Bacillus cereus: An Ally Against Drought in Popcorn Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation
2.2. Plant Material
2.3. Seed Preparation
2.4. Experiment Implementation
2.5. Physiological Traits
2.5.1. Leaf Pigments and N Balance Index
2.5.2. Efficiency of PSII (Chlorophyll Fluorescence)
2.5.3. Gas Exchange
2.5.4. Leaf Water Status and Agronomic Water Use Efficiency
2.6. Morphological Traits
2.7. Measurement of Stomatal and Epidermal Cell Density
2.8. Analysis of Root Traits
2.9. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, K.-H.; Lee, B.-M. Effects of Climate Change and Drought Tolerance on Maize Growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Seth, C.S.; Roychoudhury, A. The Molecular Paradigm of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) with Different Phytohormone Signaling Pathways during Drought Stress in Plants. Plant Physiol. Biochem. 2024, 206, 108259. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Haider, M.Z.; Javed, S.; Saleem, M.H.; Alatawi, A. Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture 2022, 12, 50. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The Role of Plant Growth Promoting Rhizobacteria in Plant Drought Stress Responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef] [PubMed]
- Mahreen, N.; Yasmin, S.; Asif, M.; Yahya, M.; Ejaz, K.; Rahman, M.U.; Yousaf, S.; Amin, I.; Zulfiqar, S.; Imran, A.; et al. Mitigation of Water Scarcity with Sustained Growth of Rice by Plant Growth Promoting Bacteria. Front. Plant Sci. 2023, 14, 1081537. [Google Scholar] [CrossRef]
- Praveen, A.; Dubey, S.; Singh, S.; Sharma, V.K. Abiotic Stress Tolerance in Plants: A Fascinating Action of Defense Mechanisms. 3 Biotech 2023, 13, 102. [Google Scholar] [CrossRef]
- Cabrera-Ramírez, A.H.; Gaytán-Martínez, M.; Gonzáles-Jasso, E.; Ramírez-Jiménez, A.K.; Velázquez, G.; Villamiel, M.; Morales-Sánchez, E. Flours from Popped Grains: Physicochemical, Thermal, Rheological, and Techno-Functional Properties. Food Hydrocoll. 2023, 135, 108129. [Google Scholar] [CrossRef]
- de Lima, V.J.; do Amaral Júnior, A.T.; Kamphorst, S.H.; dos Santos, A.; Schmidt, K.F.M.; Azeredo, V.C.; Leite, J.T.; dos Santos Junior, D.R.; Santos, T.d.O.; Bispo, R.B.; et al. UENF WS01: Popcorn Hybrid with Water Use Efficiency for the State of Rio de Janeiro. Crop. Breed. Appl. Biotechnol. 2021, 21, e375821411. [Google Scholar] [CrossRef]
- Schmitt, K.F.M.; do Amaral Junior, A.T.; Kamphorst, S.H.; Pinto, V.B.; de Lima, V.J.; de Oliveira, U.A.; Viana, F.N.; Leite, J.T.; Gomes, L.P.; Silva, J.G.d.S.; et al. Decoding the Effects of Drought Stress on Popcorn (Zea mays Var. Everta) Flowering Combining Proteomics and Physiological Analysis. Plant Physiol. Biochem. 2024, 208, 108444. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; de Lima, V.J.; Guimarães, L.J.M.; Schmitt, K.F.M.; Leite, J.T.; Santos, P.H.A.D.; Chaves, M.M.; Mafra, G.S.; dos Santos Junior, D.R.; et al. Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 2019, 9, 792. [Google Scholar] [CrossRef]
- Santos, T.d.O.; Junior, A.T.D.A.; Bispo, R.B.; de Lima, V.J.; Kamphorst, S.H.; Leite, J.T.; Júnior, D.R.d.S.; Santos, P.H.A.D.; de Oliveira, U.A.; Schmitt, K.F.M.; et al. Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants 2021, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; Vergara-Diaz, O.; Gracia-Romero, A.; Fernandez-Gallego, J.A.; Chang-Espino, M.C.; Buchaillot, M.L.; Rezzouk, F.Z.; de Lima, V.J.; Serret, M.D.; et al. Heterosis and Reciprocal Effects for Physiological and Morphological Traits of Popcorn Plants under Different Water Conditions. Agric. Water Manag. 2022, 261, 107371. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; De Lima, V.J.; Leite, J.T.; Carvalho, C.M.; Xavier, K.B.; Campostrini, E. Popcorn Breeding for Water-Stress Tolerance or for Agronomic Water-Use Efficiency? Evolution 2018, 17, gmr18184. [Google Scholar] [CrossRef]
- de Lima, V.J.; Júnior, A.T.D.A.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; Santos, T.d.O.; Schmitt, K.F.M.; Chaves, M.M.; de Oliveira, U.A.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef]
- Leite, J.T.; Junior, A.T.D.A.; Kamphorst, S.H.; de Lima, V.J.; Junior, D.R.d.S.; Alves, U.O.; Azeredo, V.C.; Pereira, J.L.; Bispo, R.B.; Schmidt, K.F.M.; et al. All Are in a Drought, but Some Stand Out: Multivariate Analysis in the Selection of Agronomic Efficient Popcorn Genotypes. Plants 2022, 11, 2275. [Google Scholar] [CrossRef]
- Bela, K. Crop Tolerance under Biotic and Abiotic Stresses. Agronomy 2023, 13, 3024. [Google Scholar] [CrossRef]
- Hernández-Canseco, J.; Bautista-Cruz, A.; Sánchez-Mendoza, S.; Aquino-Bolaños, T.; Sánchez-Medina, P.S. Plant Growth-Promoting Halobacteria and Their Ability to Protect Crops from Abiotic Stress: An Eco-Friendly Alternative for Saline Soils. Agronomy 2022, 12, 804. [Google Scholar] [CrossRef]
- Liu, F.; Ma, H.; Liu, B.; Du, Z.; Ma, B.; Jing, D. Effects of Plant Growth-Promoting Rhizobacteria on the Physioecological Characteristics and Growth of Walnut Seedlings under Drought Stress. Agronomy 2023, 13, 290. [Google Scholar] [CrossRef]
- Meddich, A. Biostimulants for Resilient Agriculture—Improving Plant Tolerance to Abiotic Stress: A Concise Review. Gesunde Pflanz. 2023, 75, 709–727. [Google Scholar] [CrossRef]
- Abdelkefi, N.; Louati, I.; Mechichi, H.-Z.; Sayahi, N.; El-Sayed, W.S.; El Nayal, A.; Ismail, W.; Hanin, M.; Mechichi, T. Enhanced Salt Stress Tolerance in Tomato Plants Following Inoculation with Newly Isolated Plant Growth-Promoting Rhizobacteria. Sci. Hortic. 2024, 328, 112921. [Google Scholar] [CrossRef]
- Hasan, A.; Tabassum, B.; Hashim, M.; Khan, N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria 2024, 3, 59–75. [Google Scholar] [CrossRef]
- Rafique, N.; Khalil, S.; Cardinale, M.; Rasheed, A.; Zhao, F.; Abideen, Z. A Comprehensive Evaluation of the Potential of Plant Growth-Promoting Rhizobacteria for Applications in Agriculture in Stressed Environments. Pedosphere 2024, in press. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Q.; Wu, R.; Zhang, Y.; Wu, Q.; Li, M.; Ye, K.; Dai, W.; Huang, J. Biocontrol and Plant Growth Promotion Potential of Endophytic Bacillus Subtilis JY-7-2L on Aconitum Carmichaelii Debx. Front. Microbiol. 2023, 13, 1059549. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Kulkova, I.; Dobrzyński, J.; Kowalczyk, P.; Bełżecki, G.; Kramkowski, K. Plant Growth Promotion Using Bacillus Cereus. Int. J. Mol. Sci. 2023, 24, 9759. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Çam, S.; Küçük, Ç.; Almaca, A. Bacillus Strains Exhibit Various Plant Growth Promoting Traits and Their Biofilm-Forming Capability Correlates to Their Salt Stress Alleviation Effect on Maize Seedlings. J. Biotechnol. 2023, 369, 35–42. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Gong, X.; Tao, T.; Wang, Z.; Zhang, J.; Zhu, Y. Recovery and Utilization of Waste Filtrate from Industrial Biological Fermentation: Development and Metabolite Profile of the Bacillus Cereus Liquid Bio-Fertilizer. J. Environ. Manag. 2023, 346, 118945. [Google Scholar] [CrossRef]
- Rengarajan, S.; Deepa, S.; Natarajan, D.; Pandian, A.; Al-Ansari, M.M.; Oza, G.; Castillo-Maldonado, I.; Sharma, A. Bioremediation Potential of Biochar and Metal Tolerant Bacillus Cereus on Heavy Metal Polluted Mine Surrounding Pond and Assessed Cytotoxicity and Phytotoxicity Attributes of Treated Water on Brine Shrimp Larvae and Paddy Seedling. J. Taiwan Inst. Chem. Eng. 2024, 105330. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Chen, J.; Jun, S.; Yuan, Y.; Dai, X.; Wang, F.; Ma, Y. The Biological Control Effect of Bacillus cereus on Strawberry Leaf Spot Disease Caused by Neopestalotiopsis clavispora. Sci. Hortic. 2024, 327, 112841. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Z.; Xi, Y.; Wang, X.; Chen, S.; He, M.; Chen, Y.; Guo, Y. Improvement of Salt Tolerance of Arabidopsis Thaliana Seedlings Inoculated with Endophytic Bacillus Cereus KP120. J. Plant Interact. 2022, 17, 884–893. [Google Scholar] [CrossRef]
- Andy, A.K.; Rajput, V.D.; Burachevskaya, M.; Gour, V.S. Exploring the Identity and Properties of Two Bacilli Strains and Their Potential to Alleviate Drought and Heavy Metal Stress. Horticulturae 2023, 9, 46. [Google Scholar] [CrossRef]
- Wróbel, M.; Śliwakowski, W.; Kowalczyk, P.; Kramkowski, K.; Dobrzyński, J. Bioremediation of Heavy Metals by the Genus Bacillus. Int. J. Environ. Res. Public Health 2023, 20, 4964. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, T.; Rehman, S.U.; Smith, D.; Sultan, T.; Seleiman, M.F.; Alsadon, A.A.; Amna; Ali, S.; Chaudhary, H.J.; Solieman, T.H.I.; et al. Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-Deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling. Sustainability 2020, 12, 2159. [Google Scholar] [CrossRef]
- Peixoto, A.R.; Mariano, R.d.L.R.; Viana, I.O. Meio Semi-Seletivo Para Isolamento de Xanthomonas Campestris Pv. Viticola. Ciência Rural 2006, 36, 1317–1320. [Google Scholar] [CrossRef]
- Döbereiner, J.; Baldani, V.L.D.; Baldani, J.I. Como Isolar e Identificar Bactérias Diazotróficas de Plantas Não Leguminosas; Empresa Brasileira de Pesquisa Agropecuária—CNPAB: Sete Lagoas, Brazil, 1995. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I.; Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circular. Calif. Agric. Exp. Stn. 1950, 347. [Google Scholar]
- Radoglou, K.M.; Jarvis, P.G.; Radoglou, K.M.; Jarvis, P.G. Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy. Ann. Bot. 1990, 65, 617–626. [Google Scholar] [CrossRef]
- Galkovskyi, T.; Mileyko, Y.; Bucksch, A.; Moore, B.; Symonova, O.; Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S.; Zurek, P.R.; Fang, S.; et al. GiA Roots: Software for the High Throughput Analysis of Plant Root System Architecture. BMC Plant Biol. 2012, 12, 116. [Google Scholar] [CrossRef]
- Elazab, A.; Molero, G.; Serret, M.D.; Araus, J.L. Root Traits and Δ13C and Δ18O of Durum Wheat under Different Water Regimes. Funct. Plant Biol. 2012, 39, 379. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES—A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Dabravolski, S.A.; Isayenkov, S.V. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants 2023, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.L.; de Mesquita Alves, J.; Rocha, R.H.C.; Santos, J.Z.L.; dos Santos Barbosa, R.; da Costa, F.M.N.; de Lima, G.S.; de Freitas, L.N.; Lima, A.S.; Nogueira, A.E.P.; et al. Beneficial Microorganisms Affect Soil Microbiological Activity and Corn Yield under Deficit Irrigation. Agriculture 2023, 13, 1169. [Google Scholar] [CrossRef]
- Han, L.-J.; Fan, D.-Y.; Wang, X.-P.; Xu, C.-Y.; Xia, X.-L.; Chow, W.S. The Protective Role of Non-Photochemical Quenching in PSII Photo-Susceptibility: A Case Study in the Field. Plant Cell Physiol. 2023, 64, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Roach, T.; Na, C.S.; Stöggl, W.; Krieger-Liszkay, A. The Non-Photochemical Quenching Protein LHCSR3 Prevents Oxygen-Dependent Photoinhibition in Chlamydomonas reinhardtii. J. Exp. Bot. 2020, 71, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, P.P.; Alves, A.F.; Ferreira, M.B.; da Silva Irineu, L.E.S.; Pinto, V.B.; Olivares, F.L. Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023, 11, 502. [Google Scholar] [CrossRef]
- de Aquino, J.P.A.; Junior, F.B.d.M.; Antunes, J.E.L.; Figueiredo, M.D.V.B.; Neto, F.d.A.; de Araujo, A.S.F. Plant Growth-Promoting Endophytic Bacteria on Maize and Sorghum1. Pesqui Agropecu Trop. 2019, 49, e56241. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Rodríguez-Llorente, I.D.; Pajuelo, E.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Mesa-Marín, J. Role of Bacterial Endophytes in Plant Stress Tolerance: Current Research and Future Outlook. In Microbial Endophytes and Plant Growth; Elsevier: Amsterdam, The Netherlands, 2023; pp. 35–49. [Google Scholar]
- Singh, G.M.; Goldberg, S.; Schaefer, D.; Zhang, F.; Sharma, S.; Mishra, V.K.; Xu, J. Biochemical, Gas Exchange, and Chlorophyll Fluorescence Analysis of Maize Genotypes under Drought Stress Reveals Important Insights into Their Interaction and Homeostasis. Photosynthetica 2022, 60, 376–388. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Júnior, A.T.D.A.; de Lima, V.J.; Santos, P.H.A.D.; Rodrigues, W.P.; Vivas, J.M.S.; Gonçalves, G.M.B.; Schmitt, K.F.M.; Leite, J.T.; Vivas, M.; et al. Comparison of Selection Traits for Effective Popcorn (Zea mays L. Var. Everta) Breeding Under Water Limiting Conditions. Front. Plant Sci. 2020, 11, 1289. [Google Scholar] [CrossRef]
- Haworth, M.; Belcher, C.M.; Killi, D.; Dewhirst, R.A.; Materassi, A.; Raschi, A.; Centritto, M. Impaired Photosynthesis and Increased Leaf Construction Costs May Induce Floral Stress during Episodes of Global Warming over Macroevolutionary Timescales. Sci. Rep. 2018, 8, 6206. [Google Scholar] [CrossRef]
- Sherin, G.; Aswathi, K.P.R.; Puthur, J.T. Photosynthetic Functions in Plants Subjected to Stresses Are Positively Influenced by Priming. Plant Stress 2022, 4, 100079. [Google Scholar] [CrossRef]
- Basnayake, J.; Jackson, P.A.; Inman-Bamber, N.G.; Lakshmanan, P. Sugarcane for Water-Limited Environments. Genetic Variation in Cane Yield and Sugar Content in Response to Water Stress. J. Exp. Bot. 2012, 63, 6023–6033. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal; Artmed Editora: Porto Alegre, Brazil, 2017; ISBN 9788582713679. [Google Scholar]
- Wang, F.; Cui, P.; Tian, Y.; Huang, Y.; Wang, H.; Liu, F.; Chen, Y. Maize ZmPT7 Regulates Pi Uptake and Redistribution Which Is Modulated by Phosphorylation. Plant Biotechnol. J. 2020, 18, 2406–2419. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Ahanger, M.A.; Su, Y.; Lei, Y.; Mustafa, N.S.A.; Ahmad, P.; Zhang, L. Improved Drought Tolerance by AMF Inoculation in Maize (Zea mays) Involves Physiological and Biochemical Implications. Plants 2019, 8, 579. [Google Scholar] [CrossRef] [PubMed]
- Molla, S.H.; Kumdee, O.; Worathongchai, N.; Khongchiu, P.; Ali, M.A.; Anwar, M.; Wongkaew, A.; Nakasathien, S. Efforts to Stimulate Morpho-Physio-Biochemical Traits of Maize for Efficient Production Under Drought Stress in Tropics Field. Agronomy 2023, 13, 2673. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Zhou, B.; Tang, X.; Chen, C.; Zhang, L.; Zhang, S.; Li, C.; Xiao, K.; Dong, W.; et al. Characterization of Low-N Responses in Maize (Zea mays L.) Cultivars with Contrasting Nitrogen Use Efficiency in the North China Plain. J. Integr. Agric. 2019, 18, 2141–2152. [Google Scholar] [CrossRef]
- Kumdee, O.; Molla, S.H.; Kanavittaya, K.; Romkaew, J.; Sarobol, E.; Nakasathien, S. Morpho-Physiological and Biochemical Responses of Maize Hybrids under Recurrent Water Stress at Early Vegetative Stage. Agriculture 2023, 13, 1795. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus Species in Soil as a Natural Resource for Plant Health and Nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef]
- Jabeen, Z.; Irshad, F.; Habib, A.; Hussain, N.; Sajjad, M.; Mumtaz, S.; Rehman, S.; Haider, W.; Hassan, M.N. Alleviation of Cadmium Stress in Rice by Inoculation of Bacillus cereus. PeerJ 2022, 10, e13131. [Google Scholar] [CrossRef]
- Vitorino, L.C.; de Souza Rocha, A.F.; Bessa, L.A.; Lourenço, L.L.; da Costa, A.C.; Silva, F.G. Symbiotic Microorganisms Affect the Resilience of Hymenaea courbaril L., a Neotropical Fruit Tree, to Water Restriction. Plant Stress 2022, 5, 100092. [Google Scholar] [CrossRef]
- Bandeppa, S.; Paul, S.; Thakur, J.K.; Chandrashekar, N.; Umesh, D.K.; Aggarwal, C.; Asha, A.D. Antioxidant, Physiological and Biochemical Responses of Drought Susceptible and Drought Tolerant Mustard (Brassica juncea L.) Genotypes to Rhizobacterial Inoculation under Water Deficit Stress. Plant Physiol. Biochem. 2019, 143, 19–28. [Google Scholar] [CrossRef]
- Jha, Y.; Yadav, K.A.; Mohamed, H.I. Plant Growth-Promoting Bacteria and Exogenous Phytohormones Alleviate the Adverse Effects of Drought Stress in Pigeon Pea Plants. Plant Soil 2023. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhou, G.; He, Q.; Zhou, H. Stomatal Limitations to Photosynthesis and Their Critical Water Conditions in Different Growth Stages of Maize under Water Stress. Agric. Water Manag. 2020, 241, 106330. [Google Scholar] [CrossRef]
- Liu, S.; Qin, F. Genetic Dissection of Maize Drought Tolerance for Trait Improvement. Mol. Breed. 2021, 41, 8. [Google Scholar] [CrossRef]
- de Oliveira Neto, S.S.; Bossolani, J.W.; de Freitas, S.E.; Gazola, B.; Gonçalves, A.S.F.; Zoz, T.; Calonego, J.C. Impact of Glyphosate on Morphophysiological Traits of RR Corn Plants under Drought Stress. Acta Physiol. Plant 2023, 45, 28. [Google Scholar] [CrossRef]
- Zarei, T. Balancing Water Deficit Stress with Plant Growth-Promoting Rhizobacteria: A Case Study in Maize. Rhizosphere 2022, 24, 100621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, U.A.; Amaral Junior, A.T.d.; Kamphorst, S.H.; de Lima, V.J.; Olivares, F.L.; Khan, S.; de Souza Santos, M.; da Silva Figueiredo, J.; da Silva, S.P.; Viana, F.N.; et al. Bacillus cereus: An Ally Against Drought in Popcorn Cultivation. Microorganisms 2024, 12, 2351. https://doi.org/10.3390/microorganisms12112351
de Oliveira UA, Amaral Junior ATd, Kamphorst SH, de Lima VJ, Olivares FL, Khan S, de Souza Santos M, da Silva Figueiredo J, da Silva SP, Viana FN, et al. Bacillus cereus: An Ally Against Drought in Popcorn Cultivation. Microorganisms. 2024; 12(11):2351. https://doi.org/10.3390/microorganisms12112351
Chicago/Turabian Stylede Oliveira, Uéliton Alves, Antônio Teixeira do Amaral Junior, Samuel Henrique Kamphorst, Valter Jário de Lima, Fábio Lopes Olivares, Shahid Khan, Monique de Souza Santos, Jardel da Silva Figueiredo, Samuel Pereira da Silva, Flávia Nicácio Viana, and et al. 2024. "Bacillus cereus: An Ally Against Drought in Popcorn Cultivation" Microorganisms 12, no. 11: 2351. https://doi.org/10.3390/microorganisms12112351
APA Stylede Oliveira, U. A., Amaral Junior, A. T. d., Kamphorst, S. H., de Lima, V. J., Olivares, F. L., Khan, S., de Souza Santos, M., da Silva Figueiredo, J., da Silva, S. P., Viana, F. N., Santos, T. d. O., Gonçalves, G. R., Campostrini, E., Viana, A. P., & Mora-Poblete, F. (2024). Bacillus cereus: An Ally Against Drought in Popcorn Cultivation. Microorganisms, 12(11), 2351. https://doi.org/10.3390/microorganisms12112351