Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence
Abstract
:1. Introduction
2. Materials and Methods (1209)
2.1. Bacterial Strains, Human Cells, and Growth Conditions
2.2. Genomic Analysis
2.3. Generation of Recombinant DNases and Point Mutagenesis
2.4. KO Mutant Generation
2.5. DNase Activity
2.6. Bacterial Growth
2.7. Biofilms Formation
2.8. Adhesion to Human Cell Lines
2.9. Whole Blood Killing Assay
2.10. RNA Extraction and Sequencing
2.11. Statistical Analysis
3. Results
3.1. Genomic Comparison of the LO1 and Manfredo Strains
3.2. The spd1, spd3, spd4, and sdn Genes are Differentially Expressed in the LO1 Strain
3.3. Sdn, Spd1, and Spd3 Have In Vitro Nuclease Activity
3.4. The DNase KO Mutants Are Not Impaired in Biofilm Formation In Vitro
3.5. The DNase KO Mutants Adhere to HaCaT and Detroit Cells Like the WT Strain
3.6. Spd1, Spd4, and Sdn Are Involved in Whole Blood Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, M.J.; Barnett, T.C.; McArthur, J.D.; Cole, J.N.; Gillen, C.M.; Henningham, A.; Sriprakash, K.S.; Sanderson-Smith, M.L.; Nizet, V. Disease manifestations and pathogenic mechanisms of group a Streptococcus. Clin. Microbiol. Rev. 2014, 27, 264–301. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Bessen, D.E. Tissue tropisms in group A Streptococcus: What virulence factors distinguish pharyngitis from impetigo strains? Curr. Opin. Infect. Dis. 2016, 29, 295–303. [Google Scholar] [CrossRef]
- Schiavolin, L.; Deneubourg, G.; Steinmetz, J.; Smeesters, P.R.; Botteaux, A. Group A Streptococcus adaptation to diverse niches: Lessons from transcriptomic studies. Crit. Rev. Microbiol. 2024, 50, 241–245. [Google Scholar] [CrossRef]
- Smeesters, P.R.; McMillan, D.J.; Sriprakash, K.S. The streptococcal M protein: A highly versatile molecule. Trends Microbiol. 2010, 18, 275–282. [Google Scholar] [CrossRef]
- Smeesters, P.R.; Mardulyn, P.; Vergison, A.; Leplae, R.; Van Melderen, L. Genetic diversity of Group A Streptococcus M protein: Implications for typing and vaccine development. Vaccine 2008, 26, 5835–5842. [Google Scholar] [CrossRef]
- Smeesters, P.R.; de Crombrugghe, G.; Tsoi, S.K.; Leclercq, C.; Baker, C.; Osowicki, J.; Verhoeven, C.; Botteaux, A.; Steer, A.C. Systematic review of global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development. Lancet Microbe 2024, 5, e181–e193. [Google Scholar] [CrossRef] [PubMed]
- Giovanetti, E.; Brenciani, A.; Vecchi, M.; Manzin, A.; Varaldo, P.E. Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes. J. Antimicrob. Chemother. 2005, 55, 445–451. [Google Scholar] [CrossRef]
- Green, N.M.; Beres, S.B.; Graviss, E.A.; Allison, J.E.; McGeer, A.J.; Vuopio-Varkila, J.; LeFebvre, R.B.; Musser, J.M. Genetic diversity among type emm28 group A Streptococcus strains causing invasive infections and pharyngitis. J. Clin. Microbiol. 2005, 43, 4083–4091. [Google Scholar] [CrossRef]
- Al-Shahib, A.; Underwood, A.; Afshar, B.; Turner, C.E.; Lamagni, T.; Sriskandan, S.; Efstratiou, A. Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microb. Genom. 2016, 2, e000059. [Google Scholar] [CrossRef] [PubMed]
- Lynskey, N.N.; Jauneikaite, E.; Li, H.K.; Zhi, X.; Turner, C.E.; Mosavie, M.; Pearson, M.; Asai, M.; Lobkowicz, L.; Chow, J.Y.; et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: A population-based molecular epidemiological study. Lancet Infect. Dis. 2019, 19, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Keller, N.; Brouwer, S.; Jespersen, M.G.; Cork, A.J.; Hayes, A.J.; Pitt, M.E.; De Oliveira, D.M.P.; Harbison-Price, N.; Bertolla, O.M.; et al. Detection of Streptococcus pyogenes M1(UK) in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat. Commun. 2023, 14, 1051. [Google Scholar] [CrossRef] [PubMed]
- Remmington, A.; Turner, C. The DNases of pathogenic Lancefield streptococci. Microbiology 2018, 164, 242–250. [Google Scholar] [CrossRef]
- Walker, M.J.; Hollands, A.; Sanderson-Smith, M.L.; Cole, J.N.; Kirk, J.K.; Henningham, A.; McArthur, J.D.; Dinkla, K.; Aziz, R.K.; Kansal, R.G.; et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 2007, 13, 981–985. [Google Scholar] [CrossRef]
- Buchanan, J.T.; Simpson, A.J.; Aziz, R.K.; Liu, G.Y.; Kristian, S.A.; Kotb, M.; Feramisco, J.; Nizet, V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 2006, 16, 396–400. [Google Scholar] [CrossRef]
- Sumby, P.; Barbian, K.D.; Gardner, D.J.; Whitney, A.R.; Welty, D.M.; Long, R.D.; Bailey, J.R.; Parnell, M.J.; Hoe, N.P.; Adams, G.G.; et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc. Natl. Acad. Sci. USA 2005, 102, 1679–1684. [Google Scholar] [CrossRef]
- Chang, A.; Khemlani, A.; Kang, H.; Proft, T. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol. Microbiol. 2011, 79, 1629–1642. [Google Scholar] [CrossRef]
- Uchiyama, S.; Andreoni, F.; Schuepbach, R.A.; Nizet, V.; Zinkernagel, A.S. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog. 2012, 8, e1002736. [Google Scholar] [CrossRef]
- Korczynska, J.E.; Turkenburg, J.P.; Taylor, E.J. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res. 2012, 40, 928–938. [Google Scholar] [CrossRef]
- Moon, A.F.; Krahn, J.M.; Lu, X.; Cuneo, M.J.; Pedersen, L.C. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes. Nucleic Acids Res. 2016, 44, 3946–3957. [Google Scholar] [CrossRef] [PubMed]
- Sablier, F.; Slaouti, T.; Drèze, P.A.; El Fouly, P.E.; Allemeersch, D.; Van Melderen, L.; Smeesters, P.R. Nosocomial transmission of necrotising fasciitis. Lancet 2010, 375, 1052. [Google Scholar] [CrossRef]
- Holden, M.T.; Scott, A.; Cherevach, I.; Chillingworth, T.; Churcher, C.; Cronin, A.; Dowd, L.; Feltwell, T.; Hamlin, N.; Holroyd, S.; et al. Complete genome of acute rheumatic fever-associated serotype M5 Streptococcus pyogenes strain manfredo. J. Bacteriol. 2007, 189, 1473–1477. [Google Scholar] [CrossRef]
- Gera, K.; McIver, K.S. Laboratory growth and maintenance of Streptococcus pyogenes (the Group A Streptococcus, GAS). Curr. Protoc. Microbiol. 2013, 30, 9D.2.1–9D.2.13. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; McIntyre, L.; Mutreja, A.; Lacey, J.A.; Lees, J.A.; Towers, R.J.; Duchene, S.; Smeesters, P.R.; Frost, H.R.; Price, D.J.; et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 2019, 51, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Tanizawa, Y.; Fujisawa, T.; Nakamura, Y. DFAST: A flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018, 34, 1037–1039. [Google Scholar] [CrossRef]
- McNeil, L.K.; Reich, C.; Aziz, R.K.; Bartels, D.; Cohoon, M.; Disz, T.; Edwards, R.A.; Gerdes, S.; Hwang, K.; Kubal, M.; et al. The National Microbial Pathogen Database Resource (NMPDR): A genomics platform based on subsystem annotation. Nucleic Acids Res. 2007, 35, D347–D353. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Solovyev, V.S.A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies; Li, R.W., Ed.; Nova Sciences Publishers: New York, NY, USA, 2011; pp. 61–78. [Google Scholar]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef]
- Le Breton, Y.; McIver, K.S. Genetic manipulation of Streptococcus pyogenes (the Group A Streptococcus, GAS). Curr. Protoc. Microbiol. 2013, 30, 9D.3.1–9D.3.29. [Google Scholar] [CrossRef] [PubMed]
- Barnett, T.C.; Daw, J.N.; Walker, M.J.; Brouwer, S. Genetic Manipulation of Group A Streptococcus-Gene Deletion by Allelic Replacement. Methods Mol. Biol. 2020, 2136, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Schiavolin, L.; Lakhloufi, D.; Botquin, G.; Deneubourg, G.; Bruyns, C.; Steinmetz, J.; Henrot, C.; Delforge, V.; Smeesters, P.R.; Botteaux, A. Efficient and rapid one-step method to generate gene deletions in Streptococcus pyogenes. Microbiol. Spectr. 2024, 12, e0118524. [Google Scholar] [CrossRef] [PubMed]
- Vyas, H.K.N.; McArthur, J.D.; Sanderson-Smith, M.L. An optimised GAS-pharyngeal cell biofilm model. Sci. Rep. 2021, 11, 8200. [Google Scholar] [CrossRef] [PubMed]
- Aranha, M.P.; Penfound, T.A.; Salehi, S.; Botteaux, A.; Smeesters, P.; Dale, J.B.; Smith, J.C. Design of Broadly Cross-Reactive M Protein-Based Group A Streptococcal Vaccines. J. Immunol. 2021, 207, 1138–1149. [Google Scholar] [CrossRef]
- Siegel, A.; Johnson, E.; Stollerman, G. Controlled studies of streptococcal pharyngitis in a pediatric population. 1. Factors related to the attack rate of rheumatic fever. N. Engl. J. Med. 1961, 265, 559–566. [Google Scholar] [CrossRef]
- Pagnossin, D.; Smith, A.; Weir, W.; Crestani, C.; Lindsay, D.; Ure, R.; Oravcova, K. Complete Genome Sequences of Three Invasive Strains of Streptococcus pyogenes Subtype emm5.23 Isolated in Scotland. Microbiol. Resour. Announc. 2021, 10, 10–1128. [Google Scholar] [CrossRef]
- Blagden, S.; Watts, V.; Verlander, N.Q.; Pegorie, M. Invasive group A streptococcal infections in North West England: Epidemiology, risk factors and fatal infection. Public Health 2020, 186, 63–70. [Google Scholar] [CrossRef]
- Degala, S.; Puleston, R.; Bates, R.; Borges-Stewart, R.; Coelho, J.; Kapatai, G.; Chalker, V.; Mair-Jenkins, J. A protracted iGAS outbreak in a long-term care facility 2014-2015: Control measures and the use of whole-genome sequencing. J. Hosp. Infect. 2020, 105, 70–77. [Google Scholar] [CrossRef]
- Banks, D.J.; Beres, S.B.; Musser, J.M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 2002, 10, 515–521. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.P.; Mullany, P. A modular master on the move: The Tn916 family of mobile genetic elements. Trends Microbiol. 2009, 17, 251–258. [Google Scholar] [CrossRef] [PubMed]
- McShan, W.M.; Nguyen, S.V. The Bacteriophages of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022. [Google Scholar]
- Rezaei Javan, R.; Ramos-Sevillano, E.; Akter, A.; Brown, J.; Brueggemann, A.B. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat. Commun. 2019, 10, 4852. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, C.; Euler, C.W.; Nguyen, S.V.; Rahman, M.; McCullor, K.A.; King, C.J.; Fischetti, V.A.; McShan, W.M. Elimination of Chromosomal Island SpyCIM1 from Streptococcus pyogenes Strain SF370 Reverses the Mutator Phenotype and Alters Global Transcription. PLoS ONE 2015, 10, e0145884. [Google Scholar] [CrossRef]
- Graham, M.R.; Smoot, L.M.; Migliaccio, C.A.; Virtaneva, K.; Sturdevant, D.E.; Porcella, S.F.; Federle, M.J.; Adams, G.J.; Scott, J.R.; Musser, J.M. Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 13855–13860. [Google Scholar] [CrossRef]
- Tran-Winkler, H.J.; Love, J.F.; Gryllos, I.; Wessels, M.R. Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus. PLoS Pathog. 2011, 7, e1002361. [Google Scholar] [CrossRef]
- Sumby, P.; Whitney, A.R.; Graviss, E.A.; DeLeo, F.R.; Musser, J.M. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.J.; Timms, P.; Davies, M.R.; McMillan, D.J. In silico characterisation of the two-component system regulators of Streptococcus pyogenes. PLoS ONE 2018, 13, e0199163. [Google Scholar] [CrossRef]
- Siemens, N.; Lutticken, R. Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen-Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021, 10, 776. [Google Scholar] [CrossRef]
- Riddle, D.J.; Bessen, D.E.; Caparon, M.G. Variation in Streptococcus pyogenes NAD+ glycohydrolase is associated with tissue tropism. J. Bacteriol. 2010, 192, 3735–3746. [Google Scholar] [CrossRef]
- Hakkarainen, T.W.; Kopari, N.M.; Pham, T.N.; Evans, H.L. Necrotizing soft tissue infections: Review and current concepts in treatment, systems of care, and outcomes. Curr. Probl. Surg. 2014, 51, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Westman, J.; Grinstein, S. Determinants of Phagosomal pH During Host-Pathogen Interactions. Front. Cell Dev. Biol. 2020, 8, 624958. [Google Scholar] [CrossRef] [PubMed]
- Samant, S.; Lee, H.; Ghassemi, M.; Chen, J.; Cook, J.L.; Mankin, A.S.; Neyfakh, A.A. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 2008, 4, e37. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Holder, R.C.; Dubois, L.; Reid, S.D. Streptococcus pyogenes Biofilm. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Fiedler, T.; Köller, T.; Kreikemeyer, B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front. Cell Infect. Microbiol. 2015, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Terao, Y.; Okuni, H.; Ninomiya, K.; Sakata, H.; Ikebe, K.; Maeda, Y.; Kawabata, S. Biofilm formation or internalization into epithelial cells enable Streptococcus pyogenes to evade antibiotic eradication in patients with pharyngitis. Microb. Pathog. 2011, 51, 58–68. [Google Scholar] [CrossRef]
- Reglinski, M. Lancefield Whole Blood Killing Assay to Evaluate Vaccine Efficacy. Methods Mol. Biol. 2020, 2136, 317–322. [Google Scholar] [CrossRef]
- Nakagawa, I.; Kurokawa, K.; Yamashita, A.; Nakata, M.; Tomiyasu, Y.; Okahashi, N.; Kawabata, S.; Yamazaki, K.; Shiba, T.; Yasunaga, T.; et al. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 2003, 13, 1042–1055. [Google Scholar] [CrossRef]
- Flores, A.R.; Jewell, B.E.; Versalovic, E.M.; Olsen, R.J.; Bachert, B.A.; Lukomski, S.; Musser, J.M. Natural variant of collagen-like protein a in serotype M3 group a Streptococcus increases adherence and decreases invasive potential. Infect. Immun. 2015, 83, 1122–1129. [Google Scholar] [CrossRef]
- Shea, P.R.; Beres, S.B.; Flores, A.R.; Ewbank, A.L.; Gonzalez-Lugo, J.H.; Martagon-Rosado, A.J.; Martinez-Gutierrez, J.C.; Rehman, H.A.; Serrano-Gonzalez, M.; Fittipaldi, N.; et al. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc. Natl. Acad. Sci. USA 2011, 108, 5039–5044. [Google Scholar] [CrossRef]
- Oliver-Kozup, H.A.; Elliott, M.; Bachert, B.A.; Martin, K.H.; Reid, S.D.; Schwegler-Berry, D.E.; Green, B.J.; Lukomski, S. The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A Streptococcus. BMC Microbiol. 2011, 11, 262. [Google Scholar] [CrossRef]
- Bao, Y.J.; Liang, Z.; Mayfield, J.A.; McShan, W.M.; Lee, S.W.; Ploplis, V.A.; Castellino, F.J. Novel genomic rearrangements mediated by multiple genetic elements in Streptococcus pyogenes M23ND confer potential for evolutionary persistence. Microbiology 2016, 162, 1346–1359. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Holden, M.T.; Coupland, P.; Chen, J.H.; Venturini, C.; Barnett, T.C.; Zakour, N.L.; Tse, H.; Dougan, G.; Yuen, K.Y.; et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 2015, 47, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Afshar, B.; Turner, C.E.; Lamagni, T.L.; Smith, K.C.; Al-Shahib, A.; Underwood, A.; Holden, M.T.G.; Efstratiou, A.; Sriskandan, S. Enhanced nasopharyngeal infection and shedding associated with an epidemic lineage of emm3 group A Streptococcus. Virulence 2017, 8, 1390–1400. [Google Scholar] [CrossRef]
- Bah, S.Y.; Keeley, A.J.; Armitage, E.P.; Khalid, H.; Chaudhuri, R.R.; Senghore, E.; Manneh, J.; Tilley, L.; Marks, M.; Darboe, S.; et al. Genomic Characterization of Skin and Soft Tissue Streptococcus pyogenes Isolates from a Low-Income and a High-Income Setting. mSphere 2023, 8, e0046922. [Google Scholar] [CrossRef] [PubMed]
- Banks, D.J.; Lei, B.; Musser, J.M. Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect. Immun. 2003, 71, 7079–7086. [Google Scholar] [CrossRef]
- Broudy, T.B.; Pancholi, V.; Fischetti, V.A. The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phage-encoded extracellular DNase. Infect. Immun. 2002, 70, 2805–2811. [Google Scholar] [CrossRef]
- Schmolke, M.; Patel, J.R.; de Castro, E.; Sanchez-Aparicio, M.T.; Uccellini, M.B.; Miller, J.C.; Manicassamy, B.; Satoh, T.; Kawai, T.; Akira, S.; et al. RIG-I detects mRNA of intracellular Salmonella enterica serovar Typhimurium during bacterial infection. mBio 2014, 5, e01006-14. [Google Scholar] [CrossRef]
- Mohamed, W.; Domann, E.; Chakraborty, T.; Mannala, G.; Lips, K.S.; Heiss, C.; Schnettler, R.; Alt, V. TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress. BMC Microbiol. 2016, 16, 230. [Google Scholar] [CrossRef]
- Brouwer, S.; Barnett, T.C.; Ly, D.; Kasper, K.J.; De Oliveira, D.M.P.; Rivera-Hernandez, T.; Cork, A.J.; McIntyre, L.; Jespersen, M.G.; Richter, J.; et al. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 2020, 11, 5018. [Google Scholar] [CrossRef]
- Broudy, T.B.; Pancholi, V.; Fischetti, V.A. Induction of lysogenic bacteriophage and phage-associated toxin from group a streptococci during coculture with human pharyngeal cells. Infect. Immun. 2001, 69, 1440–1443. [Google Scholar] [CrossRef]
- Unnikrishnan, M.; Altmann, D.M.; Proft, T.; Wahid, F.; Cohen, J.; Fraser, J.D.; Sriskandan, S. The bacterial superantigen streptococcal mitogenic exotoxin Z is the major immunoactive agent of Streptococcus pyogenes. J. Immunol. 2002, 169, 2561–2569. [Google Scholar] [CrossRef]
- Sharma, K.; Pagedar Singh, A. Antibiofilm Effect of DNase against Single and Mixed Species Biofilm. Foods 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Siemens, N.; Chakrakodi, B.; Shambat, S.M.; Morgan, M.; Bergsten, H.; Hyldegaard, O.; Skrede, S.; Arnell, P.; Madsen, M.B.; Johansson, L.; et al. Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight 2016, 1, e87882. [Google Scholar] [CrossRef] [PubMed]
- Courtney, H.S.; Ofek, I.; Penfound, T.; Nizet, V.; Pence, M.A.; Kreikemeyer, B.; Podbielski, A.; Hasty, D.L.; Dale, J.B. Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes. PLoS ONE 2009, 4, e4166. [Google Scholar] [CrossRef]
- Lembke, C.; Podbielski, A.; Hidalgo-Grass, C.; Jonas, L.; Hanski, E.; Kreikemeyer, B. Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl. Environ. Microbiol. 2006, 72, 2864–2875. [Google Scholar] [CrossRef]
- Cho, K.H.; Caparon, M.G. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol. Microbiol. 2005, 57, 1545–1556. [Google Scholar] [CrossRef]
- Baldassarri, L.; Creti, R.; Recchia, S.; Imperi, M.; Facinelli, B.; Giovanetti, E.; Pataracchia, M.; Alfarone, G.; Orefici, G. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J. Clin. Microbiol. 2006, 44, 2721–2727. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Li, C.C.; Chen, J.C.; Chen, Y.J.; Lin, C.T.; Ho, T.Y.; Hsiang, C.Y. Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity. J. Biomed. Sci. 2009, 16, 6. [Google Scholar] [CrossRef]
- Bugrysheva, J.V.; Scott, J.R. Regulation of virulence gene expression in Streptococcus pyogenes: Determinants of differential mRNA decay. RNA Biol. 2010, 7, 569–572. [Google Scholar] [CrossRef]
- Bugrysheva, J.V.; Scott, J.R. The ribonucleases J1 and J2 are essential for growth and have independent roles in mRNA decay in Streptococcus pyogenes. Mol. Microbiol. 2010, 75, 731–743. [Google Scholar] [CrossRef]
- Keller, N.; Woytschak, J.; Heeb, L.E.M.; Marques Maggio, E.; Mairpady Shambat, S.; Snall, J.; Hyldegaard, O.; Boyman, O.; Norrby-Teglund, A.; Zinkernagel, A.S. Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells’ Type 1 Interferon Response. J. Investig. Dermatol. 2019, 139, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024, 52, D368–D375. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Salzberg, S.L. SkewIT: The Skew Index Test for large-scale GC Skew analysis of bacterial genomes. PLoS Comput. Biol. 2020, 16, e1008439. [Google Scholar] [CrossRef] [PubMed]
iGAS | |||||
---|---|---|---|---|---|
Characteristics | iGAS376 | iGAS391 | iGAS426 | LO1 | Manfredo |
Year of isolation | 2018 | 2019 | 2015 | 2010 | 1952 |
Origin | Edinburgh, Scotland | Glasgow, Scotland | Glasgow, Scotland | Brussels, Belgium | Chicago, USA |
Source | Blood | Blood | Blood | NF | ARF |
Genome size (bp) | 1,897,124 | 1,897,129 | 1,897,111 | 1,897,626 | 1,841,271 |
GC content (%) | 38.6 | 38.6 | 38.6 | 38.6 | 38.6 |
No. of genes | 1913 | 1913 | 1913 | 1928 | 1841 |
MLST | ST99 | ST99 | ST99 | ST99 | ST99 |
Numbers of prophages | 5 | 5 | 5 | 5 | 5 |
Number of transposon | 1 | 1 | 1 | 1 | 0 |
GenBank accession no. | CP067010 | CP067009 | CP067008 | CP156075 | NC_009332 |
Reference | [38] | [38] | [38] | [22], this study | [23,37] |
Gene | Locus-Tag | % of Identity with LO1 | ||
---|---|---|---|---|
Virulence Factor | Scottish iGAS | Manfredo | ||
emm5 | lamri_01793 | M protein | 94 | 93 |
ska | lamri_01765 | Streptokinase | 100 | 146 aa smaller |
cfa | lamri_01071 | CAMP factor | 100 | 100 |
slo | lamri_00241 | Streptolysin O | 100 | 100 |
sagA, B, C, D, E, F, H, I | lamri_00692-700 | Streptolysin S | 100 | 100 |
hylA* | lamri_00886 | Hyaluronate lyase precursor | 100 | 100 |
hasA,B,C | lamri_01939, lamri_01940,lamri_1941, lamr_00274, lamri_00523 | Capsule | 100 | 100 |
spyCEP | lamri_00421 | cysteine protéase | 99.9 | 99.9 |
sibA | lamri_00049 | cysteine protéase | 100 | 100 |
speB | lamri_01808 | Cysteine Protease B | 100 | 100 |
speC | lamri_00674 | Streptococcal pyrogenic exotoxin C * | 100 | 100 |
speG | lamri_00269 | Streptococcal pyrogenic exotoxin G | 100 | 100 |
speK | lamri_1644 | Streptococcal pyrogenic exotoxin K | 100 | 100 |
smeZ | lamri_01783 | Streptococcal mitogenic exotoxin Z | 100 | 100 |
scpA | lamri_01792 | C5a peptidase | 100 | 100 |
endoS | lamri_01629 | endo-beta-N-acetylglucosaminidase | 100 | 100 |
spnA | lamri_00701 | Chromosome-encoded nuclease | 100 | 100 |
sdaB | lamri_01811 | Chromosome-encoded nuclease | 100 | 100 |
nga | lamri_00239 | NAD (Spn) | 100 | 100 |
isp | lamri_01797 | Isp | 100 | 100 |
inlA1 | lamri_01140 | Internalin 1 | 100 | 100 |
inlA2 (shr) | lamri_01622 | Internalin 2 | 100 | 100 |
fbp | lamri_00872 | Fn binding protein | 100 | 99.9 |
fba | lamri_01691 | Fibronectin binding proteins | 100 | 100 |
lmb | lmari_01791 | Laminin binding protein | 100 | 100 |
cpa/fctX | lamri_00209 | cpa/fctX | 100 | 100 |
tee/fctA | lamri_00211 | tee/fctA | 100 | 100 |
prtf2 | lamri_00215 | Fibronectin binding proteins | 100 | 100 |
sclB | lamri_00900 | Scl-like | 72 | 67 |
sclA | lamri_01768 | scl | 100 | 55 aa longer |
grab | lamri_01137 | GRAB | 99.9 | 99.9 |
hypothetical protein | lamri_01261 | LPxTG anchored protein | 100 | 100 |
hypothetical protein | lamri_00783 | LPxTG anchored protein LRR repeat | 100 | 100 |
sdn | lamri_00102 | prophage-encoded nuclease | 100 | Absent |
spd1 | lamri_00675 | prophage-encoded nuclease | 100 | 100 |
spd3 | lamri_01348 | prophage-encoded nuclease | 100 | 100 |
spd4 | lamri_01201 | prophage-encoded nuclease | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deneubourg, G.; Schiavolin, L.; Lakhloufi, D.; Botquin, G.; Delforge, V.; Davies, M.R.; Smeesters, P.R.; Botteaux, A. Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms 2024, 12, 2209. https://doi.org/10.3390/microorganisms12112209
Deneubourg G, Schiavolin L, Lakhloufi D, Botquin G, Delforge V, Davies MR, Smeesters PR, Botteaux A. Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms. 2024; 12(11):2209. https://doi.org/10.3390/microorganisms12112209
Chicago/Turabian StyleDeneubourg, Geoffrey, Lionel Schiavolin, Dalila Lakhloufi, Gwenaelle Botquin, Valérie Delforge, Mark R. Davies, Pierre R. Smeesters, and Anne Botteaux. 2024. "Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence" Microorganisms 12, no. 11: 2209. https://doi.org/10.3390/microorganisms12112209
APA StyleDeneubourg, G., Schiavolin, L., Lakhloufi, D., Botquin, G., Delforge, V., Davies, M. R., Smeesters, P. R., & Botteaux, A. (2024). Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms, 12(11), 2209. https://doi.org/10.3390/microorganisms12112209