Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring’s Postnatal Growth and Gut Microbiome Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maternal Management
2.2. Calf Enrollment Criteria
2.3. Sample Collection
2.4. Blood Metabolites, APP, and Oxidative Stress Biomarkers
2.5. Fecal DNA Extraction, 16S rRNA Gene Amplification, and Sequencing
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Health
3.2. Blood Biomarkers
3.3. Fecal Bacterial Community Composition
4. Discussion
4.1. Growth Performance and Health
4.2. Blood Biomarkers
4.3. Fecal Bacterial Community Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McArt, J.A.; Nydam, D.V.; Oetzel, G.R.; Overton, T.R.; Ospina, P.A. Elevated non-esterified fatty acids and beta-hydroxybutyrate and their association with transition dairy cow performance. Vet. J. 2013, 198, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Overton, T.R.; McArt, J.A.A.; Nydam, D.V. A 100-Year Review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398–10417. [Google Scholar] [CrossRef] [Green Version]
- Abuajamieh, M.; Kvidera, S.K.; Fernandez, M.V.; Nayeri, A.; Upah, N.C.; Nolan, E.A.; Lei, S.M.; DeFrain, J.M.; Green, H.B.; Schoenberg, K.M.; et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Res. Vet. Sci. 2016, 109, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Chavatte-Palmer, P.; Velazquez, M.A.; Jammes, H.; Duranthon, V. Review: Epigenetics, developmental programming and nutrition in herbivores. Animal 2018, 12, s363–s371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, R.F. Effects on Animal Health and Immune Function. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 331–341. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.C.; Zhang, Z.H.; Zhang, C.Z.; Su, H.W.; Li, S.L. Effect of prepartum maternal energy density on the growth performance, immunity, and antioxidation capability of neonatal calves. J. Dairy Sci. 2012, 95, 4510–4518. [Google Scholar] [CrossRef] [Green Version]
- Alharthi, A.S.; Coleman, D.N.; Alhidary, I.A.; Abdelrahman, M.M.; Trevisi, E.; Loor, J.J. Maternal body condition during late-pregnancy is associated with in utero development and neonatal growth of Holstein calves. J. Anim. Sci. Biotechnol. 2021, 12, 44. [Google Scholar] [CrossRef]
- Da Cruz, W.F.G.; Schoonmaker, J.P.; de Resende, F.D.; Siqueira, G.R.; Rodrigues, L.M.; Zamudio, G.D.R.; Ladeira, M.M. Effects of maternal protein supplementation and inclusion of rumen-protected fat in the finishing diet on nutrient digestibility and expression of intestinal genes in Nellore steers. Anim. Sci. J. 2019, 90, 1200–1211. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef] [Green Version]
- Ontsouka, E.C.; Albrecht, C.; Bruckmaier, R.M. Invited review: Growth-promoting effects of colostrum in calves based on interaction with intestinal cell surface receptors and receptor-like transporters. J. Dairy Sci. 2016, 99, 4111–4123. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.M.; Caton, J.S. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Adv. Nutr. 2016, 7, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, M.; Abenthum, A.; Matthes, J.M.; Kleeberger, D.; Ege, M.J.; Holzel, C.; Bauer, J.; Schwaiger, K. Development and genetic influence of the rectal bacterial flora of newborn calves. Vet. Microbiol. 2012, 161, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Karstrup, C.C.; Klitgaard, K.; Jensen, T.K.; Agerholm, J.S.; Pedersen, H.G. Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology 2017, 99, 41–47. [Google Scholar] [CrossRef]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef] [Green Version]
- Galley, J.D.; Mashburn-Warren, L.; Blalock, L.C.; Lauber, C.L.; Carroll, J.E.; Ross, K.M.; Hobel, C.; Coussons-Read, M.; Dunkel Schetter, C.; Gur, T.L. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav. Immun. 2023, 107, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Guan, L.L. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J. Dairy Sci. 2017, 100, 5996–6005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomou, G.; Teixeira, A.G.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA: Associations of Faecalibacterium species with health and growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef]
- Uyeno, Y.; Sekiguchi, Y.; Kamagata, Y. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett. Appl. Microbiol. 2010, 51, 570–577. [Google Scholar] [CrossRef]
- Klein-Jobstl, D.; Schornsteiner, E.; Mann, E.; Wagner, M.; Drillich, M.; Schmitz-Esser, S. Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Front. Microbiol. 2014, 5, 622. [Google Scholar] [CrossRef]
- Carpinelli, N.A.; Halfen, J.; Trevisi, E.; Chapman, J.D.; Sharman, E.D.; Anderson, J.L.; Osorio, J.S. Effects of peripartal yeast culture supplementation on lactation performance, blood biomarkers, rumen fermentation, and rumen bacteria species in dairy cows. J. Dairy Sci. 2021, 104, 10727–10743. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Oetzel, G.; McGuirk, S. Evaluation of a hand-held meter for cowside evaluation of blood beta-hydroxybutyrate and glucose concentrations in dairy cows. In Proceedings of the 41st Annual Conference of American Association of Bovine Practitioners—AABP, Auburn, AL, USA, 25–27 September 2008; p. 234. [Google Scholar]
- Johnson, J.L.; Godden, S.M.; Molitor, T.; Ames, T.; Hagman, D. Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. J. Dairy Sci. 2007, 90, 5189–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, J.S.; Trevisi, E.; Ballou, M.A.; Bertoni, G.; Drackley, J.K.; Loor, J.J. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves. J. Dairy Sci. 2013, 96, 3573–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuirk, S.M. Disease management of dairy calves and heifers. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, E.; Amadori, M.; Cogrossi, S.; Razzuoli, E.; Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 2012, 93, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Michelotti, T.C.; St-Pierre, B.; Trevisi, E.; Osorio, J.S. Early Life Fecal Microbiota Transplantation in Neonatal Dairy Calves Promotes Growth Performance and Alleviates Inflammation and Oxidative Stress during Weaning. Animals 2021, 11, 2704. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Opdahl, L.J.; Gonda, M.G.; St-Pierre, B. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and Candidatus Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows. Microorganisms 2018, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Poudel, P.; Levesque, C.L.; Samuel, R.; St-Pierre, B. Dietary inclusion of Peptiva, a peptide-based feed additive, can accelerate the maturation of the fecal bacterial microbiome in weaned pigs. BMC Vet. Res. 2020, 16, 60. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Morrison, M.; Yu, Z. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods 2011, 84, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, T.; Hernandez-Jover, M.; Sordillo, L.M.; Abuelo, A. Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves. J. Dairy Sci. 2018, 101, 6568–6580. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Monteiro, A.P.A. Effects of late-gestation heat stress on immunity and performance of calves. J. Dairy Sci. 2016, 99, 3193–3198. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Monteiro, A.P.; Thompson, I.M.; Hayen, M.J.; Dahl, G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J. Dairy Sci. 2012, 95, 7128–7136. [Google Scholar] [CrossRef] [Green Version]
- Laporta, J.; Fabris, T.F.; Skibiel, A.L.; Powell, J.L.; Hayen, M.J.; Horvath, K.; Miller-Cushon, E.K.; Dahl, G.E. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. J. Dairy Sci. 2017, 100, 2976–2984. [Google Scholar] [CrossRef] [Green Version]
- Sussman, D.; Ellegood, J.; Henkelman, M. A gestational ketogenic diet alters maternal metabolic status as well as offspring physiological growth and brain structure in the neonatal mouse. BMC Pregnancy Childbirth 2013, 13, 198. [Google Scholar] [CrossRef] [Green Version]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nydam, D.V. Using nonesterified fatty acids and beta-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Donkin, S.S.; Reynolds, C.K. Major advances in fundamental dairy cattle nutrition. J. Dairy Sci. 2006, 89, 1324–1336. [Google Scholar] [CrossRef]
- Abuelo, A. Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. J. Dairy Sci. 2020, 103, 3882–3893. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Giussani, D.A.; Forhead, A.J. Intrauterine programming of physiological systems: Causes and consequences. Physiology 2006, 21, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Kasari, T.R. Physiologic Mechanisms of Adaptation in the Fetal Calf at Birth. Vet. Clin. N. Am. Food Anim. Pract. 1994, 10, 127–136. [Google Scholar] [CrossRef]
- Hammon, H.M.; Steinhoff-Wagner, J.; Schonhusen, U.; Metges, C.C.; Blum, J.W. Energy metabolism in the newborn farm animal with emphasis on the calf: Endocrine changes and responses to milk-born and systemic hormones. Domest. Anim. Endocrinol. 2012, 43, 171–185. [Google Scholar] [CrossRef]
- Townsend, K.L.; Tseng, Y.H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol. Metab. 2014, 25, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.A.; Thurmann, J.P.; Staufenbiel, R. 24-h variations of blood serum metabolites in high yielding dairy cows and calves. BMC Vet. Res. 2020, 16, 327. [Google Scholar] [CrossRef]
- Mohri, M.; Sharifi, K.; Eidi, S. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Vet. Sci. 2007, 83, 30–39. [Google Scholar] [CrossRef]
- Alam, M.Z.; Devalaraja, S.; Haldar, M. The Heme Connection: Linking Erythrocytes and Macrophage Biology. Front. Immunol. 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Hajimohammadi, A.; Nazifi, S.; Ansari-Lari, M.; Khoshmanzar, M.R.; Bigdeli, S.M. Identifying relationships among acute phase proteins (haptoglobin, serum amyloid A, fibrinogen, ceruloplasmin) and clinical findings in dairy calf diarrhea. Comp. Clin. Pathol. 2013, 22, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Cray, C. Acute phase proteins in animals. Prog. Mol. Biol. Transl. Sci. 2012, 105, 113–150. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Busato, S.; Avaroma, F.C.; Linville, K.; Trevisi, E.; Osorio, J.S.; Bionaz, M. Transcriptional changes detected in fecal RNA of neonatal dairy calves undergoing a mild diarrhea are associated with inflammatory biomarkers. PLoS ONE 2018, 13, e0191599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, J.S. Gut health, stress, and immunity in neonatal dairy calves: The host side of host-pathogen interactions. J. Anim. Sci. Biotechnol. 2020, 11, 105. [Google Scholar] [CrossRef]
- Wu, J.; Liu, M.; Zhou, M.; Wu, L.; Yang, H.; Huang, L.; Chen, C. Isolation and genomic characterization of five novel strains of Erysipelotrichaceae from commercial pigs. BMC Microbiol. 2021, 21, 125. [Google Scholar] [CrossRef] [PubMed]
- Lippert, K.; Kedenko, L.; Antonielli, L.; Kedenko, I.; Gemeier, C.; Leitner, M.; Kautzky-Willer, A.; Paulweber, B.; Hackl, E. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 2017, 8, 545–556. [Google Scholar] [CrossRef]
- Huang, Y. The Influence of Ketosis on the Rectal Microbiome of Chinese Holstein Cows. Pak. Vet. J. 2019, 39, 175–180. [Google Scholar] [CrossRef]
- Kim, E.T.; Lee, S.J.; Kim, T.Y.; Lee, H.G.; Atikur, R.M.; Gu, B.H.; Kim, D.H.; Park, B.Y.; Son, J.K.; Kim, M.H. Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea. Animals 2021, 11, 1113. [Google Scholar] [CrossRef]
- Gomez, D.E.; Li, L.; Goetz, H.; MacNicol, J.; Gamsjaeger, L.; Renaud, D.L. Calf Diarrhea Is Associated With a Shift From Obligated to Facultative Anaerobes and Expansion of Lactate-Producing Bacteria. Front. Vet. Sci. 2022, 9, 846383. [Google Scholar] [CrossRef]
- Scheifinger, C.C.; Wolin, M.J. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Microbiol. 1973, 26, 789–795. [Google Scholar] [CrossRef]
- Russell, J.B.; Hespell, R.B. Microbial rumen fermentation. J. Dairy Sci. 1981, 64, 1153–1169. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.S.; Cormican, P.; Keogh, K.; O’Connor, A.; O’Hara, E.; Palladino, R.A.; Kenny, D.A.; Waters, S.M. Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle. PLoS ONE 2015, 10, e0133234. [Google Scholar] [CrossRef]
- El-Adawy, H.; Bocklisch, H.; Neubauer, H.; Hafez, H.M.; Hotzel, H. Identification, differentiation and antibiotic susceptibility of Gallibacterium isolates from diseased poultry. Ir. Vet. J. 2018, 71, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Driessche, L.; Vanneste, K.; Bogaerts, B.; De Keersmaecker, S.C.J.; Roosens, N.H.; Haesebrouck, F.; De Cremer, L.; Deprez, P.; Pardon, B.; Boyen, F. Isolation of Drug-Resistant Gallibacterium anatis from Calves with Unresponsive Bronchopneumonia, Belgium. Emerg. Infect. Dis. 2020, 26, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolka, B.; Chrobak-Chmiel, D.; Makrai, L.; Szeleszczuk, P. Phenotypic and genotypic characterization of Enterococcus cecorum strains associated with infections in poultry. BMC Vet. Res. 2016, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Caballero, S.; Kim, S.; Carter, R.A.; Leiner, I.M.; Susac, B.; Miller, L.; Kim, G.J.; Ling, L.; Pamer, E.G. Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. Cell Host Microbe 2017, 21, 592–602.e594. [Google Scholar] [CrossRef] [Green Version]
- Eeckhaut, V.; Wang, J.; Van Parys, A.; Haesebrouck, F.; Joossens, M.; Falony, G.; Raes, J.; Ducatelle, R.; Van Immerseel, F. The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Front. Microbiol. 2016, 7, 1416. [Google Scholar] [CrossRef] [Green Version]
- Dewanckele, L.; Vlaeminck, B.; Fievez, V. Sharpea azabuensis: A ruminal bacterium that produces trans-11 intermediates from linoleic and linolenic acid. Microbiology 2019, 165, 772–778. [Google Scholar] [CrossRef]
- Hailemariam, S.; Zhao, S.; Wang, J. Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of Succinivibrio dextrinosolvens Strain Z6 Isolated From Dairy Cow Rumen. Front. Microbiol. 2020, 11, 1826. [Google Scholar] [CrossRef]
- Amin, N.; Seifert, J. Dynamic progression of the calf’s microbiome and its influence on host health. Comput. Struct. Biotechnol. J. 2021, 19, 989–1001. [Google Scholar] [CrossRef]
- Baldwin, R.; McLeod, K.; Klotz, J.; Heitmann, N. Rumen Development, Intestinal Growth and Hepatic metabolism in The Pre- and Postweaning Ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.E.; Arroyo, L.G.; Costa, M.C.; Viel, L.; Weese, J.S. Characterization of the Fecal Bacterial Microbiota of Healthy and Diarrheic Dairy Calves. J. Vet. Intern. Med. 2017, 31, 928–939. [Google Scholar] [CrossRef] [PubMed]
Item | Group 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
SK | NONKET | Group (G) | Time | G × T 3 | ||
BW, kg | 53.16 | 56.19 | 0.76 | 0.02 | <0.01 | 0.74 |
Birth BW, kg | 42.86 | 37.95 | 1.59 | 0.05 | - | - |
Final BW, kg | 69.43 | 74.11 | 1.47 | 0.06 | - | - |
WH, cm | 85.08 | 86.19 | 0.49 | 0.16 | <0.01 | 0.20 |
Birth WH, cm | 80.17 | 77.92 | 1.08 | 0.17 | - | - |
Final WH, cm | 90.36 | 92.36 | 0.66 | 0.06 | - | - |
ADG, kg/d | 0.55 | 0.62 | 0.04 | 0.18 | <0.01 | 0.39 |
Starter intake, kg/d | 0.55 | 0.64 | 0.05 | 0.21 | <0.01 | 0.40 |
Fecal scores | 2.06 | 1.81 | 0.12 | 0.15 | <0.01 | 0.98 |
Fecal score > 3 (d) | 7.0 | 2.8 | 1.3 | 0.05 | - | - |
Respiratory score | 1.13 | 1.19 | 0.05 | 0.44 | 0.53 | 0.76 |
Rectal temperature, °C | 38.46 | 38.44 | 0.10 | 0.88 | 0.11 | 0.58 |
Parameter | Group 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
SK | NONKET | Group (G) | Time | G × T 3 | ||
Metabolites and liver function | ||||||
Glucose, mmol/L | 5.41 | 5.46 | 0.26 | 0.88 | <0.01 | 0.53 |
NEFA, mmol/L | 0.33 | 0.44 | 0.04 | 0.08 | <0.01 | <0.01 |
BHB, mmol/L | 0.08 | 0.08 | 0.00 | 0.95 | <0.01 | 0.33 |
Creatinine, μmol/L | 98.12 | 97.05 | 4.74 | 0.88 | <0.01 | 0.42 |
Cholesterol, mmol/L | 1.59 | 1.62 | 0.17 | 0.90 | <0.01 | 0.18 |
Urea, mmol/L | 4.03 | 3.81 | 0.17 | 0.37 | 0.02 | 0.10 |
Albumin, g/L | 27.17 | 25.83 | 0.97 | 0.20 | 0.01 | 0.09 |
GOT, U/L | 51.62 | 50.73 | 3.08 | 0.84 | <0.01 | 0.21 |
Log GGT, U/L | 2.04 | 1.97 | 0.09 | 0.57 | <0.01 | 0.59 |
Bilirubin, μmol/L | 1.52 | 1.63 | 0.06 | 0.25 | <0.01 | <0.01 |
Inflammation | ||||||
Ceruloplasmin, μmol/L | 1.35 | 1.41 | 0.08 | 0.58 | <0.01 | 0.06 |
Haptoglobin, g/L | 0.30 | 0.28 | 0.01 | 0.42 | 0.05 | 0.27 |
IL-6, pg/mL | 192.2 | 220.25 | 30.31 | 0.53 | 0.14 | 0.83 |
Paraoxonase, U/mL | 33.80 | 32.08 | 3.01 | 0.69 | <0.01 | 0.15 |
Oxidative stress | ||||||
ROM, mg H2O2/100 mL | 13.08 | 14.74 | 0.80 | 0.17 | <0.01 | 0.15 |
FRAP, μmol/L | 144.92 | 136.92 | 6.19 | 0.38 | <0.01 | 0.58 |
Myeloperoxidase, U/L | 285.8 | 283.2 | 18.35 | 0.92 | <0.01 | 0.96 |
Taxonomic Affiliation | 0 Weeks | 1 Week | 3 Weeks | p-Value | |||
---|---|---|---|---|---|---|---|
SK | NONKET | SK | NONKET | SK | NONKET | ||
Firmicutes | 47.97 | 46.89 | 30.19 | 26.31 | 28.37 | 30.01 | 0.21 |
Ruminococcaceae | 12.38 | 6.08 | 10.27 | 12.53 | 15.18 | 12.64 | 0.22 |
Lachnospiraceae | 6.36 | 5.64 | 7.44 | 7.47 | 5.15 | 6.19 | 0.76 |
Clostridiaceae 1,# | 9.92 c | 19.59 abc | 6.94 bc | 0.23 ab | 2.03 abc | 0.14 a | 0.04 |
Enterococcaceae # | 3.14 a | 5.73 a | 0.92 a | 1.00 a | 0.41 ab | 0.00 b | 0.01 |
Selenomonadaceae # | 0.00 b | 0.01 b | 0.74 ab | 2.26 ab | 1.57 ab | 3.16 a | 0.04 |
Erysipelotrichaceae # | 0.03 a | 0.06 a | 0.51 a | 0.07 a | 1.22 a | 5.41 b | 0.01 |
Veillonellaceae | 1.49 | 1.81 | 1.83 | 1.50 | 0.95 | 0.43 | 0.62 |
Streptococcaceae | 3.44 | 4.21 | 0.86 | 0.21 | 0.39 | 0.06 | 0.05 |
Lactobacillaceae | 10.81 | 0.63 | 0.14 | 0.08 | 0.10 | 0.03 | 0.51 |
Other Firmicutes & | 0.41 | 3.13 | 0.54 | 0.97 | 1.36 | 1.94 | ----- |
Proteobacteria | 27.66 | 27.73 | 31.66 | 19.23 | 29.59 | 22.90 | 0.66 |
Enterobacteriaceae # | 24.28 c | 24.63 ac | 13.65 ac | 8.55 a | 5.83 abc | 0.08 b | <0.01 |
Sutterellaceae | 1.86 | 2.42 | 9.60 | 7.98 | 9.48 | 7.21 | 0.12 |
Succinivibrionaceae # | 0.00 a | 0.04 a | 0.21 a | 0.09 a | 7.22 ab | 11.70 b | <0.01 |
Pasteurellaceae | 1.48 | 0.46 | 7.39 | 2.23 | 3.03 | 0.11 | 0.06 |
Other Proteobacteria & | 0.03 | 0.19 | 0.81 | 0.37 | 4.04 | 3.80 | ----- |
Bacteriodetes # | 23.41 b | 10.30 b | 31.80 ab | 38.92 a | 36.76 ab | 38.12 ab | 0.04 |
Bacteroidaceae | 23.34 | 7.35 | 20.75 | 21.02 | 19.77 | 11.58 | 0.33 |
Prevotellaceae | 0.04 | 2.66 | 7.81 | 17.72 | 12.80 | 18.70 | 0.07 |
Other Bacteroidetes & | 0.04 | 0.30 | 3.24 | 0.15 | 4.20 | 7.84 | ----- |
Actinobacteria | 0.58 | 4.89 | 1.23 | 0.81 | 2.69 | 1.73 | 0.41 |
Propionibacteriaceae | 0.02 | 10.77 | 0.06 | 0.02 | 0.01 | 0.00 | 0.13 |
Coriobacteriaceae | 0.54 | 0.09 | 0.52 | 0.76 | 2.53 | 1.39 | 0.12 |
Other Actinobacteria & | 0.02 | 4.03 | 0.65 | 0.04 | 0.16 | 0.33 | ----- |
Other Bacteria &$ | 0.05 | 0.02 | 0.64 | 0.06 | 0.32 | 0.89 | ----- |
OTUs | 0 Weeks | 1 Week | 3 Weeks | p-Value | Closest Valid Taxon (ID%) | |||
---|---|---|---|---|---|---|---|---|
SK | NONKET | SK | NONKET | SK | NONKET | |||
Proteobacteria | ||||||||
SD_Bt-1063 # | 25.30 a | 21.78 a | 19.98 a | 13.16 a | 9.52 ab | 0.09 b | 0.01 | Escherichia coli (100%) |
SD_Bt-1238 # | 1.34 ab | <0.01 a | 7.91 b | 2.58 ab | 3.96 b | 0.09 a | 0.02 | Gallibacterium anatis (96.39%) |
SD_Bt-1112 | 0.00 * | 0.01 | 0.17 | 0.09 | 4.54 | 8.50 | 0.06 | Su. dextrinosolvens (96.88%) |
SD_Bt-1452 # | 0.00 *,a | 0.03 a | 0.04 a | 0.02 a | 4.49 ab | 5.63 b | <0.01 | Su. dextrinosolvens (96.89%) |
SD_Bt-1319 | 0.02 | 0.69 | 2.21 | 0.58 | 0.67 | 0.57 | 0.89 | Pa. excrementihominis (99.02%) |
SD_Bt-19374 | 0.01 | 0.00 * | 0.02 | <0.0 | 4.32 | 0.10 | 0.48 | Rhodospirillum rubrum (88.41%) |
SD_Bt-1419 | 0.00 * | 0.00 * | 2.44 | 0.19 | 0.35 | 0.04 | 0.09 | Ca. hyointestinalis (98.12%) |
SD_Bt-1150 | 0.09 | 2.87 | 0.0 | 0.04 | 0.07 | <0.01 | 0.05 | Klebsiella pneumoniae (99.62%) |
Firmicutes | ||||||||
SD_Bt-1197 # | 10.51 a | 6.35 ab | 4.34 a | 11.19 a | 7.32 a | 0.57 b | 0.03 | Bu. pullicaecorum (96.54%) |
SD_Bt-1192 | 5.94 | 10.32 | 4.05 | 0.08 | 1.59 | 0.0 | 0.12 | Cl. perfringens (99.80%) |
SD_Bt-1206 | 1.81 | 1.70 | 2.94 | 2.01 | 1.11 | 0.61 | 0.54 | Ruminococcus gnavus (99.2%) |
SD_Bt-1708 | <0.01 | <0.01 | 0.42 | 3.14 | 1.37 | 3.57 | 0.15 | Megamonas rupellensis (98.36%) |
SD_Bt-1427 | 0.28 | 2.68 | 3.10 | 1.48 | 0.83 | 0.11 | 0.34 | Cl. bolteae (97.16%) |
SD_Bt-1343 # | 1.25 a | 2.02 a | 0.79 a | 1.53 a | 0.64 ab | 0.01 b | 0.03 | Enterococcus cecorum (99.81%) |
SD_Bt-1517 # | 1.16 ab | 0.02 b | 0.72 ab | 3.57 a | 0.28 b | <0.01 b | 0.04 | Cl. bolteae (99.05%) |
SD_Bt-1021 | 3.00 | 2.25 | 0.81 | 0.05 | 0.40 | 0.06 | 0.59 | Streptococcus equinus (100%) |
SD_Bt-1709 # | 2.02 a | 3.45 a | 0.27 ab | 0.22 a | 0.00 *,b | 0.00 *,b | 0.01 | Enterococcus faecium (100%) |
SD_Bt-1075 | 1.04 | 4.07 | 0.05 | 0.02 | 0.17 | <0.01 | 0.10 | Cl. paraputrificum (99.80%) |
SD_Bt-1391 # | 0.00 *,a | 0.02 a | 0.12 a | 0.04 a | 0.83 a | 2.46 b | <0.01 | Sharpea azabuensis (100%) |
Bacteriodetes | ||||||||
SD_Bt-1064 | 19.88 | 0.64 | 7.19 | 17.08 | 1.49 | 2.41 | 0.10 | Bacteroides fragilis (99.81%) |
SD_Bt-1246 | 0.01 | 0.02 | 4.37 | 7.16 | 2.72 | 4.97 | 0.18 | Prevotella stercorea (96.18%) |
SD_Bt-1205 | 0.01 | <0.01 | 1.54 | 1.46 | 5.19 | 3.16 | 0.22 | Pr. timonensis (89.64%) |
SD_Bt-1208 | 0.01 | 0.02 | 2.03 | 0.01 | 3.13 | 5.31 | 0.12 | Prevotella stercorea (99.05%) |
SD_Bt-1070 | 0.01 | 0.03 | 0.84 | 6.67 | 1.46 | 1.37 | 0.27 | Prevotella copri (97.92%) |
SD_Bt-0966 | <0.01 | 3.90 | 0.01 | 5.12 | 1.56 | 0.37 | 0.22 | Prevotella veroralis (90.77%) |
SD_Bt-1072 | 0.04 | 0.39 | 2.12 | 0.49 | 0.32 | 2.26 | 0.07 | Bacteroides uniformis (100%) |
SD_Bt-1085 # | 0.00 *,a | 0.00 *,a | 0.96 ab | 0.00 a | 1.88 ab | 2.17 b | <0.01 | Duncaniella freteri (82.8%) |
SD_Bt-1695 | 0.01 | 0.92 | 0.18 | 0.87 | 1.90 | 0.59 | 0.04 | Bacteroides vulgatus (95.63%) |
Actinobacteria | ||||||||
SD_Bt-1548 | 0.02 | 10.62 | 0.06 | 0.02 | 0.01 | <0.01 | 0.24 | Cutibacterium acnes (99.80%) |
SD_Bt-1201 | 0.58 | 0.11 | 0.86 | 1.35 | 4.36 | 1.62 | 0.11 | Collinsella aerofaciens (98.38%) |
Fusobacteria | ||||||||
SD_Bt-1456 | 0.00 * | 0.20 | 0.96 | 0.20 | 1.65 | 2.31 | 0.34 | Fusobacterium varium (99.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halfen, J.; Carpinelli, N.A.; Lasso-Ramirez, S.; Michelotti, T.C.; Fowler, E.C.; St-Pierre, B.; Trevisi, E.; Osorio, J.S. Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring’s Postnatal Growth and Gut Microbiome Development. Microorganisms 2023, 11, 1839. https://doi.org/10.3390/microorganisms11071839
Halfen J, Carpinelli NA, Lasso-Ramirez S, Michelotti TC, Fowler EC, St-Pierre B, Trevisi E, Osorio JS. Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring’s Postnatal Growth and Gut Microbiome Development. Microorganisms. 2023; 11(7):1839. https://doi.org/10.3390/microorganisms11071839
Chicago/Turabian StyleHalfen, Jessica, Nathaly Ana Carpinelli, Sergio Lasso-Ramirez, Tainara Cristina Michelotti, Emily C. Fowler, Benoit St-Pierre, Erminio Trevisi, and Johan S. Osorio. 2023. "Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring’s Postnatal Growth and Gut Microbiome Development" Microorganisms 11, no. 7: 1839. https://doi.org/10.3390/microorganisms11071839
APA StyleHalfen, J., Carpinelli, N. A., Lasso-Ramirez, S., Michelotti, T. C., Fowler, E. C., St-Pierre, B., Trevisi, E., & Osorio, J. S. (2023). Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring’s Postnatal Growth and Gut Microbiome Development. Microorganisms, 11(7), 1839. https://doi.org/10.3390/microorganisms11071839