Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Culture of Plasmodia
2.2. DNA Extraction and Metagenomic Sequencing
2.3. Quality Control and Genome Assembly
2.4. Gene Prediction, Taxonomy, and Functional Annotation
2.5. Statistical Analysis
3. Results
3.1. Associated Microbiome Accounted for a Substantial Proportion of Plasmodia
3.2. Bacterial Communities Associated with Plasmodia
3.3. Microbiota Phenotypes and Functional Prediction of Bacterial Communities Associated with Plasmodia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, L.M.; Stephenson, S.L. The Species Problem in Myxomycetes Revisited. Protist 2016, 167, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.W.; Everhart, S.E.; Kilgore, C.M. Introduction, Basic Biology, Life Cycles, Genetics, and Reproduction. In Myxomycetes (Biology, Systematics, Biogeography and Ecology), 2nd ed.; Rojas, C., Stephenson, S.L., Eds.; Elsevier Inc.: Maryland Heights, MO, USA, 2021; ISBN 9780128134276. [Google Scholar]
- Geisen, S.; Mitchell, E.A.D.; Wilkinson, D.M.; Adl, S.; Bonkowski, M.; Brown, M.W.; Fiore-Donno, A.M.; Heger, T.J.; Jassey, V.E.J.; Krashevska, V.; et al. Soil Protistology Rebooted: 30 Fundamental Questions to Start With. Soil Biol. Biochem. 2017, 111, 94–103. [Google Scholar] [CrossRef]
- Everhart, S.E.; Keller, H.W. Life History Strategies of Corticolous Myxomycetes: The Life Cycle, Plasmodial Types, Fruiting Bodies, and Taxonomic Orders. Fungal Divers. 2008, 29, 1–16. [Google Scholar]
- Cohen, A.L. Nutrition of the Myxomycetes. II. Relations between Plasmodia, Bacteria, and Substrate in Two-Membered Culture. Bot. Gaz. 1941, 103, 205–224. [Google Scholar] [CrossRef]
- Lazo, W.R. Growth of Green Algae with Myxomycete Plasmodia. Am. Midl. Nat. 1961, 65, 381–383. [Google Scholar] [CrossRef]
- Stephenson, S.L.; Schnittler, M.; Novozhilov, Y.K. Myxomycete Diversity and Distribution from the Fossil Record to the Present. Biodivers. Conserv. 2008, 17, 285–301. [Google Scholar] [CrossRef]
- Lado, C. (2005–2024). An Online Nomenclatural Information System of Eumycetozoa. Real Jardín Botánico, CSIC. Madrid, Spain. Available online: https://eumycetozoa.com (accessed on 4 December 2024).
- Adl, S.M.; Leander, B.S.; Simpson, A.G.B.; Archibald, J.M.; Anderson, O.R.; Bass, D.; Bowser, S.S.; Brugerolle, G.; Farmer, M.A.; Karpov, S.; et al. Diversity, Nomenclature, and Taxonomy of Protists. Syst. Biol. 2007, 56, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Fiore-Donno, A.M.; Nikolaev, S.I.; Nelson, M.; Pawlowski, J.; Cavalier-Smith, T.; Baldauf, S.L. Deep Phylogeny and Evolution of Slime Moulds (Mycetozoa). Protist 2010, 161, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Qi, B.; Peng, X.; Wang, W.; Wang, W.; Liu, P.; Liu, B.; Peng, Z.; Wang, Q.; Li, Y. Genome Size and GC Content of Myxomycetes. Eur. J. Protistol. 2023, 90, 125991. [Google Scholar] [CrossRef]
- Gao, Z.; Karlsson, I.; Geisen, S.; Kowalchuk, G.; Jousset, A. Protists: Puppet Masters of the Rhizosphere Microbiome. Trends Plant Sci. 2019, 24, 165–176. [Google Scholar] [CrossRef]
- Kulaš, A.; Žutinić, P.; Gulin Beljak, V.; Kepčija, R.M.; Perić, M.S.; Orlić, S.; Petrić, I.S.; Marković, T.; Gligora Udovič, M. Diversity of Protist Genera in Periphyton of Tufa-Depositing Karstic River. Ann. Microbiol. 2023, 73, 10. [Google Scholar] [CrossRef]
- Seppey, C.V.W.; Singer, D.; Dumack, K.; Fournier, B.; Belbahri, L.; Mitchell, E.A.D.; Lara, E. Distribution Patterns of Soil Microbial Eukaryotes Suggests Widespread Algivory by Phagotrophic Protists as an Alternative Pathway for Nutrient Cycling. Soil Biol. Biochem. 2017, 112, 68–76. [Google Scholar] [CrossRef]
- Husnik, F.; Tashyreva, D.; Boscaro, V.; George, E.E.; Lukeš, J.; Keeling, P.J. Bacterial and Archaeal Symbioses with Protists. Curr. Biol. 2021, 31, 862–877. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.P.; Bruijning, M.; Forsberg, S.K.G.; Ayroles, J.F. The Microbiome Extends Host Evolutionary Potential. Nat. Commun. 2021, 12, 5141. [Google Scholar] [CrossRef]
- Lanzoni, O.; Plotnikov, A.; Khlopko, Y.; Munz, G.; Petroni, G.; Potekhin, A. The Core Microbiome of Sessile Ciliate Stentor Coeruleus Is Not Shaped by the Environment. Sci. Rep. 2019, 9, 11356. [Google Scholar] [CrossRef]
- Chapman, A.; Coote, J.G. Growth of Physarum Polycephalum on Different Strains of Bacteria and a Yeast. FEMS Microbiol. Lett. 1983, 19, 221–224. [Google Scholar] [CrossRef]
- Kalyanasundaram, I. A Positive Ecological Role for Tropical Myxomycetes in Association with Bacteria. Syst. Geogr. Plants 2004, 74, 239–242. [Google Scholar]
- Kutschera, U.; Hoppe, T. Plasmodial Slime Molds and the Evolution of Microbial Husbandry. Theory Biosci. 2019, 138, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Sizov, L.R.; Lysak, L.V.; Gmoshinskii, V.I. Taxonomic Diversity of the Bacterial Community Associated with the Fruiting Bodies of the Myxomycete Lycogala epidendrum Fr (L.). Microbiology 2021, 90, 336–342. [Google Scholar] [CrossRef]
- Venkataramani, R.; Daniel, L. Bacterial Associates of the Slime Mould Physarum Nicaraguense Macbr. Proc. Indian Acad. Sci. (Plant Sci.) 1987, 97, 469–473. [Google Scholar] [CrossRef]
- Li, S.; Qi, B.; Wang, W.; Peng, X.; Gontcharov, A.A.; Liu, B.; Wang, Q.; Li, Y. Diversity of Bacterial Communities in the Plasmodia of Myxomycetes. BMC Microbiol. 2022, 22, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Leontyev, D.V.; Schnittler, M.; Stephenson, S.L.; Novozhilov, Y.K.; Shchepin, O.N. Towards a Phylogenetic Classification of the Myxomycetes. Phytotaxa 2019, 399, 209–238. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q.; Li, Y. Spore-to-Spore Agar Culture of the Myxomycete Physarum Globuliferum. Arch. Microbiol. 2010, 192, 97–101. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short Oligonucleotide Alignment Program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Beals, E.W. Bray-Curtis Ordination: An Effective Strategy for Analysis of Multivariate Ecological Data. In Advances in Ecological Research; MacFadyen, A., Ford, E.D., Eds.; Academic Press: Cambridge, MA, USA, 1984; Volume 14, pp. 1–55. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 20 May 2023).
- Chen, H. VennDiagram: Generate high-Resolution Venn and Euler Plots. R Package Version 1.6.20. 2018. Available online: https://cran.r-project.org/package=VennDiagram (accessed on 13 August 2024).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 August 2024).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org/ (accessed on 13 August 2024).
- Zhu, L.; Liao, R.; Wu, N.; Zhu, G.; Yang, C. Heat Stress Mediates Changes in Fecal Microbiome and Functional Pathways of Laying Hens. Appl. Microbiol. Biotechnol. 2019, 103, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.J. Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi Jilin Agricultural University, Changchun, China. 2024; manuscript in preparation. [Google Scholar]
- Ma, B.; Wang, Y.; Ye, S.; Liu, S.; Stirling, E.; Gilbert, J.A.; Faust, K.; Knight, R.; Jansson, J.K.; Cardona, C.; et al. Earth Microbial Co-Occurrence Network Reveals Interconnection Pattern across Microbiomes. Microbiome 2020, 8, 82–93. [Google Scholar] [CrossRef]
- Webster, N.S.; Taylor, M.W. Marine Sponges and Their Microbial Symbionts: Love and Other Relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef]
- Swe, P.M.; Zakrzewski, M.; Waddell, R.; Sriprakash, K.S.; Fischer, K. High-Throughput Metagenome Analysis of the Sarcoptes Scabiei Internal Microbiota and in-Situ Identification of Intestinal Streptomyces Sp. Sci. Rep. 2019, 9, 11744. [Google Scholar] [CrossRef]
- Clark, J. Plasmodial Incompatibility in the Myxomycetes: A Review. Mycosphere 2012, 3, 131–141. [Google Scholar] [CrossRef]
- Geisen, S.; Mitchell, E.A.D.; Adl, S.; Bonkowski, M.; Dunthorn, M.; Ekelund, F.; Fernández, L.D.; Jousset, A.; Krashevska, V.; Singer, D.; et al. Soil Protists: A Fertile Frontier in Soil Biology Research. FEMS Microbiol. Rev. 2018, 42, 293–323. [Google Scholar] [CrossRef]
- Ross, I.K.; Gray, W.D.; Alexopoulos, C.J. Biology of the Myxomycetes. Mycologia 1969, 61, 847. [Google Scholar] [CrossRef]
- Chrzaszcz, T. Physarum Leucophaeum Ferox, Eine Hefefressende Amobe. Centralbl. Bakt. Abt. Ⅱ 1902, 8, 431–441. [Google Scholar]
- Howard, F.L.; Currie, M.E. Parasitism of Myxomycete Plasmodia on Fungus Mycelia. J. Arnold Arbor. 1932, 13, 438–447. [Google Scholar] [CrossRef]
- Borg Dahl, M.; Brejnrod, A.D.; Russel, J.; Sørensen, S.J.; Schnittler, M. Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. Microb. Ecol. 2019, 78, 764–780. [Google Scholar] [CrossRef]
- Fukasawa, Y.; Hyodo, F.; Kawakami, S. ichi Foraging Association between Myxomycetes and Fungal Communities on Coarse Woody Debris. Soil Biol. Biochem. 2018, 121, 95–102. [Google Scholar] [CrossRef]
- Schnittler, M.; Stephenson, S.L.; Novozhilov, Y.K. Ecology and World Distribution of Barbeyella Minutissima (Myxomycetes). Mycol. Res. 2000, 104, 1518–1523. [Google Scholar] [CrossRef]
- Smith, T.; Stephenson, S.L. Algae Associated with Myxomycetes and Leafy Liverworts on Decaying Spruce Logs. Castanea 2007, 72, 50–57. [Google Scholar] [CrossRef]
- Anderson, O.R. Microbial Communities Associated with Tree Bark Foliose Lichens: A Perspective on Their Microecology. J. Eukaryot. Microbiol. 2014, 61, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Suyama, T.; Kawaharasaki, M. Decomposition of Waste DNA with Extended Autoclaving under Unsaturated Steam. BioTechniques 2013, 55, 296–299. [Google Scholar] [CrossRef]
- Maelle, M.; Horn, M.; Wagner, M.; Santic, M.; Kwaik, Y.A. Amoebae as Training Grounds for Intracellular Bacterial Pathogens. Appl. Environ. Microbiol. 2009, 71, 20–28. [Google Scholar] [CrossRef]
- Denoncourt, A.M.; Paquet, V.E.; Charette, S.J. Potential Role of Bacteria Packaging by Protozoa in the Persistence and Transmission of Pathogenic Bacteria. Front. Microbiol. 2014, 5, 240. [Google Scholar] [CrossRef]
- Matriano, D.M.; Alegado, R.A.; Conaco, C. Detection of Horizontal Gene Transfer in the Genome of the Choanoflagellate Salpingoeca Rosetta. Sci. Rep. 2021, 11, 5993. [Google Scholar] [CrossRef] [PubMed]
- Ingala, M.R.; Simmons, N.B.; Dunbar, M.; Wultsch, C.; Krampis, K.; Perkins, S.L. You Are More than What You Eat: Potentially Adaptive Enrichment of Microbiome Functions across Bat Dietary Niches. Anim. Microbiome 2021, 3, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Hannula, S.E.; Zhu, F.; Heinen, R.; Bezemer, T.M. Foliar-Feeding Insects Acquire Microbiomes from the Soil Rather than the Host Plant. Nat. Commun. 2019, 10, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Rex Gaskins, H.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat Degradation Impacts Black Howler Monkey (Alouatta Pigra) Gastrointestinal Microbiomes. ISME J. 2013, 716, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, G.; Li, Y.; Wei, Y.; Lin, S.; Liu, S.; Zheng, Y.; Hu, D. High-Throughput Analysis Reveals Seasonal Variation of the Gut Microbiota Composition within Forest Musk Deer (Moschus Berezovskii). Front. Microbiol. 2018, 9, 1764–1776. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; et al. Function and Functional Redundancy in Microbial Systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef]
- Fetzer, I.; Johst, K.; Schawea, R.; Banitz, T.; Harms, H.; Chatzinotas, A. The Extent of Functional Redundancy Changes as Species’ Roles Shift in Different Environments. Proc. Natl. Acad. Sci. USA 2015, 112, 14888–14893. [Google Scholar] [CrossRef]
- Yu, X.A.; McLean, C.; Hehemann, J.H.; Angeles-Albores, D.; Wu, F.; Muszyński, A.; Corzett, C.H.; Azadi, P.; Kujawinski, E.B.; Alm, E.J.; et al. Low-Level Resource Partitioning Supports Coexistence among Functionally Redundant Bacteria during Successional Dynamics. ISME J. 2024, 18, wrad013. [Google Scholar] [CrossRef]
- Anantharaman, K.; Brown, C.T.; Hug, L.A.; Sharon, I.; Castelle, C.J.; Probst, A.J.; Thomas, B.C.; Singh, A.; Wilkins, M.J.; Karaoz, U.; et al. Thousands of Microbial Genomes Shed Light on Interconnected Biogeochemical Processes in an Aquifer System. Nat. Commun. 2016, 7, 13219. [Google Scholar] [CrossRef]
- Brochet, S.; Quinn, A.; Mars, R.A.T.; Neuschwander, N.; Sauer, U.; Engel, P. Niche Partitioning Facilitates Coexistence of Closely Related Gut Bacteria. eLife 2021, 10, e68583. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Hou, J.; Zou, Y.; Stephenson, S.L.; Huo, X.; Hu, X.; Li, Y. Developmental Features and Associated Symbiont Bacterial Diversity in Essential Life Cycle Stages of Heterostelium Colligatum. Eur. J. Protistol. 2019, 68, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Jacques, S.M.S.; Pires, A.P.F.; Leal, J.S.; Srivastava, D.S.; Parfrey, L.W.; Farjalla, V.F.; Doebeli, M. High Taxonomic Variability despite Stable Functional Structure across Microbial Communities. Nat. Ecol. Evol. 2016, 1, 15–26. [Google Scholar] [CrossRef]
Order | Family | Genus | Species | Percent of Associated Microbiome in Total Reads (%) |
---|---|---|---|---|
Physarales | Didymiaceae | Didymium | D. squamulosum | 22.27 |
D. nigripes | 46.49 | |||
Physaraceae | Fuligo | F. gyrosa | 48.7 | |
Badhamia | B. melanospora | 48.17 | ||
Trichiales | Arcyriaceae | Arcyria | A. cinerea | 54.30 |
Stemonitidales | Stemonitidaceae | Macbrideola | M. scintillans | 77.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Li, S.; Dou, W.; Li, M.; Gontcharov, A.A.; Peng, Z.; Qi, B.; Wang, Q.; Li, Y. Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes. Microorganisms 2024, 12, 2540. https://doi.org/10.3390/microorganisms12122540
Peng X, Li S, Dou W, Li M, Gontcharov AA, Peng Z, Qi B, Wang Q, Li Y. Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes. Microorganisms. 2024; 12(12):2540. https://doi.org/10.3390/microorganisms12122540
Chicago/Turabian StylePeng, Xueyan, Shu Li, Wenjun Dou, Mingxin Li, Andrey A. Gontcharov, Zhanwu Peng, Bao Qi, Qi Wang, and Yu Li. 2024. "Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes" Microorganisms 12, no. 12: 2540. https://doi.org/10.3390/microorganisms12122540
APA StylePeng, X., Li, S., Dou, W., Li, M., Gontcharov, A. A., Peng, Z., Qi, B., Wang, Q., & Li, Y. (2024). Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes. Microorganisms, 12(12), 2540. https://doi.org/10.3390/microorganisms12122540