganisms, 12(12), 2632. https://doi.org/10.3390/microorganisms12122632