Multimodal Approaches Based on Microbial Data for Accurate Postmortem Interval Estimation
Abstract
:1. Introduction
2. Microbiology Changes During Decomposition
3. Metabolic Changes During Decomposition
4. Volatile Organic Compounds (VOCs) Changes During Decomposition
5. Multimodal Analysis
6. Future Outlook
6.1. Construction of Human Multimodal Databases
6.2. Challenges and Opportunities of ML
6.3. Interaction Between Microbial and Insect Evidence
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dawson, B.M.; Ueland, M.; Carter, D.O.; McLntyre, D.; Barton, P.S. Bridging the gap between decomposition theory and forensic research on postmortem interval. Int. J. Leg. Med. 2024, 138, 509–518. [Google Scholar] [CrossRef]
- Madea, B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci. Int. 2005, 151, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 2007, 94, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, F.; Wang, L.; Yuan, H.; Guan, D.; Zhao, R. Advances in artificial intelligence-based microbiome for PMI estimation. Front. Microbiol. 2022, 13, 1034051. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Finley, S.J.; Abidin, Z.; Mulle, J.G. The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death. Front. Microbiol. 2016, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Spychała, K.; Piecuch, A.; Szleszkowski, Ł.; Kadej, M.; Ogórek, R. Microscopic fungi on the corpse—Promising tool requiring further research. Forensic Sci. Int. 2024, 361, 112129. [Google Scholar] [CrossRef] [PubMed]
- Kupferschmidt, K. A trail of microbes. Science 2016, 351, 1136–1137. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Joshi, C.; Paritosh, K.; Thakur, J.; Pareek, N.; Masakapalli, S.K.; Vivekanand, V. Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab. Eng. 2022, 69, 323–337. [Google Scholar] [CrossRef]
- Hyde, E.R.; Haarmann, D.P.; Lynne, A.M.; Bucheli, S.R.; Petrosino, J.F. The living dead: Bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS ONE 2013, 8, e77733. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Wegener Parfrey, L.; Gonzalez, A.; Lauber, C.L.; Knights, D.; Ackermann, G.; Humphrey, G.C.; Gebert, M.J.; Van Treuren, W.; Berg-Lyons, D.; et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2013, 2, e01104. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Hu, S.; Nie, H.; Gui, P.; Zhong, Z.; Guo, Y.; Zhao, X. Changes in Microbial Communities Using Pigs as a Model for Postmortem Interval Estimation. Microorganisms 2023, 11, 2811. [Google Scholar] [CrossRef] [PubMed]
- Dash, H.R.; Das, S. Microbial community signatures for estimation of postmortem time intervals. Adv. Appl. Microbiol. 2022, 118, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.L. Estimating the postmortem interval using microbes: Knowledge gaps and a path to technology adoption. Forensic Sci. Int.-Genet. 2019, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cobaugh, K.L.; Schaeffer, S.M.; DeBruyn, J.M. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers. PLoS ONE 2015, 10, e0130201. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 2016, 351, 158–162. [Google Scholar] [CrossRef]
- Cláudia-Ferreira, A.; Barbosa, D.J.; Saegeman, V.; Fernández-Rodríguez, A.; Dinis-Oliveira, R.J.; Freitas, A.R.; on behalf of the ESCMID Study Group of Forensic and Post-Mortem Microbiology (ESGFOR). The Future Is Now: Unraveling the Expanding Potential of Human (Necro) Microbiome in Forensic Investigations. Microorganisms 2023, 11, 2509. [Google Scholar] [CrossRef]
- Fiedler, S.; Graw, M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Teo, C.H.; Pawita, A.H.; Khairul, O.; Atiah Ayunni, A.G.; Noor Hazfalinda, H. Post mortem changes in relation to different types of clothing. Malays. J. Pathol. 2013, 35, 77–85. [Google Scholar]
- Hawksworth, D.L.; Wiltshire, P.E. Forensic mycology: The use of fungi in criminal investigations. Forensic Sci. Int. 2011, 206, 1–11. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Hauther, K.A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 2017, 5, e3437. [Google Scholar] [CrossRef]
- Can, I.; Javan, G.T.; Pozhitkov, A.E.; Noble, P.A. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J. Microbiol. Methods 2014, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xingchun, Z.; Fan, Y.; Sheng, H.; Hao, N.; Jiajia, F.; Zhen, P.; Gengqian, Z.; Peng, G.; Zengtao, Z. Rupture-A symbolic timing point of the natural abdominal rupture during cadaver decay. Chin. J. Forensic Med. 2024, 39, 68–74. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Qi, X.; Shi, L.; Zhang, J.; Zhang, X.; Yang, T.; Ren, J.; Liu, F.; Zhang, G. Predicting the postmortem interval of burial cadavers based on microbial community succession. Forensic Sci. Int. Genet. 2021, 52, 102488. [Google Scholar] [CrossRef] [PubMed]
- Hyde, E.R.; Haarmann, D.P.; Petrosino, J.F.; Lynne, A.M.; Bucheli, S.R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 2015, 129, 661–671. [Google Scholar] [CrossRef]
- Janaway, R.C.; Percival, S.L.; Wilson, A. Decomposition of Human Remains. Microbiol. Aging Clin. Manif. 2009, 313–334. [Google Scholar] [CrossRef]
- Pechal, J.L.; Crippen, T.L.; Benbow, M.E.; Tarone, A.M.; Dowd, S.; Tomberlin, J.K. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int. J. Leg. Med. 2014, 128, 193–205. [Google Scholar] [CrossRef]
- Javan, G.T.; Finley, S.J.; Can, I.; Wilkinson, J.E.; Hanson, J.D.; Tarone, A.M. Human Thanatomicrobiome Succession and Time Since Death. Sci. Rep. 2016, 6, 29598. [Google Scholar] [CrossRef]
- Guo, J.; Fu, X.; Liao, H.; Hu, Z.; Long, L.; Yan, W.; Ding, Y.; Zha, L.; Guo, Y.; Yan, J.; et al. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci. Rep. 2016, 6, 24197. [Google Scholar] [CrossRef]
- Cao, J.; Li, W.-J.; Wang, Y.-F.; An, G.-S.; Lu, X.-J.; Du, Q.-X.; Li, J.; Sun, J.-H. Estimating Postmortem Interval Using Intestinal Microbiota Diversity Based on 16S rRNA High-throughput Sequencing Technology. Fa Yi Xue Za Zhi 2021, 37, 621–626. [Google Scholar] [CrossRef]
- Tuomisto, S.; Karhunen, P.J.; Pessi, T. Time-dependent post mortem changes in the composition of intestinal bacteria using real-time quantitative PCR. Gut Pathog. 2013, 5, 35. [Google Scholar] [CrossRef]
- Hauther, K.A.; Cobaugh, K.L.; Jantz, L.M.; Sparer, T.E.; DeBruyn, J.M. Estimating Time Since Death from Postmortem Human Gut Microbial Communities. J. Forensic Sci. 2015, 60, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O.; Newton, K.G. The ecology of bacterial spoilage of fresh meat at chill temperatures. Meat. Sci. 1978, 2, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Guo, J.; Finkelbergs, D.; He, J.; Zha, L.; Guo, Y.; Cai, J. Fungal succession during mammalian cadaver decomposition and potential forensic implications. Sci. Rep. 2019, 9, 12907. [Google Scholar] [CrossRef] [PubMed]
- Kaszubinski, S.F.; Receveur, J.P.; Nestle, E.D.; Pechal, J.L.; Benbow, M.E. Microbial community succession of submerged bones in an aquatic habitat. J. Forensic Sci. 2022, 67, 1565–1578. [Google Scholar] [CrossRef] [PubMed]
- Sidrim, J.J.; Moreira Filho, R.E.; Cordeiro, R.A.; Rocha, M.F.; Caetano, E.P.; Monteiro, A.J.; Brilhante, R.S. Fungal microbiota dynamics as a postmortem investigation tool: Focus on Aspergillus, Penicillium and Candida species. J. Appl. Microbiol. 2010, 108, 1751–1756. [Google Scholar] [CrossRef]
- Fu, X.L.; Guo, J.J.; Liu, Z.Y.; Shen, X.; Cai, J.F. Application of High-throughput Sequencing in Researches of Cadaveric Microorganisms and Postmortem Interval Estimation. Fa Yi Xue Za Zhi 2018, 34, 475–481. [Google Scholar] [CrossRef]
- Kärkkäinen, O.; Kokla, M.; Lehtonen, M.; Auriola, S.; Martiskainen, M.; Tiihonen, J.; Karhunen, P.J.; Hanhineva, K.; Kok, E. Changes in the metabolic profile of human male postmortem frontal cortex and cerebrospinal fluid samples associated with heavy alcohol use. Addict. Biol. 2021, 26, e13035. [Google Scholar] [CrossRef]
- Bauermeister, A.; Mannochio-Russo, H.; Costa-Lotufo, L.V.; Jarmusch, A.K.; Dorrestein, P.C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 2022, 20, 143–160. [Google Scholar] [CrossRef]
- Castillo-Peinado, L.S.; Luque de Castro, M.D. Present and foreseeable future of metabolomics in forensic analysis. Anal. Chim. Acta 2016, 925, 1–15. [Google Scholar] [CrossRef]
- Tolbert, M.; Finley, S.J.; Visonà, S.D.; Soni, S.; Osculati, A.; Javan, G.T. The thanatotranscriptome: Gene expression of male reproductive organs after death. Gene 2018, 675, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Mora-Ortiz, M.; Trichard, M.; Oregioni, A.; Claus, S.P. Thanatometabolomics: Introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics 2019, 15, 37. [Google Scholar] [CrossRef]
- Yadav, J.; Deshpande, A.; Arora, A.; Athawal, B.K.; Dubey, B.P. Estimation of time since death from CSF electrolyte concentration in Bhopal region of central India. Leg. Med. 2007, 9, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Verma, A.K. Estimation of postmortem interval using the data of insulin level in the cadaver׳s blood. Data Brief. 2016, 7, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, E.; Ith, M.; Dietrich, D.; Kreis, R.; Hüsler, J.; Dirnhofer, R.; Boesch, C. Statistical evaluation of time-dependent metabolite concentrations: Estimation of post-mortem intervals based on in situ 1H-MRS of the brain. NMR Biomed. 2005, 18, 163–172. [Google Scholar] [CrossRef]
- Ith, M.; Scheurer, E.; Kreis, R.; Thali, M.; Dirnhofer, R.; Boesch, C. Estimation of the postmortem interval by means of ¹H MRS of decomposing brain tissue: Influence of ambient temperature. NMR Biomed. 2011, 24, 791–798. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Hoeland, K.M.; Taylor, L.S.; Stevens, J.D.; Moats, M.A.; Bandopadhyay, S.; Dearth, S.P.; Castro, H.F.; Hewitt, K.K.; Campagna, S.R.; et al. Comparative Decomposition of Humans and Pigs: Soil Biogeochemistry, Microbial Activity and Metabolomic Profiles. Front. Microbiol. 2020, 11, 608856. [Google Scholar] [CrossRef]
- Paczkowski, S.; Schütz, S. Post-mortem volatiles of vertebrate tissue. Appl. Microbiol. Biotechnol. 2011, 91, 917–935. [Google Scholar] [CrossRef]
- Swann, L.M.; Forbes, S.L.; Lewis, S.W. Analytical separations of mammalian decomposition products for forensic science: A review. Anal. Chim. Acta 2010, 682, 9–22. [Google Scholar] [CrossRef]
- Dekeirsschieter, J.; Stefanuto, P.H.; Brasseur, C.; Haubruge, E.; Focant, J.F. Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS ONE 2012, 7, e39005. [Google Scholar] [CrossRef]
- Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Statheropoulos, M.; Agapiou, A.; Spiliopoulou, C.; Pallis, G.C.; Sianos, E. Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci. Total Environ. 2007, 385, 221–227. [Google Scholar] [CrossRef]
- Recinos-Aguilar, Y.M.; García-García, M.D.; Malo, E.A.; Cruz-López, L.; Cruz-Esteban, S.; Rojas, J.C. The Succession of Flies of Forensic Importance Is Influenced by Volatiles Organic Compounds Emitted During the First Hours of Decomposition of Chicken Remains. J. Med. Entomol. 2020, 57, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, D.E.; Khmel, I.A.; Chernikova, A.S.; Chupriyanova, T.A.; Plyuta, V.A. Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species. Folia Microbiol. 2023, 68, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecka, D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. Microb. Ecol. 2016, 72, 741–758. [Google Scholar] [CrossRef]
- Jones, S.E.; Ho, L.; Rees, C.A.; Hill, J.E.; Nodwell, J.R.; Elliot, M.A. Streptomyces exploration is triggered by fungal interactions and volatile signals. ELife 2017, 6, e21738. [Google Scholar] [CrossRef]
- Kotzé, Z.; Delclos, P.J.; Knap, A.H.; Wade, T.L.; Tomberlin, J.K. Volatile organic compounds in variably aged carrion impacted by the presence of the primary colonizer, Cochliomyia macellaria (Diptera: Calliphoridae). Int. J. Leg. Med. 2021, 135, 1005–1014. [Google Scholar] [CrossRef]
- Cappas, V.M.; Davenport, E.R.; Sykes, D.G. The Microbiome and Volatile Organic Compounds Reflect the State of Decomposition in an Indoor Environment. bioRxiv 2022. [Google Scholar] [CrossRef]
- Agapiou, A.; Zorba, E.; Mikedi, K.; McGregor, L.; Spiliopoulou, C.; Statheropoulos, M. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Anal. Chim. Acta 2015, 883, 99–108. [Google Scholar] [CrossRef]
- Dekeirsschieter, J.; Verheggen, F.J.; Gohy, M.; Hubrecht, F.; Bourguignon, L.; Lognay, G.; Haubruge, E. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci. Int. 2009, 189, 46–53. [Google Scholar] [CrossRef]
- Forbes, S.L.; Perrault, K.A.; Stefanuto, P.-H.; Nizio, K.D.; Focant, J.-F. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS ONE 2014, 9, e113681. [Google Scholar] [CrossRef] [PubMed]
- Stadler, S.; Desaulniers, J.-P.; Forbes, S.L. Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int. J. Leg. Med. 2015, 129, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.-N.D.; Mead, R.J.; Maker, G.; Speers, S.J. A review of the biochemical products produced during mammalian decomposition with the purpose of determining the post-mortem interval. Aust. J. Forensic Sci. 2020, 52, 477–488. [Google Scholar] [CrossRef]
- Lobb, B.; Hodgson, R.; Lynch, M.D.J.; Mansfield, M.J.; Cheng, J.; Charles, T.C.; Neufeld, J.D.; Craig, P.M.; Doxey, A.C. Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens. MSystems 2020, 5, e00145-20. [Google Scholar] [CrossRef]
- Pechal, J.L.; Benbow, M.E. Microbial ecology of the salmon necrobiome: Evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ. Microbiol. 2016, 18, 1511–1522. [Google Scholar] [CrossRef]
- Tuccia, F.; Zurgani, E.; Bortolini, S.; Vanin, S. Experimental evaluation on the applicability of necrobiome analysis in forensic veterinary science. Microbiologyopen 2019, 8, e00828. [Google Scholar] [CrossRef]
- Bonicelli, A.; Mickleburgh, H.L.; Chighine, A.; Locci, E.; Wescott, D.J.; Procopio, N. The ‘ForensOMICS’ approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics. ELife 2022, 11, e83658. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.-J.; Liu, M.-F.; Li, N.; Dang, L.-H.; An, G.-S.; Lu, X.-J.; Wang, L.-L.; Du, Q.-X.; Cao, J.; et al. Multi-omics integration strategy in the post-mortem interval of forensic science. Talanta 2024, 268, 125249. [Google Scholar] [CrossRef]
- Randall, S.; Cartozzo, C.; Simmons, T.; Swall, J.L.; Singh, B. Prediction of minimum postmortem submersion interval (PMSImin) based on eukaryotic community succession on skeletal remains recovered from a lentic environment. Forensic Sci. Int. 2021, 323, 110784. [Google Scholar] [CrossRef]
- Burcham, Z.M.; Belk, A.D.; McGivern, B.B.; Bouslimani, A.; Ghadermazi, P.; Martino, C.; Shenhav, L.; Zhang, A.R.; Shi, P.; Emmons, A.; et al. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables. Nat. Microbiol. 2024, 9, 595–613. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Tuo, Y.; Ma, D.; Shi, Y.; Zhang, Q.; Zhuo, X.; Deng, K.; Chen, Y.; Wang, Z.; et al. MALDI-TOF MS as a Novel Tool for the Estimation of Postmortem Interval in Liver Tissue Samples. Sci. Rep. 2017, 7, 4887. [Google Scholar] [CrossRef] [PubMed]
- Stahlschmidt, S.R.; Ulfenborg, B.; Synnergren, J. Multimodal deep learning for biomedical data fusion: A review. Briefings Bioinform. 2022, 23, bbab569. [Google Scholar] [CrossRef] [PubMed]
- Athaya, T.; Ripan, R.C.; Li, X.; Hu, H. Multimodal deep learning approaches for single-cell multi-omics data integration. Briefings Bioinform. 2023, 24, bbad313. [Google Scholar] [CrossRef] [PubMed]
- Alay, N.; Al-Baity, H.H. Deep Learning Approach for Multimodal Biometric Recognition System Based on Fusion of Iris, Face, and Finger Vein Traits. Sensors 2020, 20, 5523. [Google Scholar] [CrossRef] [PubMed]
- Ramachandram, D.; Taylor, G.W. Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Process. Mag. 2017, 34, 96–108. [Google Scholar] [CrossRef]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.-M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15. [Google Scholar] [CrossRef]
- Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 1248–1259. [Google Scholar] [CrossRef]
- Huang, Z.; Zhan, X.; Xiang, S.; Johnson, T.S.; Helm, B.; Yu, C.Y.; Zhang, J.; Salama, P.; Rizkalla, M.; Han, Z.; et al. SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer. Front. Genet. 2019, 10, 166. [Google Scholar] [CrossRef]
- Boehm, K.M.; Khosravi, P.; Vanguri, R.; Gao, J.; Shah, S.P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 2022, 22, 114–126. [Google Scholar] [CrossRef]
- Li, N.; Liang, X.-R.; Zhou, S.-D.; Dang, L.-H.; Li, J.; An, G.-S.; Ren, K.; Jin, Q.-Q.; Liang, X.-H.; Cao, J.; et al. Exploring postmortem succession of rat intestinal microbiome for PMI based on machine learning algorithms and potential use for humans. Forensic Sci. Int. Genet. 2023, 66, 102904. [Google Scholar] [CrossRef]
Marker | PMI | Experimental Model | Analysis Model | Model Performance | References |
---|---|---|---|---|---|
Microbiology | |||||
48 d | mice skin | RF | MAE 3.30 ± 2.52 d | [10] | |
5 d | pig skin/mouth | RF | 94.4% accuracy rate | [26] | |
579 d | porcine rib | RF | RMSE ± 104 d | [69] | |
40 d | pigs gravesoil/rectum | RF | MAE 1.375 to 2.478 d | [11] | |
21 d | human face | RF | residual 26.47ADD | [70] | |
21 d | human hip | RF | residual 28.59ADD | [70] | |
71 d | mice gravesoil/cecum/skin | RF | RMSE 342.14ADD | [15] | |
Non-volatile metabolites | |||||
144 h | human liver | SNN | accuracy = 92.4% | [71] | |
420 h | sheep brain | linear\quadratic\three-parameter-logistic functions | - * | [45] | |
5–21 w | humans and pigs gravesoil | PLS-DA | - | [47] | |
Volatile organic compounds | |||||
5 d | pig | - | - | [59] | |
43 d | pig | - | - | [60] | |
56 d | pig | - | - | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Zhang, X.; Yang, F.; Nie, H.; Lu, X.; Guo, Y.; Zhao, X. Multimodal Approaches Based on Microbial Data for Accurate Postmortem Interval Estimation. Microorganisms 2024, 12, 2193. https://doi.org/10.3390/microorganisms12112193
Hu S, Zhang X, Yang F, Nie H, Lu X, Guo Y, Zhao X. Multimodal Approaches Based on Microbial Data for Accurate Postmortem Interval Estimation. Microorganisms. 2024; 12(11):2193. https://doi.org/10.3390/microorganisms12112193
Chicago/Turabian StyleHu, Sheng, Xiangyan Zhang, Fan Yang, Hao Nie, Xilong Lu, Yadong Guo, and Xingchun Zhao. 2024. "Multimodal Approaches Based on Microbial Data for Accurate Postmortem Interval Estimation" Microorganisms 12, no. 11: 2193. https://doi.org/10.3390/microorganisms12112193
APA StyleHu, S., Zhang, X., Yang, F., Nie, H., Lu, X., Guo, Y., & Zhao, X. (2024). Multimodal Approaches Based on Microbial Data for Accurate Postmortem Interval Estimation. Microorganisms, 12(11), 2193. https://doi.org/10.3390/microorganisms12112193