The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered
Abstract
:Highlights
- Aerosolization and ventilation air velocity affect antibiotic resistance of E. coli strains;
- Bacteria respond to ventilated environments through mechanosensitive ion channels triggered by aerosolization;
- Critical infrastructures require real-time knowledge about their environment for microbiome source tracking;
- Clinical indoor spaces where bacterial infections are treated can result in potential exposure to bioaerosols.
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Sonic Air Velocity—SKC Bio-Sampler
2.3. Site Description—Model Chamber
2.4. Aerosolization and Collection
2.5. Plating and Analysis
2.6. DNA Extraction
2.7. Quantitative Polymerase Chain Reaction (qPCR)
3. Results
3.1. Environmental Conditions
3.2. Culturability
3.3. Culturability of E. coli Strains
3.4. Antibiotic Resistance
3.5. Hypothesis Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miklasińska-Majdanik, M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus aureus. Antibiotics 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Lacey, R.E.; Pak, H.; Fearing, A.; Ramos, G.; Baig, T.; Smith, B.; Koustova, A. Assays and enumeration of bioaerosols-traditional approaches to modern practices. Aerosol Sci. Technol. 2020, 54, 611–633. [Google Scholar] [CrossRef]
- Frankel, M.; Bekö, G.; Timm, M.; Gustavsen, S.; Hansen, E.W.; Madsen, A.M. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl. Environ. Microbiol. 2012, 78, 8289–8297. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Dam, Q.; Tran, T.; Nguyen, A.; Adler-Shohet, F.C.; Kim, S.; Schmidt, K.; Lieberman, J.M.; Bradley, J.S. Epidemiology and hospital readmission associated with complications of Staphylococcus aureus bacteremia in pediatrics over a 25-year period. Epidemiol. Infect. 2017, 145, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Brandl, H. Bioaerosols in Indoor Environment—A Review with Special Reference to Residential and Occupational Locations. Open Environ. Biol. Monit. J. 2011, 4, 83–96. [Google Scholar] [CrossRef]
- Li, B.; Sun, G.; Cheng, Z.; Mei, C.; Liao, X.; Li, J.; Yuan, Y. Analysis of Nosocomial Infections in Post–Cardiac Surgery Extracorporeal Membrane Oxygenation Support Therapy. Heart Surg. Forum 2018, 21, E387–E391. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kim, Y.S.; Kim, D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind. Health 2010, 48, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.A.; Schafer, M.P. Sampling and characterization of bioaerosols. NIOSH Man. Anal. Methods 1998, 2, 82–112. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Lee, N.Y. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022, 11, 1057. [Google Scholar] [CrossRef]
- Kassab, A.S. Effect of Collection Method and Archiving Conditions on the Survivability of Vegetative and Spore Forming Bacteria 2009. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2010. [Google Scholar]
- Yooseph, S.; Andrews-Pfannkoch, C.; Tenney, A.; McQuaid, J.; Williamson, S.; Thiagarajan, M.; Brami, D.; Zeigler-Allen, L.; Hoffman, J.; Goll, J.B.; et al. A metagenomic framework for the study of airborne microbial communities. PLoS ONE 2013, 8, e81862. [Google Scholar] [CrossRef]
- Burrows, S.M.; Elbert, W.; Lawrence, M.G.; Pöschl, U. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef]
- Haswell, E.S.; Phillips, R.; Rees, D.C. Mechanosensitive channels: What can they do and how do they do it? Structure 2011, 19, 1356–1369. [Google Scholar] [CrossRef]
- Obergrussberger, A.; Stölzle-Feix, S.; Becker, N.; Brüggemann, A.; Fertig, N.; Möller, C. Novel screening techniques for ion channel targeting drugs. Channels 2015, 9, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Levina, N.; Tötemeyer, S.; Stokes, N.R.; Louis, P.; Jones, M.A.; Booth, I.R. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. EMBO J. 1999, 18, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Berrier, C.; Besnard, M.; Ajouz, B.; Coulombe, A.; Ghazi, A. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol. 1996, 151, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.D.; Black, S.; Rasmussen, T.; Rasmussen, A.; Stokes, N.R.; Stephen, T.L.; Miller, S.; Booth, I.R. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 2012, 6, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Engelman, D.M. Membranes are more mosaic than fluid. Nature 2005, 438, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.; Martinac, B.; Sukharev, S. Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 2010, 64, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Blount, P.; Iscla, I. Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol. Mol. Biol. Rev. MMBR 2020, 84, e00055-19. [Google Scholar] [CrossRef]
- Corry, B.; Hurst, A.C.; Pal, P.; Nomura, T.; Rigby, P.; Martinac, B. An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J. Gen. Physiol. 2010, 136, 483–494. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Deberg, H.A.; Nomura, T.; Hoffman, M.T.; Rohde, P.R.; Schulten, K.; Martinac, B.; Selvin, P.R. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 2014, 3, e01834. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, C.C.; Minchin, R.F.; Le Dain, A.C.; Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 1997, 73, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Iscla, I.; Wray, R.; Blount, P.; Larkins-Ford, J.; Conery, A.L.; Ausubel, F.M.; Ramu, S.; Kavanagh, A.; Huang, J.X.; Blaskovich, M.A.; et al. A new antibiotic with potent activity targets MscL. J. Antibiot. 2015, 68, 453–462. [Google Scholar] [CrossRef]
- Wang, J.; Blount, P. Feeling the tension: The bacterial mechanosensitive channel of large conductance as a model system and drug target. Curr. Opin. Physiol. 2023, 31, 100627. [Google Scholar] [CrossRef]
- Compton, E.L.; Mindell, J.A. Bacterial Ion Channels. EcoSal Plus. 2010, 4. [Google Scholar] [CrossRef]
- Cox, C.D.; Bavi, N.; Martinac, B. Bacterial Mechanosensors. Annu. Rev. Physiol. 2018, 80, 71–93. [Google Scholar] [CrossRef] [PubMed]
- Sukharev, S.I.; Blount, P.; Martinac, B.; Kung, C. Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Annu. Rev. Physiol. 1997, 59, 633–657. [Google Scholar] [CrossRef]
- Koprowski, P.; Kubalski, A. Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J. Membr. Biol. 1998, 164, 253–262. [Google Scholar] [CrossRef]
- Flegler, V.J.; Rasmussen, A.; Borbil, K.; Boten, L.; Chen, H.; Deinlein, H.; Halang, J.; Hellmanzik, K.; Löffler, J.; Schmidt, V.; et al. Mechanosensitive channel gating by delipidation. Proc. Natl. Acad. Sci. USA 2021, 118, e2107095118. [Google Scholar] [CrossRef]
- Redmann, R.K.; Kaushal, D.; Golden, N.; Threeton, B.; Killeen, S.Z.; Kuehl, P.J.; Roy, C.J. Particle Dynamics and Bioaerosol Viability of Aerosolized Bacillus Calmette-Guérin Vaccine Using Jet and Vibrating Mesh Clinical Nebulizers. J. Aerosol Med. Pulm. Drug Deliv. 2022, 35, 50–56. [Google Scholar] [CrossRef]
- Young, H.W.; Dominik, J.W.; Walker, J.S.; Larson, E.W. Continuous Aerosol Therapy System Using a Modified Collison. J. Clin. Microbiol. 1977, 5, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.J.; Reponen, T.; Willeke, K.; Wang, Z.; Grinshpun, S.A.; Trunov, M. Survival of airborne microorganisms during swirling aerosol collection. Aerosol Sci. Technol. 2010, 32, 184–196. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Y.; Jong, A.Y. Mini-prep in ten minutes. Biotechniques 1990, 8, 172–173. [Google Scholar] [PubMed]
- Delta-Delta Method Template. Top Tip Bio. (n.d.). Available online: https://toptipbio.com/category/techniques/pcr/ (accessed on 1 February 2023).
- Smith, B.L.; King, M.D. Aerosolization triggers immediate antibiotic resistance in bacteria. J. Aerosol Sci. 2022, 164, 106017. [Google Scholar] [CrossRef]
- Sidarta, M.; Baruah, L.; Wenzel, M. Roles of Bacterial Mechanosensitive Channels in Infection and Antibiotic Susceptibility. Pharmaceuticals 2022, 15, 770. [Google Scholar] [CrossRef] [PubMed]
- Kouwen, T.R.; Trip, E.N.; Denham, E.L.; Sibbald, M.J.; Dubois, J.Y.; van Dijl, J.M. The large mechanosensitive channel MscL determines bacterial susceptibility to the bacteriocin sublancin 168. Antimicrob. Agents Chemother. 2009, 53, 4702–4711. [Google Scholar] [CrossRef] [PubMed]
- Wray, R.; Herrera, N.; Iscla, I.; Wang, J.; Blount, P. An agonist of the MscL channel affects multiple bacterial species and increases membrane permeability and potency of common antibiotics. Mol. Microbiol. 2019, 112, 896–905. [Google Scholar] [CrossRef]
- Wray, R.; Wang, J.; Iscla, I.; Blount, P. Novel MscL agonists that allow multiple antibiotics cytoplasmic access activate the channel through a common binding site. PLoS ONE 2020, 15, e0228153. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, B.; Sun, F.; Liu, J.; Wang, Y.; Gao, Y.; Qi, F.; Chang, Z.; Fu, X. Rapid Freezing Enables Aminoglycosides to Eradicate Bacterial Persisters via Enhancing Mechanosensitive Channel MscL-Mediated Antibiotic Uptake. mBio 2020, 11, e03239-19. [Google Scholar] [CrossRef]
- Stokes, N.R.; Murray, H.D.; Subramaniam, C.; Gourse, R.L.; Louis, P.; Bartlett, W.; Miller, S.; Booth, I.R. A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proc. Natl. Acad. Sci. USA 2003, 100, 15959–15964. [Google Scholar] [CrossRef]
Strain | Gene Deletion Annotation | Description |
---|---|---|
| Wild type | |
| Parent strain for mutant knockouts | |
| Frag1, ΔmscL::Cm | Deletion of MscL channel |
| Frag1, ΔyggB | Deletion of MscS channel |
| Frag1, ΔmscL::Cm, ΔyggB, ΔkefA::ka | Deletion of MscL, MscS, and MscK/KefA channels |
| Frag1, (Δ7) mscS-mscK-ybdG-ybiO-yjeP-ynaI-mscL | Deletion of all 7 MS channels |
| Frag1, ΔmscL::Cm, ΔyggB | Deletion of MscL and MscS channel |
0 min CFU/mL vs. strain per media | |
Test 1: TSA p-value < 0.0001 | Test 4: CHLORA p-value = 0.0002 |
Test 2: KAN p-value < 0.0001 | Test 5: TETRA p-value < 0.0001 |
Test 3: AMP p-value < 0.0001 | Test 6: GEN p-value = 0.1751 |
5 min CFU/mL vs. strain per media | |
Test 7: TSA p-value = 0.0775 | Test 10: CHLORA p-value < 0.0001 |
Test 8: KAN p-value = 0.6497 | Test 11: TETRA p-value < 0.0001 |
Test 9: AMP p-value < 0.0001 | Test 12: GEN p-value = 0.0901 |
10-min CFU/mL vs. strain per media | |
Test 13: TSA p-value = 0.0491 | Test 16: CHLORA p-value < 0.0001 |
Test 14 KAN p-value = 0.4625 | Test 17: TETRA p-value = 0.0466 |
Test 15: AMP p-value < 0.0001 | Test 18: GEN Media = 0.6090 |
20 min CFU/mL vs. strain per media | |
Test 19: TSA p-value < 0.001 | Test 22: CHLORA Media < 0.0001 |
Test 20: KAN p-value = 0.3189 | Test 23: TETRA Media < 0.0001 |
Test 21: AMP p-value < 0.0001 | Test 24: GEN Media = 0.0558 |
30 min CFU/mL vs. strain per media | |
Test 25: TSA p-value < 0.0001 | Test 28: CHLORA p-value < 0.0001 |
Test 26: KAN p-value = 0.2004 | Test 29: TETRA p-value = 0.0038 |
Test 27: AMP p-value = 0.0002 | Test 30: GEN p-value = 0.0336 |
Strain 1: MG1655 at 0, 5, 10, 20, and 30 min | |
Test 31: TSA p-value = 0.3314 | Test 34: CHLORA p-value = 0.3562 |
Test 32: KAN p-value = 0.0390 | Test 35: TETRA p-value = 0.1396 |
Test 33: AMP p-value = 0.2897 | Test 36: GEN p-value = 0.4220 |
Strain 2: Frag at 1 0, 5, 10, 20, and 30 min | |
Test 37: TSA p-value = 0.1575 | Test 40: CHLORA µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Test 38: KAN µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 | Test 41: TETRA p-value = 0.0331 |
Test 39: AMP p-value = 0.6554 | Test 42: GEN p µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Strain 3: MJF367 at 0, 5, 10, 20, and 30 min | |
Test 43: TSA p-value = 0.5528 | Test 46: CHLORA p-value = 0.1033 |
Test 44: KAN p-value < 0.0001 | Test 47: TETRA p-value = 0.7711 |
Test 45: AMP p-value = 0.4813 | Test 48: GEN Media p-value = 0.0357 |
Strain 4: MJF451 at 0, 5, 10, 20, and 30 min | |
Test 49: TSA p-value = 0.0405 | Test 52: CHLORA p-value = 0.0408 |
Test 50: KAN p-value = 0.1156 | Test 53: TETRA p-value = 0.4408 |
Test 51: AMP p-value = 0.9868 | Test 54: GEN µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Strain 5: MJF465 at 0, 5, 10, 20, and 30 min | |
Test 55: TSA p-value = 0.4457 | Test 58: CHLORA p-value = 0.0976 |
Test 56: KAN p-value = 0.5632 | Test 59: TETRA p-value = 0.3060 |
Test 57: AMP p-value = 0.1511 | Test 60: GEN µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Strain 6: MJF641 at 0, 5, 10, 20, and 30 min | |
Test 61: TSA p-value = 0.0222 | Test 64: CHLORA p-value = 0.5003 |
Test 62: KAN p-value = 0.9937 | Test 65: TETRA p-value = 0.0112 |
Test 63: AMP p-value = 0.9951 | Test 66: GEN µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Stain 7: MJF455 at 0, 5, 10, 20, and 30 min | |
Test 67: TSA p-value = 0.0101 | Test 70: CHLORA p-value = 0.0001 |
Test 68: KAN p-value = 0.5573 | Test 71: TETRA p-value = 0.0004 |
Test 69: AMP p-value = 0.0487 | Test 72: GEN µmin 0 = µmin 5 = µmin 10 = µmin 20 = µmin 30 = 0 |
Difference between mean CFU/mL of strains | 0 min CFU/mL vs. strains 1, 2, 3, 4, 5, 6, 7
|
Difference within mean CFU/mL of strains | Strain 1: MG1655 at 0, 5, 10, 20, and 30 min
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, V.I.; Wray, R.; Blount, P.; King, M.D. The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered. Microorganisms 2023, 11, 2236. https://doi.org/10.3390/microorganisms11092236
Ramirez VI, Wray R, Blount P, King MD. The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered. Microorganisms. 2023; 11(9):2236. https://doi.org/10.3390/microorganisms11092236
Chicago/Turabian StyleRamirez, Violette I., Robin Wray, Paul Blount, and Maria D. King. 2023. "The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered" Microorganisms 11, no. 9: 2236. https://doi.org/10.3390/microorganisms11092236
APA StyleRamirez, V. I., Wray, R., Blount, P., & King, M. D. (2023). The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered. Microorganisms, 11(9), 2236. https://doi.org/10.3390/microorganisms11092236