Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review
Abstract
:1. Introduction
2. Strategies for Phytoremediation: The Current State-of-the-Art
3. Metal-Resistant Microbes
3.1. PGPB Contributions
Type | Species/Strain | Plant Used | Mechanism of Action | Impact | References |
---|---|---|---|---|---|
Plant Growth-Promoting Rhizobacteria | Sinorhizobium meliloti | Medicago lupulina L. | IAA, ACC deaminase, and siderophores. | Amended biomass, elevated copper uptake, and decreased copper stress. | [35] |
Variovorax paradoxus | Bornmuellera tymphaea (Hausskn.) Hausskn. Noccaea tymphaea (Hausskn.) F.K.Mey. Alyssum murale L. | IAA, ACC deaminase, siderophores, and P solubilization. | Improved biomass and greater nickel uptake. | [21] | |
Chryseobacterium humi Pseudomonas reactans Pseudomonas fluorescens | Zea mays L. | ACC deaminase, P solubilization, and siderophores. | Augmented root and shoot growth, higher biomass, and enhanced cadmium uptake. | [36] | |
Ensifer adhaerens | Indole-3-acetic acid (IAA), siderophores, and ACC deaminase. | Heightened arsenic uptake. | [37] | ||
Bacillus licheniformis Micrococcus luteus | Vitis vinifera cv. Malbec | Nitrogen assimilation, P solubilization, and Siderophore. | Diminished toxicity from arsenic. | [38] | |
Kocuria sp. CRB15 | Brassica nigra L. | Indole-3-acetic acid (IAA) and solubilization of phosphorus. | Enhanced growth of roots and shoots. | [39] | |
Sinorhizobium Saheli | Leucaena leucocephala (Lam.) de Wit | Fixation of nitrogen, solubilization of phosphorus, and synthesis of IAA. | Increased root and shoot growth, elevated biomass, decreased cadmium uptake, and reduced manganese uptake. | [40] | |
Pseudomonas sp. | Medicago sativa L. | N fixation, P solubilization, IAA biosynthesis, and siderophore generation | Improved root and shoot development, greater biomass, boosted chlorophyll levels, decreased oxidative stress, and elevated Cr accumulation in roots. | [41] | |
Bacillus sp. EhS7 Acinetobacter sp. RA1 Bacillus sp. RA2 | Perennial ryegrass Tall fescue | IAA biosynthesis and P solubilization. | Greater biomass, less oxidative stress, and reduced uptake of metals. | [42] | |
Plant growth-promoting endophytic bacteria | Bacillus sp. E2S2 Bacillus sp. E1S2 | Sedum plumbizincicola X.H.Guo and S.B.Zhou ex L.H.Wu | Indole-3-acetic acid (IAA) synthesis, ACC deaminase enzyme activity, phosphorus solubilization, and siderophore production. | Boosted root and shoot growth, augmented biomass, increased cadmium uptake, and higher zinc accumulation. | [37] |
Serratia sp. AI001 Klebsiella sp. AI002 | Solanum nigrum L. | IAA production. | Increase in biomass, elevation of chlorophyll content, and enhancement of Cd translocation. | [43] |
3.2. Fungal Interventions
Fungal Species | Host Plant | Heavy Metals | Consequences | Reference |
---|---|---|---|---|
Rhizophagus irregularis | Cannabis sativa L. | Cd remediation | Enhanced Cd compartmentation | [57] |
Laccaria, L. bicolor and L. japonica | Pinus densiflora Siebold and Zucc. | Cadmium (Cd) or copper (Cu) | Blocked the migration and accumulation of cadmium | [58] |
Ectomycorrhizal (ECM) fungi | Pinus densiflora Siebold and Zucc. | Cu | Increased seedling performance | [59] |
Paxillus involutus | P. × canescens | Pb | Increased plant growth and may increase Pb phytostabilization potential | [60] |
Pisolithus albus | Acacia spirorbis Labill. and Eucalyptus globulus Labill. | Co, Cr, Fe, Mn and Ni | Enhanced plant growth and mineral nutrition while limiting metal uptake | [61] |
Chaetomium globosum | Zea mays L. | Copper | Increased seedling dry weight, osmotic solute content, and antioxidant enzyme activity | [62] |
Trichoderma harzianum Rifai 1295-22 | Salix fragilis | Cadmium manganese nickel and zinc | Promoted growth | [63] |
Glomus intraradices | Linum usitatissimum | Nickel | Alleviated Ni toxicity as indicated by improved plant growth | [64] |
Trametes versicolor and Trichoderma harzianum, Glomus deserticola and G. claroideum | Eucalyptus globulus Labill. | Arsenic (As) | Increased the shoot and root dry weight, and chlorophyll content | [52] |
Trichoderma sp. PDR1-7 | Pinus sylvestris L. | lead | Removed heavy metals from mine-tailing soil extract media | [65] |
Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 | Sorghum, Sudangrass | As, Cu, Pb and Zn | Caused growth and As, Pb, and Zn uptake | [66] |
Arbuscular mycorrhizal fungi | Bread wheat | Cd | Improved nitrogen and phosphorus nutrition, and the immobilization of Cd | [67] |
Cadophora, Leptodontidium, Phialophora and Phialocephala | N/A | Cd, Pb and Zn | Promoted plant growth, metabolite production, and metal tolerance | [68] |
Aspergillus fumigatus, Rhizopus sp., Penicillium radicum and Fusarium proliferatum | Lactuca sativa L. | Cr-VI to Cr-III | Detoxified up to 95% of Cr extracellularly | [69] |
Trichoderma atroviride F6 | Brassica juncea L. Coss. var. foliosa Bailey | Cd, Ni | Caused an 110%, 40%, and 170% increase in fresh weight | [53] |
Glomus geosporum | Aster tripolium L. | Cd and Cu | Enhanced Cd and Cu root uptake and accumulation | [70] |
Arbuscular mycorrhizal fungi | Erato polymnioides | Hg | Increased Hg accumulation | [71] |
Claroideoglomus etunicatum | Zea mays L. | La and Cd | Caused metal uptake and transport | [72] |
Arbuscular mycorrhizal fungi (AMF) | Solanum melongena L. | Pb, Cd, and As as Pb (NO3)2, CdCl2·5H2O, and As3S2 | Improved growth, biomass, and the antioxidative defense response | [73] |
Arbuscular mycorrhiza (AM) | Trifolium pratense L. | Zn | Increased Zn uptake and root accumulation, enhanced plant growth and P nutrition, and alleviated Zn toxicity | [74] |
Arbuscular mycorrhizal fungi | Populus cathayana | Pb | Increased P uptake, antioxidant enzyme activity, and Pb accumulation | [75] |
Glomus intraradices (AH01) | Oryza sativa L. | Arsenite | Decreased arsenite uptake and immobilized arsenite in rice roots, preventing translocation to shoots | [76] |
Glomus intraradices (AH01) | Oryza sativa L. | Arsenate | Increased OsPT11 expression, enhanced P concentration and biomass, decreased arsenate concentration and uptake in rice, and raised the P/As molar ratio | [77] |
AMF Funneliformis mosseae (Fm) or Rhizophagus intraradices (Ri) | Oryza sativa L. | Cd | Reduced rice Cd uptake by altering Cd transporter expression | [78] |
Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 | Brassica napus | Pb and Cd | Increased biomass and metal extraction | [79] |
Aspergillus fumigatus, Aspergillus niger, Fusarium equiseti, Fusarium chlamydosporum, Paecilomyces lilacinus, Trametes versicolor, Penicillium cataractum, Perenniporia subtephropora, Daldinia starbaeckii, Antrodia serialis, Cerrena aurantiopora, Phanerochaete concrescens and Polyporales species. | Prosopis juliflora Sw. | As,Cr,Cu,Fe,Mn,Ni, Pb,Zn | Enhanced biomass, increased root and shoot lengths, elevated carotenoids and chlorophyll, increased levels of L-phenylalanine and L-leucine, increased heavy metal accumulation, upregulated antioxidant genes, improved growth and metal tolerance, and served as an effective bioremediation strategy | [44] |
Trichoderma harzianum | Amaranthus hypochondriacus L. | Cd and Zn | Promoted phytoremediation of Cd and Zn and enhanced the prevalence of heavy metal resistant genes (MRGs) and antibiotic resistance genes (ARGs), MRGs were influenced by available Zn and Cd, and MRGs were linked to specific bacterial hosts | [80] |
4. Plant–Microbe Synergism in Soil Recovery
Species Name | Resistant Genes | HM | References |
---|---|---|---|
Citrobacter, Desulfocurvus and Stappia | czcA, czcB, czcC | Cadmium | [97] |
Caenispirillum, Halomonas, Stappia, Thauera | ctpA, copZ, copR and copB | Cadmium | [98] |
Serratia marcescens CCMA 1010 | zntR gene | Pb2+ | [99] |
Pseudomonas, Escherichia coli and Staphylococcus aureus | merR, merD | Hg2+ | [100] |
Sporosarcina ginsengisoli | copK | As(III) | [101] |
Georgenia sp. SUBG003 | czcD | Cobalt/zinc/cadmium resistance protein | [102] |
Cupriavidus metallidurans | pbrR and its derivatives, pbrR2 and pbrD | Lead | [103] |
Escherichia coli | Metallothionein (MT) | Cd | [104] |
Thiobacillus, Hydrogenophaga and Flavihumibacter | aioA, arsC, arrA and soxB genes | Arsenic | [105] |
Microbacterium paraoxydans | arsR, arsB, arsC, acr1, acr2 and acr3 | Arsenic | [106] |
Pseudomonas putida ARS1 | aio, arr, and arsM | Arsenic | [107] |
Desulfurella and Clostridium | asrA and arsB | Arsenic | [108] |
Acinetobacter sp. (ADHR1) | chrR | Cr (VI) | [109] |
Alphaproteobacteria Xanthobacter autotrophicus Py2 | mer1 and mer2 | Mercury (Hg) | [110] |
Bacillus megaterium | merA and merB | Mercury (Hg) | [111] |
Pseudomonas putida | mer73 | Mercury (Hg) | [112] |
E. coli K12 | nikA, nikE, nikC, rcnA and nikB, | Ni2+ | [113] |
Alcaligenes xylosoxydans, Ralstonia metallidurans and Helicobacter mustelae | nccA, cnrA and cznA | Ni2+ | [113] |
Arthrobacter rhombi AY509239, Clavibacter xyli AY509235, Microbacterium arabinogalactanolyticum AY509226, Rhizobium mongolense AY509209 and Variovorax paradoxus AY512828 | czc, chr, mer and ncc | Arsenate, cadmium, chromium, zinc, mercury, lead, cobalt, copper, and nickel | [114] |
Pseudomonas aeruginosa JP-11 | cad operon, and czc operon | Cadmium | [115] |
Staphylococcus aureus | cadB | Cadmium | [116] |
Staphylococcus lugdunensis | cadX | Cadmium | [117] |
Ochrobactrum tritici | chrBACF | Chromium | [118] |
Arthrobacter sp. | chrJ, chrK, and chrL | Chromium | [119] |
Escherichia coli | cueO | Copper | [120] |
Pseudomonas fluorescens | copRSCD operon | Copper | [121] |
Bacillus subtilis | ycnJ | Copper | [122] |
Helicobacter pylori | hpcopA and hpcopP | Copper | [123] |
C. metallidurans | pbrU | Lead | [124] |
Pseudomonas aeruginosa strain WI-1 | bmtA | Lead | [125] |
Acidithiobacillus ferrooxidans | merC | Mercury | [126] |
Cupriavidus (Ralstonia) metallidurans | cnrCBA | Nickle | [127] |
Achromobacter xylosoxidans 31A | nre | Nickle | [128] |
Escherichia coli | yohM | Nickle | [129] |
Escherichia coli | NiCoT efflux gene (rcnA) | Nickle and Cobalt | [130] |
Escherichia coli | ppk | Mercury | [131] |
5. Engineering the Meta-Organism
6. Assessment of Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asad, S.A.; Farooq, M.; Afzal, A.; West, H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment—A review. Chemosphere 2019, 217, 925–941. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef]
- Grobelak, A.; Napora, A.; Kacprzak, M. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol. Eng. 2015, 84, 22–28. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shi, H.; Tao, J.; Chen, L.; Liu, Y.; Lei, G.; Liu, X.; Smol, J.P. Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems. Sci. Rep. 2015, 5, 17419. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Cocârţă, D.M.; Neamţu, S.; Reşetar Deac, A.M. Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2016, 13, 2025–2036. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; He, X.; Li, B.; Du, S. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere 2023, 338, 139475. [Google Scholar] [CrossRef]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Guan, D.-X.; Cao, Y.; Wang, C.; Liu, C.; Ma, L.Q. Arsenic-Hyperaccumulator Pteris vittata Effectively Uses Sparingly-Soluble Phosphate Rock: Rhizosphere Solubilization, Nutrient Improvement, and Arsenic Accumulation. Environ. Sci. Technol. 2024, 58, 7870–7879. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Oyewole, O.A.; Zobeashia, S.S.L.-T.; Oladoja, E.O.; Raji, R.O.; Odiniya, E.E.; Musa, A.M. Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Appl. Sci. 2019, 1, 857. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, Y.; Chen, H.; Ran, G.; Liu, X. Effects of multi-heavy metal composite pollution on microorganisms around a lead-zinc mine in typical karst areas, southwest China. Ecotoxicol. Environ. Saf. 2023, 262, 115190. [Google Scholar] [CrossRef]
- Qin, H.; Wang, Z.; Sha, W.; Song, S.; Qin, F.; Zhang, W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024, 12, 700. [Google Scholar] [CrossRef]
- Göhre, V.; Paszkowski, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water. J. Toxicol. 2018, 2018, 4864365. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Konkolewska, A.; Piechalak, A.; Ciszewska, L.; Antos-Krzemińska, N.; Skrzypczak, T.; Hanć, A.; Sitko, K.; Małkowski, E.; Barałkiewicz, D.; Małecka, A. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environ. Sci. Pollut. Res. 2020, 27, 13809–13825. [Google Scholar] [CrossRef]
- Durand, A.; Piutti, S.; Rue, M.; Morel, J.L.; Echevarria, G.; Benizri, E. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 2016, 399, 179–192. [Google Scholar] [CrossRef]
- Rakić, T.; Pešić, M.; Kostić, N.; Andrejić, G.; Fira, D.; Dželetović, Ž.; Stanković, S.; Lozo, J. Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings. Plant Soil 2021, 462, 349–363. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Su, R.; Chen, Y. Phytostabilization of Heavy Metals and Fungal Community Response in Manganese Slag under the Mediation of Soil Amendments and Plants. Toxics 2024, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wang, W.; Chen, X.; Zheng, X.; Fu, W.; Wang, G.; Ji, J.; Guan, C. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Environ. Pollut. 2022, 314, 120303. [Google Scholar] [CrossRef]
- Guarino, F.; Miranda, A.; Castiglione, S.; Cicatelli, A. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 2020, 251, 126310. [Google Scholar] [CrossRef]
- Dimitroula, H.; Syranidou, E.; Manousaki, E.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Mitigation measures for chromium-VI contaminated groundwater—The role of endophytic bacteria in rhizofiltration. J. Hazard. Mater. 2015, 281, 114–120. [Google Scholar] [CrossRef]
- Tirry, N.; Tahri Joutey, N.; Sayel, H.; Kouchou, A.; Bahafid, W.; Asri, M.; El Ghachtouli, N. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. J. Genet. Eng. Biotechnol. 2018, 16, 613–619. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, S.K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 2021, 28, 10375–10412. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
- Carlos, M.-H.J.; Stefani, P.-V.Y.; Janette, A.-M.; Melani, M.-S.S.; Gabriela, P.-O. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol. Res. 2016, 188–189, 53–61. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Monterroso, C.; Prieto-Fernández, A.; Rodríguez-Lamas, L.; Loureiro-Viñas, M.; Acea, M.J.; Kidd, P.S. Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J. Hazard. Mater. 2012, 217–218, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Belimov, A.A.; Hontzeas, N.; Safronova, V.I.; Demchinskaya, S.V.; Piluzza, G.; Bullitta, S.; Glick, B.R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 2005, 37, 241–250. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V.; Antonyuk, L.P.; Tarantilis, P.A.; Polissiou, M.G.; Gardiner, P.H.E. Effects of heavy metals on plant-associated rhizobacteria: Comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J. Trace Elem. Med. Biol. 2005, 19, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.G.C.; Moreira, H.; Franco, A.R.; Rangel, A.O.S.S.; Castro, P.M.L. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—Effects on phytoremediation strategies. Chemosphere 2013, 92, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Mohamad, O.A.; Deng, Z.; Liu, X.; Glick, B.R.; Wei, G. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ. Sci. Pollut. Res. 2015, 22, 12479–12489. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.A.; Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil—Effect of the inoculum size. Geoderma 2016, 278, 1–11. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef]
- Funes Pinter, I.; Salomon, M.V.; Berli, F.; Bottini, R.; Piccoli, P. Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl. Soil Ecol. 2017, 109, 60–68. [Google Scholar] [CrossRef]
- Hansda, A.; Kumar, V.; Anshumali. Cu-resistant Kocuria sp. CRB15: A potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 2017, 7, 132. [Google Scholar] [CrossRef]
- Kang, X.; Yu, X.; Zhang, Y.; Cui, Y.; Tu, W.; Wang, Q.; Li, Y.; Hu, L.; Gu, Y.; Zhao, K.; et al. Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils. Front. Microbiol. 2018, 9, 1853. [Google Scholar] [CrossRef]
- Tirry, N.; Kouchou, A.; El Omari, B.; Ferioun, M.; El Ghachtouli, N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J. Genet. Eng. Biotechnol. 2021, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Ke, T.; Guo, G.; Liu, J.; Zhang, C.; Tao, Y.; Wang, P.; Xu, Y.; Chen, L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 2021, 271, 116314. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Mateen, A.; Ahmad, M.A.; Munir, I.; Iqbal, A.; Alghamdi, K.M.S.; Al-Solami, H.M.; Siddiqui, M.F. Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, “AI001, and AI002” mediate cadmium translocation and phytoremediation. Environ. Pollut. 2022, 293, 118508. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Hamid, F.S.; Pariatamby, A.; Ossai, I.C.; Ahmed, A.; Barasarathi, J.; Auta, H.S. Influence of bioaugmented fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora Sw. DC in heavy metal–polluted landfill soil. Environ. Sci. Pollut. Res. 2024, 31, 28671–28694. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Li, T.; Liu, G.-Y.; Smith, J.M.; Zhao, Z.-W. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genic aspects. Sci. Rep. 2016, 6, 22028. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Oliveira, R.S.; Zhang, C.; Freitas, H. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J. Hazard. Mater. 2019, 379, 120813. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.W.; Wu, L.; Luo, N.; Huang, W.X.; Mo, C.H.; Li, Y.W.; Xiang, L.; Zhao, H.M.; Cai, Q.Y.; et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress. Plant Soil 2020, 455, 121–138. [Google Scholar] [CrossRef]
- Lu, R.-R.; Hu, Z.-H.; Zhang, Q.-L.; Li, Y.-Q.; Lin, M.; Wang, X.-L.; Wu, X.-N.; Yang, J.-T.; Zhang, L.-Q.; Jing, Y.-X.; et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol. Environ. Saf. 2020, 203, 110988. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Shi, F.; Meng, B.; Liu, J.; Mi, Y.; Dong, C.; Su, H.; Liu, X.; Wang, F.; et al. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. Ecotoxicol. Environ. Saf. 2023, 255, 114776. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, P.; Lei, L.; Jing, Y. Transcriptome analysis reveals decreased accumulation and toxicity of Cd in upland rice inoculated with arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2022, 177, 104501. [Google Scholar] [CrossRef]
- Yang, X.; Qin, J.; Li, J.; Lai, Z.; Li, H. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J. Hazard. Mater. 2021, 406, 124325. [Google Scholar] [CrossRef] [PubMed]
- Arriagada, C.; Aranda, E.; Sampedro, I.; Garcia-Romera, I.; Ocampo, J.A. Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour. Technol. 2009, 100, 6250–6257. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Jiang, M.; Zeng, Z.; Du, A.; Tan, H.; Liu, Y. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 2008, 71, 1769–1773. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Dwivedi, S.K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater. Ecotoxicol. Environ. Saf. 2019, 185, 109734. [Google Scholar] [CrossRef]
- Gola, D.; Tyagi, P.K.; Chauhan, N.; Malik, A.; Srivastava, S.K. Beauveria bassiana assisted remediation of chromium and indanthane blue. J. Environ. Chem. Eng. 2021, 9, 105552. [Google Scholar] [CrossRef]
- Gola, D.; Dey, P.; Bhattacharya, A.; Mishra, A.; Malik, A.; Namburath, M.; Ahammad, S.Z. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour. Technol. 2016, 218, 388–396. [Google Scholar] [CrossRef]
- Sun, S.; Fan, X.; Feng, Y.; Wang, X.; Gao, H.; Song, F. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere 2023, 330, 138728. [Google Scholar] [CrossRef]
- Quan, L.; Shi, L.; Zhang, S.; Yao, Q.; Yang, Q.; Zhu, Y.; Liu, Y.; Lian, C.; Chen, Y.; Shen, Z.; et al. Ectomycorrhizal fungi, two species of Laccaria, differentially block the migration and accumulation of cadmium and copper in Pinus densiflora. Chemosphere 2023, 334, 138857. [Google Scholar] [CrossRef]
- Chen, Y.; Nara, K.; Wen, Z.; Shi, L.; Xia, Y.; Shen, Z.; Lian, C. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Mycorrhiza 2015, 25, 561–571. [Google Scholar] [CrossRef]
- Szuba, A.; Karliński, L.; Krzesłowska, M.; Hazubska-Przybył, T. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant Soil 2017, 412, 253–266. [Google Scholar] [CrossRef]
- Jourand, P.; Hannibal, L.; Majorel, C.; Mengant, S.; Ducousso, M.; Lebrun, M. Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J. Plant Physiol. 2014, 171, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Abou Alhamed, M.F.; Shebany, Y.M. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol. 2012, 14, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.; De-Leij, F.A.A.M.; Lynch, J.M. Trichoderma harzianum Rifai 1295-22 Mediates Growth Promotion of Crack Willow (Salix fragilis) Saplings in Both Clean and Metal-Contaminated Soil. Microb. Ecol. 2007, 54, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Amna; Masood, S.; Syed, J.H.; Munis, M.F.H.; Chaudhary, H.J. Phyto-extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. Int. J. Phytoremediation 2015, 17, 981–987. [Google Scholar] [CrossRef]
- Babu, A.G.; Shea, P.J.; Oh, B.-T. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Sci. Total Environ. 2014, 476–477, 561–567. [Google Scholar] [CrossRef]
- Babu, A.G.; Shim, J.; Shea, P.J.; Oh, B.-T. Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecol. Eng. 2014, 69, 186–191. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Aghili, F.; Jafarinia, R. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ. Sci. Pollut. Res. 2019, 26, 30794–30807. [Google Scholar] [CrossRef]
- Berthelot, C.; Leyval, C.; Foulon, J.; Chalot, M.; Blaudez, D. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol. Ecol. 2016, 92, fiw144. [Google Scholar] [CrossRef]
- Bibi, S.; Hussain, A.; Hamayun, M.; Rahman, H.; Iqbal, A.; Shah, M.; Irshad, M.; Qasim, M.; Islam, B. Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 2018, 211, 653–663. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Caçador, I.; Martins-Loução, M.A. Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 2006, 285, 161–169. [Google Scholar] [CrossRef]
- Chamba, I.; Rosado, D.; Kalinhoff, C.; Thangaswamy, S.; Sánchez-Rodríguez, A.; Gazquez, M.J. Erato polymnioides—A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere 2017, 188, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Diao, F.-W.; Wang, Q.-F.; Pan, L.; Dang, Z.-H.; Guo, W. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018, 241, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.; Favas, P.; Pratas, J.; Varun, M.; Paul, M.S. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.D.; Li, X.L.; Tao, H.Q.; Christie, P.; Wong, M.H. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 2003, 50, 839–846. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Yang, W.; Xu, Z.; Zhang, D.; Gao, S. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Ecotoxicol. Environ. Saf. 2015, 113, 460–468. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Chan, W.F.; Wu, C.; Wu, F.; Wu, S.; Wong, M.H. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 2012, 89, 1248–1254. [Google Scholar] [CrossRef]
- Chen, X.W.; Wu, F.Y.; Li, H.; Chan, W.F.; Wu, C.; Wu, S.C.; Wong, M.H. Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environ. Exp. Bot. 2013, 87, 92–99. [Google Scholar] [CrossRef]
- Chen, X.W.; Wu, L.; Luo, N.; Mo, C.H.; Wong, M.H.; Li, H. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma 2019, 337, 749–757. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, H.; Cao, L.; Zhang, R.; Xu, Z.; Wang, Z.; Deng, Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ. Sci. Pollut. Res. 2017, 24, 417–426. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Mi, H.; Xu, R.; Zhang, W.; Wang, C.; Rensing, C.; Wang, Y. Prevalence of antibiotic and metal resistance genes in phytoremediated cadmium and zinc contaminated soil assisted by chitosan and Trichoderma harzianum. Environ. Int. 2024, 183, 108394. [Google Scholar] [CrossRef]
- Glick, B.R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, M.; Zhao, Q.; Xia, Y.; Chen, C.; Shen, Z. Complete Genome Sequence of Cd(II)-Resistant Arthrobacter sp. PGP41, a Plant Growth-Promoting Bacterium with Potential in Microbe-Assisted Phytoremediation. Curr. Microbiol. 2018, 75, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Prasad, M.N.V.; Rajkumar, M.; Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Todorovic, B.; Czarny, J.; Cheng, Z.; Duan, J.; McConkey, B. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 2007, 26, 227–242. [Google Scholar] [CrossRef]
- Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A.; El-Meihy, R.M. Reduction of heavy metals bioaccumulation in sorghum and its rhizosphere by heavy metals-tolerant bacterial consortium. Biocatal. Agric. Biotechnol. 2021, 31, 101911. [Google Scholar] [CrossRef]
- Ren, Z.; Cheng, R.; Chen, P.; Xue, Y.; Xu, H.; Yin, Y.; Huang, G.; Zhang, W.; Zhang, L. Plant-associated Microbe System in Treatment of Heavy Metals–contaminated Soil: Mechanisms and Applications. Water Air Soil Pollut. 2023, 234, 39. [Google Scholar] [CrossRef]
- Mallick, I.; Bhattacharyya, C.; Mukherji, S.; Dey, D.; Sarkar, S.C.; Mukhopadhyay, U.K.; Ghosh, A. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. Sci. Total Environ. 2018, 610–611, 1239–1250. [Google Scholar] [CrossRef]
- Xing, Y.; Tan, S.; Liu, S.; Xu, S.; Wan, W.; Huang, Q.; Chen, W. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms. Environ. Res. 2022, 207, 112080. [Google Scholar] [CrossRef]
- Franchi, E.; Rolli, E.; Marasco, R.; Agazzi, G.; Borin, S.; Cosmina, P.; Pedron, F.; Rosellini, I.; Barbafieri, M.; Petruzzelli, G. Phytoremediation of a multi contaminated soil: Mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J. Soils Sediments 2017, 17, 1224–1236. [Google Scholar] [CrossRef]
- Mishra, S.; Huang, Y.; Li, J.; Wu, X.; Zhou, Z.; Lei, Q.; Bhatt, P.; Chen, S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 2022, 294, 133609. [Google Scholar] [CrossRef]
- Pinto, A.P.; de Varennes, A.; Fonseca, R.; Teixeira, D.M. Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 133–155. [Google Scholar]
- Chen, Z.; Liu, Q.; Chen, D.; Wu, Y.; Hamid, Y.; Lin, Q.; Zhang, S.; Feng, Y.; He, Z.; Yin, X.; et al. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Sci. Total Environ. 2024, 932, 173029. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Liang, Y.; Wang, M.; Hu, R.; Song, Z.; Xu, X.; Zheng, L.; Shen, Z.; Chen, C. Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. J. Hazard. Mater. 2024, 469, 134110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Q.; Chen, Y.; Li, Y.-Y.; Ding, C.-Y.; Li, B.-L.; Han, H.; Chen, Z.-J. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 2024, 469, 134085. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-C.; Lo, J.-C.; Yeh, K.-C. Genes Associated with Heavy Metal Tolerance and Accumulation in Zn/Cd Hyperaccumulator Arabidopsis halleri: A Genomic Survey with cDNA Microarray. Environ. Sci. Technol. 2006, 40, 6792–6798. [Google Scholar] [CrossRef] [PubMed]
- Zainab, N.; Glick, B.R.; Bose, A.; Amna; Ali, J.; Rehman, F.U.; Paker, N.P.; Rengasamy, K.; Kamran, M.A.; Hayat, K.; et al. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. Plant Physiol. Biochem. 2024, 211, 108652. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Z.; Liu, Y.; Li, D.; Wei, Z. Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Chemosphere 2024, 363, 142869. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Z.; Liu, H.; Wang, H.; Wei, Z. Microbial induced carbonate precipitation for cadmium removal in flue gas from sludge incineration. J. Environ. Chem. Eng. 2024, 12, 112573. [Google Scholar] [CrossRef]
- Carlier, J.D.; dos Reis Ferreira, G.M.; Schwan, R.F.; da Silva, C.F.; Costa, M.C. Pb2+ biosorption by Serratia marcescens CCMA 1010 and its relation with zntR gene expression and ZntA efflux pump regulation. Environ. Adv. 2024, 15, 100479. [Google Scholar] [CrossRef]
- Nanda, M.; Kumar, V.; Sharma, D.K. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol. 2019, 212, 1–10. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Fu, Q.; Zhang, D. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 2012, 201–202, 178–184. [Google Scholar] [CrossRef]
- Oza, T.; Patel, P.; Thaker, V.S. A brief study on heavy metal resistance genes from 10 genomes of Georgenia sp. and in vitro confirmation on Georgenia sp. SUBG003. J. Hazard. Mater. Lett. 2024, 5, 100097. [Google Scholar] [CrossRef]
- Hui, C.-Y.; Ma, B.-C.; Wang, Y.-Q.; Yang, X.-Q.; Cai, J.-M. Designed bacteria based on natural pbr operons for detecting and detoxifying environmental lead: A mini-review. Ecotoxicol. Environ. Saf. 2023, 267, 115662. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Yao, W.; Tang, L. Surface expression of metallothionein enhances bioremediation in Escherichia coli. Desalination Water Treat. 2024, 317, 100070. [Google Scholar] [CrossRef]
- Zhang, M.; Xiong, Y.; Sun, H.; Xiao, T.; Xiao, E.; Sun, X.; Li, B.; Sun, W. Selective pressure of arsenic and antimony co-contamination on microbial community in alkaline sediments. J. Hazard. Mater. 2024, 464, 132948. [Google Scholar] [CrossRef]
- Mandal, D.; Das, S.K.; Adhikari, J.; Chatterjee, D.; Bandyopadhyay, T.K.; Basu, A. Genome sequencing, annotation and application of a strain of Microbacterium paraoxydans—A bacterium with arsenic bioremediation and plant growth promoting potential. Microbe 2024, 4, 100132. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Yang, G.; Chen, J.; Zhou, Y.; Núñez Delgado, A.; Cui, H.-L.; Duan, G.-L.; Rosen, B.P.; Zhu, Y.-G. Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1. J. Environ. Sci. 2024, 137, 237–244. [Google Scholar] [CrossRef]
- Gou, J.; Xia, J.; Li, Y.; Qiu, Y.; Jiang, F. A novel sulfidogenic process via sulfur reduction to remove arsenate in acid mine drainage: Insights into the performance and microbial mechanisms. Water Res. 2024, 254, 121423. [Google Scholar] [CrossRef]
- Montes-Robledo, A.; Baena-Baldiris, D.; Baldiris-Avila, R. Reduction of Cr(VI) by planktonic cells and biofilm of Acinetobacter sp. (ADHR1) isolated from electroplating wastewater. Environ. Technol. Innov. 2024, 33, 103521. [Google Scholar] [CrossRef]
- Petrus Amanda, K.; Rutner, C.; Liu, S.; Wang, Y.; Wiatrowski Heather, A. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2. Appl. Environ. Microbiol. 2015, 81, 7833–7838. [Google Scholar] [CrossRef]
- Huang, C.-C.; Narita, M.; Yamagata, T.; Phung, L.T.; Endo, G.; Silver, S. Characterization of two regulatory genes of the mercury resistance determinants from TnMERI1 by luciferase-based examination. Gene 2002, 301, 13–20. [Google Scholar] [CrossRef]
- Leonhäuser, J.; Wang, W.; Deckwer, W.-D.; Wagner-Döbler, I. Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: A proteome analysis. J. Biotechnol. 2007, 132, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zheng, X.; Zhang, D.; Iqbal, W.; Liu, C.; Yang, B.; Zhao, X.; Lu, X.; Mao, Y. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicol. Environ. Saf. 2019, 181, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Abou-Shanab, R.A.I.; van Berkum, P.; Angle, J.S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 2007, 68, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.; Das, S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ. Sci. Pollut. Res. 2014, 21, 14188–14201. [Google Scholar] [CrossRef]
- Smith, K.; Novick Richard, P. Genetic Studies on Plasmid-Linked Cadmium Resistance in Staphylococcus aureus. J. Bacteriol. 1972, 112, 761–772. [Google Scholar] [CrossRef]
- Chaouni, L.B.-A.; Etienne, J.; Greenland, T.; Vandenesch, F. Nucleic Acid Sequence and Affiliation of pLUG10, a Novel Cadmium Resistance Plasmid from Staphylococcus lugdunensis. Plasmid 1996, 36, 1–8. [Google Scholar] [CrossRef]
- Branco, R.; Chung Ana, P.; Johnston, T.; Gurel, V.; Morais, P.; Zhitkovich, A. The Chromate-Inducible chrBACF Operon from the Transposable Element TnOtChr Confers Resistance to Chromium(VI) and Superoxide. J. Bacteriol. 2008, 190, 6996–7003. [Google Scholar] [CrossRef]
- Henne, K.L.; Nakatsu, C.H.; Thompson, D.K.; Konopka, A.E. High-level chromate resistance in Arthrobactersp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol. 2009, 9, 199. [Google Scholar] [CrossRef]
- Singh Satish, K.; Grass, G.; Rensing, C.; Montfort William, R. Cuprous Oxidase Activity of CueO from Escherichia coli. J. Bacteriol. 2004, 186, 7815–7817. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Wang, H.-L.; Zhang, M.; Sun, L. Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. J. Microbiol. 2009, 47, 277–286. [Google Scholar] [CrossRef]
- Chillappagari, S.; Miethke, M.; Trip, H.; Kuipers Oscar, P.; Marahiel Mohamed, A. Copper Acquisition Is Mediated by YcnJ and Regulated by YcnK and CsoR in Bacillus subtilis. J. Bacteriol. 2009, 191, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Taylor, D.E. Helicobacter pylori genes hpcopA and hpcopP constitute a cop operon involved in copper export. FEMS Microbiol. Lett. 1996, 145, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Lesaulnier, C.; Monchy, S.; Wattiez, R.; Mergeay, M.; van der Lelie, D. Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 2009, 96, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.M.; Pandey, A.; Dubey, S.K. Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol. Environ. Saf. 2012, 79, 129–133. [Google Scholar] [CrossRef]
- Sasaki, Y.; Hayakawa, T.; Inoue, C.; Miyazaki, A.; Silver, S.; Kusano, T. Generation of Mercury-Hyperaccumulating Plants through Transgenic Expression of the Bacterial Mercury Membrane Transport Protein MerC. Transgenic Res. 2006, 15, 615–625. [Google Scholar] [CrossRef]
- Grass, G.; Große, C.; Nies Dietrich, H. Regulation of the cnr Cobalt and Nickel Resistance Determinant from Ralstonia sp. Strain CH34. J. Bacteriol. 2000, 182, 1390–1398. [Google Scholar] [CrossRef]
- Grass, G.; Fricke, B.; Nies, D.H. Control of Expression of a Periplasmic Nickel Efflux Pump by Periplasmic Nickel Concentrations. Biometals 2005, 18, 437–448. [Google Scholar] [CrossRef]
- Rodrigue, A.; Effantin, G.; Mandrand-Berthelot, M.-A. Identification of rcnA (yohM), a Nickel and Cobalt Resistance Gene in Escherichia coli. J. Bacteriol. 2005, 187, 2912–2916. [Google Scholar] [CrossRef]
- Duprey, A.; Chansavang, V.; Frémion, F.; Gonthier, C.; Louis, Y.; Lejeune, P.; Springer, F.; Desjardin, V.; Rodrigue, A.; Dorel, C. “NiCo Buster”: Engineering E. coli for fast and efficient capture of cobalt and nickel. J. Biol. Eng. 2014, 8, 19. [Google Scholar] [CrossRef]
- Ruiz, O.N.; Alvarez, D.; Gonzalez-Ruiz, G.; Torres, C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol. 2011, 11, 82. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, J.; Jiang, H.; Chen, X.; You, Z. Improving vanadium removal from contaminated river water in constructed wetlands: The role of arbuscular mycorrhizal fungi. Environ. Pollut. 2024, 347, 123804. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Kataki, S.; Chatterjee, S.; Gupta, D.K. Potential of nano-phytoremediation of heavy metal contaminated soil: Emphasizing the role of mycorrhizal fungi in the amelioration process. Int. J. Environ. Sci. Technol. 2024, 21, 6405–6428. [Google Scholar] [CrossRef]
- Hao, S.; Tian, Y.; Lin, Z.; Xie, L.; Zhou, X.; Bañuelos, G.S. Effects of arbuscular mycorrhizal fungi on the reduction of arsenic accumulation in plants: A meta-analysis. Front. Plant Sci. 2024, 15, 1327649. [Google Scholar] [CrossRef] [PubMed]
- Loha, A.; Kashyap, A.K.; Sharma, P. A putative cyclin, SiPHO80 from root endophytic fungus Serendipita indica regulates phosphate homeostasis, salinity and heavy metal toxicity tolerance. Biochem. Biophys. Res. Commun. 2018, 507, 414–419. [Google Scholar] [CrossRef]
- Khalid, M.; Ur-Rahman, S.; Hassani, D.; Hayat, K.; Zhou, P.; Hui, N. Advances in fungal-assisted phytoremediation of heavy metals: A review. Pedosphere 2021, 31, 475–495. [Google Scholar] [CrossRef]
- Hnini, M.; Rabeh, K.; Oubohssaine, M. Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress 2024, 11, 100391. [Google Scholar] [CrossRef]
- Thijs, S.; Sillen, W.; Rineau, F.; Weyens, N.; Vangronsveld, J. Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism. Front. Microbiol. 2016, 7, 341. [Google Scholar] [CrossRef]
- del Carmen Orozco-Mosqueda, M.; Fadiji, A.E.; Babalola, O.O.; Glick, B.R.; Santoyo, G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol. Res. 2022, 263, 127137. [Google Scholar] [CrossRef]
- Abbaszadeh-Dahaji, P.; Omidvari, M.; Ghorbanpour, M. Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Choudhary, D.K., Varma, A., Tuteja, N., Eds.; Springer Singapore: Singapore, 2016; pp. 187–204. [Google Scholar]
- Al Mamun, A.; Rahman, M.M.; Huq, M.A.; Rahman, M.M.; Rana, M.R.; Rahman, S.T.; Khatun, M.L.; Alam, M.K. Phytoremediation: A transgenic perspective in omics era. Transgenic Res. 2024, 33, 175–194. [Google Scholar] [CrossRef]
- Timmusk, S.; Pall, T.; Raz, S.; Fetsiukh, A.; Nevo, E. The potential for plant growth-promoting bacteria to impact crop productivity in future agricultural systems is linked to understanding the principles of microbial ecology. Front. Microbiol. 2023, 14, 1141862. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth Stimulation by Microbial Consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Hao, X.; Gu, Y.; Zhang, H.; Wang, X.; Liu, X.; Chen, C.; Wang, C.; Zhang, X.; Liu, X.; Shen, X. Synthetic Microbial Community Promotes Bacterial Communities Leading to Soil Multifunctionality in Desertified Land. Microorganisms 2024, 12, 1117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatoon, Z.; Orozco-Mosqueda, M.d.C.; Santoyo, G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms 2024, 12, 1945. https://doi.org/10.3390/microorganisms12101945
Khatoon Z, Orozco-Mosqueda MdC, Santoyo G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms. 2024; 12(10):1945. https://doi.org/10.3390/microorganisms12101945
Chicago/Turabian StyleKhatoon, Zobia, Ma. del Carmen Orozco-Mosqueda, and Gustavo Santoyo. 2024. "Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review" Microorganisms 12, no. 10: 1945. https://doi.org/10.3390/microorganisms12101945
APA StyleKhatoon, Z., Orozco-Mosqueda, M. d. C., & Santoyo, G. (2024). Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms, 12(10), 1945. https://doi.org/10.3390/microorganisms12101945