Pasteurella multocida Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Sampling
2.2. Bacterial Culture
2.3. Isolation of PBLs and Stimulation of PBLs by P. multocida Type D
2.4. Determination of Cytokine Levels
2.5. RNA Extraction and Transcriptome Sequencing
2.6. Gene Enrichment Analysis
2.7. Interaction Network Analysis
2.8. Quantitative qPCR
3. Results
3.1. Establishment of an Attack Model: Cell Morphology and PCR Identification
3.2. Analysis of Cytokine Detection Using the ELISA Method
3.3. Evaluate the Quality of Sequencing
3.4. Identification of DEG
3.5. GO, KEGG, and GSEA Analysis of DEGs
3.6. PPI Network Analysis of DEGs
3.7. Validation of RNA-Seq
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, B.A.; Ho, M. Pasteurella multocida: From zoonosis to cellular microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Z.; Chen, S.; Chen, J.; Cheng, Y.; Liu, A.; Li, B.; Chen, Z.; Zheng, Y.; Ga, M.; et al. Genome-Wide Differential Expression Profiling of Pulmonary circRNAs Associated with Immune Reaction to Pasteurella multocida in Goats. Front. Vet. Sci. 2021, 8, 615405. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, X.; Zhou, R.; Chen, H.; Wilson, B.A.; Wu, B. Pasteurella multocida: Genotypes and Genomics. Microbiol. Mol. Biol. Rev. MMBR 2019, 83. [Google Scholar] [CrossRef] [PubMed]
- Almoheer, R.; Abd Wahid, M.E.; Zakaria, H.A.; Jonet, M.A.B.; Al-Shaibani, M.M.; Al-Gheethi, A.; Addis, S.N.K. Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines 2022, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.J.; Davies, R.L. Outbreak of Pasteurella multocida septicaemia in neonatal lambs. Vet. Rec. 2002, 151, 420–422. [Google Scholar] [CrossRef]
- Rahman, M.H.; Akther, S.; Alam, M.S.; Hassan, M.Z.; Sarker, M.S.; Ali, M.Z.; Giasuddin, M.; Ahmed, S. Prevalence and identification of caprine pasteurellosis in pneumonic goats in Bangladesh. J. Adv. Vet. Anim. Res. 2023, 10, 538–544. [Google Scholar] [CrossRef]
- Guan, L.; Xue, Y.; Ding, W.; Zhao, Z. Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule. Res. Vet. Sci. 2019, 127, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liang, W.; Wang, F.; Xu, Z.; Xie, Z.; Lian, Z.; Hua, L.; Zhou, R.; Chen, H.; Wu, B. Genetic and Phylogenetic Characteristics of Pasteurella multocida Isolates from Different Host Species. Front. Microbiol. 2018, 9, 1408. [Google Scholar] [CrossRef] [PubMed]
- Gharib Mombeni, E.; Gharibi, D.; Ghorbanpoor, M.; Jabbari, A.R.; Cid, D. Toxigenic and non-toxigenic Pasteurella multocida genotypes, based on capsular, LPS, and virulence profile typing, associated with pneumonic pasteurellosis in Iran. Vet. Microbiol. 2021, 257, 109077. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Chen, S.; Zhang, L.; Zhang, Z.; Cheng, Y.; Wu, H.; Liu, A.; Chen, Z.; Li, B.; Chen, J.; et al. The mRNA and miRNA profiles of goat bronchial epithelial cells stimulated by Pasteurella multocida strains of serotype A and D. PeerJ 2022, 10, e13047. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Jiang, J.; Li, X.; Zhai, Z.; Wang, X.; Li, C.; Chen, Q.; Man, C.; Du, L.; Wang, F.; et al. Activation of MyD88-Dependent TLR Signaling Modulates Immune Response of the Mouse Heart during Pasteurella multocida Infection. Microorganisms 2023, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Pène, F.; Pickkers, P.; Hotchkiss, R.S. Is this critically ill patient immunocompromised? Intensive Care Med. 2016, 42, 1051–1054. [Google Scholar] [CrossRef]
- Smith, J.S.; Mochel, J.P.; Seo, Y.J.; Ahrens, A.P.; Griffith, R.W. Evaluation of a Pasteurella multocida Respiratory Disease Induction Model for Goats (Capra aegagrus hircus). Comp. Med. 2020, 70, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Swanson, P.E.; Cobb, J.P.; Jacobson, A.; Buchman, T.G.; Karl, I.E. Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T- and B-cell-deficient mice. Crit. Care Med. 1997, 25, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Praveena, P.E.; Singh, N.; Sivakumar, P.; Kumar, A.A. Studies on haemato-biochemical changes in Pasteurella multocida serotype A: 1 infection in mice. Indian J. Vet. Pathol. 2007, 31, 155–159. [Google Scholar]
- Stevens, P.K.; Czuprynski, C.J. Pasteurella haemolytica leukotoxin induces bovine leukocytes to undergo morphologic changes consistent with apoptosis in vitro. Infect. Immun. 1996, 64, 2687–2694. [Google Scholar] [CrossRef]
- Wesche, D.E.; Lomas-Neira, J.L.; Perl, M.; Chung, C.S.; Ayala, A. Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol. 2005, 78, 325–337. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, Z.; Huang, H.; Wu, Y.; Wu, H.; Liu, Z.; Zhang, Z.; An, Q.; Cheng, Y.; Chen, S.; et al. Effects of Pasteurella multocida on Histopathology, miRNA and mRNA Expression Dynamics in Lung of Goats. Anim. Open Access J. 2022, 12, 1529. [Google Scholar] [CrossRef]
- Praveena, P.E.; Periasamy, S.; Kumar, A.A.; Singh, N. Cytokine profiles, apoptosis and pathology of experimental Pasteurella multocida serotype A1 infection in mice. Res. Vet. Sci. 2010, 89, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Guo, F.; Song, Y.; Xu, K.; Lin, F.; Li, K.; Li, B.; Qian, Z.; Wang, X.; Wang, H.; et al. Transcriptional analysis of human peripheral blood mononuclear cells stimulated by Mycobacterium tuberculosis antigen. Front. Cell. Infect. Microbiol. 2023, 13, 1255905. [Google Scholar] [CrossRef]
- Eloiflin, R.J.; Auray, G.; Python, S.; Rodrigues, V.; Seveno, M.; Urbach, S.; El Koulali, K.; Holzmuller, P.; Totte, P.; Libeau, G.; et al. Identification of Differential Responses of Goat PBMCs to PPRV Virulence Using a Multi-Omics Approach. Front. Immunol. 2021, 12, 745315. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, D.; Heeg, K.; Kubatzky, K.F. Pasteurella multocida Toxin Manipulates T Cell Differentiation. Front. Microbiol. 2015, 6, 1273. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Xu, L.; Qiu, L.; Wang, S.; Liu, X.; Zhang, Y.; Chen, Y.; Zhang, Y.; Xu, Q.; Chang, G.; et al. Reticuloendotheliosis Virus Inhibits the Immune Response Acting on Lymphocytes from Peripheral Blood of Chicken. Front. Physiol. 2018, 9, 4. [Google Scholar] [CrossRef]
- Periasamy, S.; Praveena, P.E.; Singh, N. Effects of Pasteurella multocida lipopolysaccharides on bovine leukocytes. Microb. Pathog. 2018, 119, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, Y.; Annas, S.; Adza-Rina, M.N.; Zamri-Saad, M. In-vitro phagocytosis and intracellular killing of Pasteurella multocida B:2 by phagocytic cells of buffaloes. Microb. Pathog. 2019, 131, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Qudus, M.S.; Tian, M.; Sirajuddin, S.; Liu, S.; Afaq, U.; Wali, M.; Liu, J.; Pan, P.; Luo, Z.; Zhang, Q.; et al. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28751. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; John, M.; Edmunds, M.; Wright, A.; Ford, M.; Turni, C.; Blackall, P.J.; Cox, A.; Adler, B.; Boyce, J.D. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure. Vaccine 2016, 34, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- da Silva Correia, J.; Soldau, K.; Christen, U.; Tobias, P.S.; Ulevitch, R.J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 2001, 276, 21129–21135. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Purohit, M.; Gupta, G.; Afzal, O.; Altamimi, A.S.A.; Alzarea, S.I.; Kazmi, I.; Almalki, W.H.; Gulati, M.; Kaur, I.P.; Singh, S.K.; et al. Janus kinase/signal transducers and activator of transcription (JAK/STAT) and its role in Lung inflammatory disease. Chem. -Biol. Interact. 2023, 371, 110334. [Google Scholar] [CrossRef] [PubMed]
- Kane, L.P.; Lin, J.; Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 2000, 12, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Murphy, T.L.; Ouyang, W.; Murphy, K.M. Induction of interferon-gamma production in Th1 CD4+ T cells: Evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 1999, 29, 548–555. [Google Scholar] [CrossRef]
- Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb. Perspect. Biol. 2019, 11, a028480. [Google Scholar] [CrossRef]
- Bonelli, M.; Kerschbaumer, A.; Kastrati, K.; Ghoreschi, K.; Gadina, M.; Heinz, L.X.; Smolen, J.S.; Aletaha, D.; O’Shea, J.; Laurence, A. Selectivity, efficacy and safety of JAKinibs: New evidence for a still evolving story. Ann. Rheum. Dis. 2024, 83, 139–160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, T.; Chen, G.; Wang, L.; Guo, A.; Li, Z.; Pan, L.; Mao, L.; Luo, X. Th17 cell differentiation induced by cytopathogenic biotype BVDV-2 in bovine PBLCs. BMC Genom. 2021, 22, 884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Ren, J.; Tang, X.; Jing, Y.; Xing, D.; Zhao, G.; Yao, Z.; Yang, X.; Bai, H. IL-17A synergizes with IFN-γ to upregulate iNOS and NO production and inhibit chlamydial growth. PLoS ONE 2012, 7, e39214. [Google Scholar] [CrossRef] [PubMed]
- Meehan, E.V.; Wang, K. Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes 2022, 13, 1643. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zheng, C.; Zhou, Z.; Xiong, H.; Feng, F.; Xie, F.; Wu, Z.D. IL-17A neutralizing antibody attenuates eosinophilic meningitis caused by Angiostrongylus cantonensis by involving IL-17RA/Traf6/NF-κB signaling. Exp. Cell Res. 2019, 384, 111554. [Google Scholar] [CrossRef]
- Du, S.; Li, Z.; Xie, X.; Xu, C.; Shen, X.; Wang, N.; Shen, Y. IL-17 stimulates the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation. Scand. J. Immunol. 2020, 91, e12840. [Google Scholar] [CrossRef]
- Campbell, J.D.; Gangur, V.; Simons, F.E.; HayGlass, K.T. Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 329–331. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Kolls, J.K. T cell-mediated host immune defenses in the lung. Annu. Rev. Immunol. 2013, 31, 605–633. [Google Scholar] [CrossRef] [PubMed]
- Palomino, D.C.; Marti, L.C. Chemokines and immunity. Einstein 2015, 13, 469–473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Meng, Y.; Qian, H.; Chen, T.; Chen, X.; Chen, Q.; Gao, H.; Man, C.; Du, L.; Chen, S.; et al. Pasteurella multocida Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes. Microorganisms 2024, 12, 2618. https://doi.org/10.3390/microorganisms12122618
Fu Y, Meng Y, Qian H, Chen T, Chen X, Chen Q, Gao H, Man C, Du L, Chen S, et al. Pasteurella multocida Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes. Microorganisms. 2024; 12(12):2618. https://doi.org/10.3390/microorganisms12122618
Chicago/Turabian StyleFu, Yujing, Yong Meng, Hejie Qian, Taoyu Chen, Xiangying Chen, Qiaoling Chen, Hongyan Gao, Churiga Man, Li Du, Si Chen, and et al. 2024. "Pasteurella multocida Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes" Microorganisms 12, no. 12: 2618. https://doi.org/10.3390/microorganisms12122618
APA StyleFu, Y., Meng, Y., Qian, H., Chen, T., Chen, X., Chen, Q., Gao, H., Man, C., Du, L., Chen, S., & Wang, F. (2024). Pasteurella multocida Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes. Microorganisms, 12(12), 2618. https://doi.org/10.3390/microorganisms12122618