Epstein-Barr Virus and Human Papillomavirus Coinfection in Colorectal Carcinoma: Systematic Review and Meta-Analysis of the Prevalence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Article Screening and Selection
2.4. Data Abstraction and Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marongiu, L.; Allgayer, H. Viruses in Colorectal Cancer. Mol. Oncol. 2022, 16, 1423–1450. [Google Scholar] [CrossRef] [PubMed]
- Cancer Today. Available online: https://gco.iarc.fr/today/en/dataviz/pie?mode=population&group_populations=0&cancers=41&types=1 (accessed on 28 August 2024).
- Ma, H.; Brosens, L.A.A.; Offerhaus, G.J.A.; Giardiello, F.M.; de Leng, W.W.J.; Montgomery, E.A. Pathology and Genetics of Hereditary Colorectal Cancer. Pathology 2018, 50, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Simon, K. Colorectal Cancer Development and Advances in Screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.Z.; Waterboer, T.; Castro, F.A.; Brenner, H. Viral Infections and Colorectal Cancer: A Systematic Review of Epidemiological Studies. Int. J. Cancer 2015, 137, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, Q.; Gupta, I.; Vranic, S.; Al Moustafa, A.E. Human Papillomaviruses and Epstein–Barr Virus Interactions in Colorectal Cancer: A Brief Review. Pathogens 2020, 9, 300. [Google Scholar] [CrossRef]
- Akram, N.; Imran, M.; Noreen, M.; Ahmed, F.; Atif, M.; Fatima, Z.; Bilal Waqar, A. Oncogenic Role of Tumor Viruses in Humans. Viral Immunol. 2017, 30, 20–27. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling Pathways of EBV-Induced Oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, H.; Wu, S.; Familiari, G.; Relucenti, M.; Aschner, M.; Li, X.; Chen, R. Epstein–Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. Adv. Sci. 2022, 9, e2202116. [Google Scholar] [CrossRef]
- Burnett-Hartman, A.N.; Newcomb, P.A.; Potter, J.D. Infectious Agents and Colorectal Cancer: A Review of Helicobacter Pylori, Streptococcus Bovis, JC Virus, and Human Papillomavirus. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 2970–2979. [Google Scholar] [CrossRef]
- Bello, J.O.M.; Nieva, L.O.; Paredes, A.C.; Gonzalez, A.M.F.; Zavaleta, L.R.; Lizano, M. Regulation of the Wntβ-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins. Viruses 2015, 7, 4734–4755. [Google Scholar] [CrossRef]
- Galeone, C.; Pelucchi, C.; Vecchia, C. La Added Sugar, Glycemic Index and Load in Colon Cancer Risk. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Shaikh, M.H.; Gopinath, D.; Idris, A.; Johnson, N.W. Human Papillomavirus and Epstein-Barr Virus Co-Infection in Oral and Oropharyngeal Squamous Cell Carcinomas: A Systematic Review and Meta-Analysis. Mol. Oral Microbiol. 2023, 38, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Peng, S.L.; Yang, L.F.; Chen, X.; Tao, Y.G.; Cao, Y. Co-infection of Epstein-Barr Virus and Human Papillomavirus in Human Tumorigenesis. Chin. J. Cancer 2016, 35, 16. [Google Scholar] [CrossRef] [PubMed]
- Vranic, S.; Cyprian, F.S.; Akhtar, S.; Al Moustafa, A.E. The Role of Epstein-Barr Virus in Cervical Cancer: A Brief Update. Front. Oncol. 2018, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Carrillo-Beltrán, D.; Corvalán, A.H.; Aguayo, F. High-Risk Human Papillomavirus and Epstein–Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. Biology 2021, 10, 1232. [Google Scholar] [CrossRef]
- Malki, M.I.; Gupta, I.; Fernandes, Q.; Aboulkassim, T.; Yasmeen, A.; Vranic, S.; Al Moustafa, A.E.; Al-Thawadi, H.A. Co-Presence of Epstein–Barr Virus and High-Risk Human Papillomaviruses in Syrian Colorectal Cancer Samples. Hum. Vaccines Immunother. 2020, 16, 2403–2407. [Google Scholar] [CrossRef]
- Gupta, I.; Al Farsi, H.; Jabeen, A.; Skenderi, F.; Al-Thawadi, H.; Alahmad, Y.M.; Al Moustafa, A.E.; Vranic, S. High-Risk Human Papillomaviruses and Epstein–Barr Virus in Colorectal Cancer and Their Association with Clinicopathological Status. Pathogens 2020, 9, 452. [Google Scholar] [CrossRef]
- Nawandar, D.M.; Ohashi, M.; Djavadian, R.; Barlow, E.; Makielski, K.; Ali, A.; Lee, D.; Lambert, P.F.; Johannsen, E.; Kenney, S.C. Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. J. Virol. 2017, 91, e02438-16. [Google Scholar] [CrossRef]
- Makielski, K.R.; Lee, D.; Lorenz, L.D.; Nawandar, D.M.; Chiu, Y.F.; Kenney, S.C.; Lambert, P.F. Human Papillomavirus Promotes Epstein-Barr Virus Maintenance and Lytic Reactivation in Immortalized Oral Keratinocytes. Virology 2016, 495, 52–62. [Google Scholar] [CrossRef]
- Cyprian, F.S.; Al-Farsi, H.F.; Vranic, S.; Akhtar, S.; Al Moustafa, A.E. Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression. Front. Oncol. 2018, 8, 111. [Google Scholar] [CrossRef]
- de Lima, M.A.P.; Teodoro, I.P.P.; da Silva, C.G.L.; Lima, M.V.A. Role of Epstein–Barr Virus and Human Papillomavirus Coinfection in Oral and Anogenital Carcinogenesis: Potential Tumorigenic Pathways. Crit. Rev. Oncog. 2019, 24, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.; Shea, B.; O’connell, D.; Peterson, J.W.V. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2014. [Google Scholar]
- Salyakina, D.; Tsinoremas, N.F. Viral Expression Associated with Gastrointestinal Adenocarcinomas in TCGA High-Throughput Sequencing Data. Hum Genomics 2013, 7, 23. [Google Scholar] [CrossRef]
- Nagi, K.; Gupta, I.; Jurdi, N.; Yasmeen, A.; Vranic, S.; Batist, G.; Moustafa, A.E. Al Copresence of High-Risk Human Papillomaviruses and Epstein–Barr Virus in Colorectal Cancer: A Tissue Microarray and Molecular Study from Lebanon. Int. J. Mol. Sci. 2021, 22, 8118. [Google Scholar] [CrossRef]
- Ebrahimian Shiadeh, A.; Hamidi Sofiani, V.; Saber Amoli, S.; Taheri, M.; Tabarraei, A.; Razavi Nikoo, H.; Sadeghi, F.; Khafri, S.; Kamrani, G.; Yahyapour, Y.; et al. EBV and HPV Infections in Colorectal Cancer and Their Effect on P53 and P16 Protein Expression. Int. J. Mol. Cell. Med. 2023, 12, 288–299. [Google Scholar] [CrossRef]
- Fernandes, Q.; Gupta, I.; Murshed, K.; Samra, H.A.; Al-Thawadi, H.; Vranic, S.; Petkar, M.; Babu, G.R.; Moustafa, A.E. Al Incidence and Association of High-Risk HPVs and EBV in Patients with Advanced Stages of Colorectal Cancer from Qatar. Hum. Vaccines Immunother. 2023, 19, 2220626. [Google Scholar] [CrossRef]
- Guan, X.; Yi, Y.; Huang, Y.; Hu, Y.; Li, X.; Wang, X.; Fan, H.; Wang, G.; Wang, D. Revealing Potential Molecular Targets Bridging Colitis and Colorectal Cancer Based on Multidimensional Integration Strategy. Oncotarget 2015, 6, 37600–37612. [Google Scholar] [CrossRef]
- Ghabreau, L.; Segal, E.; Yasmeen, A.; Kassab, A.; Akil, N.; Al Moustafa, A. High-Risk Human Papillomavirus Infections in Colorectal Cancer in the Syrian Population and Their Association with Fascin, Id-1 and P-Cadherin Expressions: A Tissue Microarray Study. Clin. Cancer Investig. J. 2012, 1, 26. [Google Scholar] [CrossRef]
- Baandrup, L.; Thomsen, L.T.; Olesen, T.B.; Andersen, K.K.; Norrild, B.; Kjaer, S.K. The Prevalence of Human Papillomavirus in Colorectal Adenomas and Adenocarcinomas: A Systematic Review and Meta-Analysis. Eur. J. Cancer 2014, 50, 1446–1461. [Google Scholar] [CrossRef]
- Damin, D.C.; Ziegelmann, P.K.; Damin, A.P. Human Papillomavirus Infection and Colorectal Cancer Risk: A Meta-Analysis. Color. Dis. 2013, 15, e420–e428. [Google Scholar] [CrossRef]
- Jafari Maskouni, E.; Jamalvandi, T.; Tabatabaei, F.; Bourenjan Shirazi, S.; Saadati, H.; Letafati, A.; Hosseini, M.; Motlaghzadeh, S.; Khalesi, Z.; Moradi, P.; et al. Association between Epstein-Bar Virus and Colorectal Cancer: A Systematic Review and Meta-Analysis. Microb. Pathog. 2023, 179, 106087. [Google Scholar] [CrossRef] [PubMed]
- Sole, C.V.; Calvo, F.A.; Ferrer, C.; Alvarez, E.; Carreras, J.L.; Ochoa, E. Human Cytomegalovirus and Epstein-Barr Virus Infection Impact on 18F-FDG PET/CT SUVmax, CT Volumetric and KRAS-Based Parameters of Patients with Locally Advanced Rectal Cancer Treated with Neoadjuvant Therapy. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Fiorina, L.; Ricotti, M.; Vanoli, A.; Luinetti, O.; Dallera, E.; Riboni, R.; Paolucci, S.; Brugnatelli, S.; Paulli, M.; Pedrazzoli, P.; et al. Systematic Analysis of Human Oncogenic Viruses in Colon Cancer Revealed EBV Latency in Lymphoid Infiltrates. Infect. Agent. Cancer 2014, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Bedri, S.; Sultan, A.A.; Alkhalaf, M.; Al Moustafa, A.E.; Vranic, S. Epstein-Barr Virus (EBV) Status in Colorectal Cancer: A Mini Review. Hum. Vaccines Immunother. 2019, 15, 603–610. [Google Scholar] [CrossRef]
- Akhtar, S.; Vranic, S.; Cyprian, F.S.; Moustafa, A.E. Al Epstein-Barr Virus in Gliomas: Cause, Association, or Artifact? Front. Oncol. 2018, 8, 123. [Google Scholar] [CrossRef]
- Morazán-Fernández, D.; Mora, J.; Molina-Mora, J.A. In Silico Pipeline to Identify Tumor-Specific Antigens for Cancer Immunotherapy Using Exome Sequencing Data. Phenomics 2023, 3, 130–137. [Google Scholar] [CrossRef]
Study | Selection Domain | Comparability Domain | Outcome/Exposure Domain | Quality |
---|---|---|---|---|
Salyakina, 2013 [25] | ☆☆☆☆ | ☆ | ☆☆☆ | Good |
Gupta, 2020 [18] | ☆ | ☆ | Poor | |
Malki, 2020 [17] | ☆ | ☆ | Poor | |
Nagi, 2021 [26] | ☆☆ | ☆ | Poor | |
Ebrahimian-Shiadeh, 2023 [27] | ☆☆☆☆ | ☆ | ☆☆ | Good |
Fernandes, 2023 [28] | ☆☆ | ☆☆ | Poor |
Study Characteristics | CRC Patients’ Characteristics | Coinfected Patients’ Characteristics | EBV | HPV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author, Year Country Study Design | No | Age Gender (M/F, n (%)) | Lymph Node Involvement Distant Metastasis | No | Histological Type Grade Stage | Localization | Tissue type Detection Method | No EBV+ | HPV Genotype in Coinfections | Detection Method | No HPV+ |
Salyakina, 2013 [25] USA NR | 165 | NR NR | NR NR | 13/165 | Adenocarcinoma NR NR | Colon | Frozen tissue NGS | Ascending colon, n = 7 Descending colon, n = 0 Transverse colon, n = 1 Sigmoid colon, n = 19 Rectosigmoid, n = 0 Cecum, n = 13 Rectum, n = 22 Splenic flexure, n = 0 Hepatic flexure, n = 2 | 18 | Frozen tissue NGS | Ascending colon, n = 11 Descending colon, n = 1 Transverse colon, n = 4 Sigmoid colon, n = 21 Rectosigmoid, n = 0 Cecum, n = 18 Rectum, n = 3 Splenic flexure, n = 1 Hepatic flexure, n = 3 |
Gupta, 2020 [18] Bosnia and Herzegovina NR | 106 | 65 ± 8 (mean ± sd) 64 (60%)/42 (40%) | NR NR | 17/106 | Adenocarcinoma Intermediate and high grade Not clear | Rectum | FFPE PCR | 26/106 | 16, 18, 31, 35, 45, 51, 52, 56, and 58 | FFPE PCR | 98/106 HPV16 53% HPV31 51% HPV18 50% HPV51 46% HPV52 39% HPV45 39% HPV35 26% HPV56 9% HPV39 0.9% |
Malki, 2020 [17] Syria NR | 102 | 49 (med) 49 (48%)/53 (52%) | NR NR | 17/102 | Adenocarcinoma Intermediate grade, n = 7; high grade, n = 10 NR | Not specified | FFPE PCR, TMA, IHC | 20/102 | 16, 18, 31, 33, and 35 | FFPE PCR, TMA, IHC | 38/102 |
Nagi, 2021 [26] Lebanon NR | 94 | 60 (3–89) mean (range) 37 (35%)/70 (65%) | Yes (pN0 n = 52, pN1 n = 20, pN2 n = 22, pN3 n = 0) NR | 26/94 | Adenocarcinoma Not clear Not clear | Rectosigmoid, n = 12 Other parts of the colon, n = 14 | FFPE PCR, TMA, IHC | 60/94 | 18, 33, 35, 52, and 58 | FFPE PCR, TMA, IHC | 27/94 HPV16 39% HPV18 38% HPV35 29% HPV58 28% HPV51 26% HPV45 23% HPV52 21% HPV31 14% HPV33 4% |
Ebrahimian Shiadeh, 2023 [27] Iran cross-sectional | 55 | 61 ± 12.8 mean ± sd 32 (58%)/23 (42%) | NR NR | 1/55 | Adenocarcinoma Not clear NR | Not specified | Frozen tissue PCR | 27/55 | NR | Frozen tissue PCR | 4/55 |
Fernandes, 2023 [28] Qatar NR | 100 | 57.1 ± 13.9 mean ± sd 23–96 range 66 (66%)/34 (34%) | Yes (pN0 n = 5, pN1 n = 7, pN2 n = 5) No | 17/100 n = 7 EBV/One HPV, n = 4 EBV/Two HPVs, n = 1 EBV/Three HPVs, n = 3 EBV/Four HPVs, n = 2 EBV/Five HPVs | Adenocarcinoma Low grade, n = 0; intermediate grade, n = 12; high grade, n = 5 pT1 stage, n = 1 pT2 stage, n = 6 pT3 stage, n = 10 pT4 stage, n = 0 | Ascending colon, n = 2 Descending colon, n = 1 Transverse colon, n = 1 Sigmoid colon, n = 5 Rectosigmoid, n = 1 Cecum, n = 1 Rectum, n = 2 Splenic flexure, n = 0 Hepatic flexure, n = 2 | FFPE PCR | 21/100 Ascending colon, n = 8 Descending colon, n = 7 Transverse colon, n = 3 Sigmoid colon, n = 18 Rectosigmoid colon, n = 9 Cecum, n = 4 Rectum, n = 2 Hepatic flexure, n = 5 Splenic flexure, n = 2 Other colorectal regions, n = 3 | 16, 18, 31, 35, 45, 51, 52, and 59 | FFPE PCR | 69/100 Ascending colon, n = 11 Descending colon, n = 10 Transverse colon, n = 3 Sigmoid colon, n = 18 Rectosigmoid colon, n = 10 Cecum, n = 6 Rectum, n = 2 Hepatic flexure, n = 4 Splenic flexure, n = 2 Other colorectal regions, n = 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banko, A.; Lazarevic, I.; Miljanovic, D.; Cupic, M.; Cirkovic, A. Epstein-Barr Virus and Human Papillomavirus Coinfection in Colorectal Carcinoma: Systematic Review and Meta-Analysis of the Prevalence. Microorganisms 2024, 12, 2117. https://doi.org/10.3390/microorganisms12112117
Banko A, Lazarevic I, Miljanovic D, Cupic M, Cirkovic A. Epstein-Barr Virus and Human Papillomavirus Coinfection in Colorectal Carcinoma: Systematic Review and Meta-Analysis of the Prevalence. Microorganisms. 2024; 12(11):2117. https://doi.org/10.3390/microorganisms12112117
Chicago/Turabian StyleBanko, Ana, Ivana Lazarevic, Danijela Miljanovic, Maja Cupic, and Andja Cirkovic. 2024. "Epstein-Barr Virus and Human Papillomavirus Coinfection in Colorectal Carcinoma: Systematic Review and Meta-Analysis of the Prevalence" Microorganisms 12, no. 11: 2117. https://doi.org/10.3390/microorganisms12112117
APA StyleBanko, A., Lazarevic, I., Miljanovic, D., Cupic, M., & Cirkovic, A. (2024). Epstein-Barr Virus and Human Papillomavirus Coinfection in Colorectal Carcinoma: Systematic Review and Meta-Analysis of the Prevalence. Microorganisms, 12(11), 2117. https://doi.org/10.3390/microorganisms12112117