Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Morphological Observations
2.2. DNA Extraction, PCR Amplification, and PacBio Sequencing
2.3. Sequence Analysis of PacBio Data
2.4. Phylogenetic Analysis
2.5. Fluorescence In Situ Hybridization (FISH) and Fluorescence Microscopy
3. Results
3.1. Morphology and Molecular Phylogeny of the Host Ciliate Geleia sp. YT
3.2. Diversity of Bacteria Associated with Geleia sp. YT
3.3. Phylogenetic Analyses of the Abundant Bacterial OTUs Associated with Geleia sp. YT
3.4. Fluorescence In Situ Hybridization (FISH)
4. Discussion
4.1. The Newly Collected Ciliate Geleia sp. YT
4.2. Consistent Presence of Epibiotic Variovorax-like Bacteria and Their Potential Roles
4.3. Intranuclear Mycoplasma-like Bacteria of Geleia sp. YT
4.4. Microbiomes of the Marine Benthic Ciliate Geleia sp. YT
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gast, R.J.; Sanders, R.W.; Caron, D.A. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol. 2009, 17, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Boscaro, V.; Husnik, F.; Vannini, C.; Keeling, P.J. Symbionts of the ciliate Euplotes: Diversity, patterns and potential as models for bacteria-eukaryote endosymbioses. Proc. Biol. Sci. 2019, 286, 20190693. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.H.; Sendra, K.M.; Embley, T.M.; Esteban, G.F. Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens. Front. Microbiol. 2018, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, K.; Yamada, T.; Kawahara, Y.; Narihiro, T.; Ito, M.; Kamagata, Y.; Shinzato, N. Tripartite Symbiosis of an Anaerobic Scuticociliate with Two Hydrogenosome-Associated Endosymbionts, a Holospora-Related Alphaproteobacterium and a Methanogenic Archaeon. Appl. Environ. Microbiol. 2019, 85, e00854-19. [Google Scholar] [CrossRef] [PubMed]
- Decelle, J.; Not, F. Acantharia. In eLS; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–10. [Google Scholar]
- Decelle, J.; Probert, I.; Bittner, L.; Desdevises, Y.; Colin, S.; de Vargas, C.; Gali, M.; Simo, R.; Not, F. An original mode of symbiosis in open ocean plankton. Proc. Natl. Acad. Sci. USA 2012, 109, 18000–18005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagino, K.; Onuma, R.; Kawachi, M.; Horiguchi, T. Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS ONE 2013, 8, e81749. [Google Scholar] [CrossRef]
- Zehr, J.P.; Shilova, I.N.; Farnelid, H.M.; Muñoz-Marín, M.D.C.; Turk-Kubo, K.A. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat. Microbiol. 2016, 2, 16214. [Google Scholar] [CrossRef] [Green Version]
- Beinart, R.A. The significance of microbial symbionts in ecosystem processes. mSystems 2019, 4, e00127-19. [Google Scholar] [CrossRef] [Green Version]
- Dziallas, C.; Allgaier, M.; Monaghan, M.T.; Grossart, H.P. Act together-implications of symbioses in aquatic ciliates. Front. Microbiol. 2012, 3, 288. [Google Scholar] [CrossRef] [Green Version]
- Graf, J.S.; Schorn, S.; Kitzinger, K.; Ahmerkamp, S.; Woehle, C.; Huettel, B.; Schubert, C.J.; Kuypers, M.M.M.; Milucka, J. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 2021, 591, 445–450. [Google Scholar] [CrossRef]
- Lanzoni, O.; Plotnikov, A.; Khlopko, Y.; Munz, G.; Petroni, G.; Potekhin, A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci. Rep. 2019, 9, 11356. [Google Scholar] [CrossRef] [Green Version]
- Boscaro, V.; Manassero, V.; Keeling, P.J.; Vannini, C. Single-cell Microbiomics Unveils Distribution and Patterns of Microbial Symbioses in the Natural Environment. Microb. Ecol. 2022, 85, 307–316. [Google Scholar] [CrossRef]
- Plotnikov, A.O.; Balkin, A.S.; Gogoleva, N.E.; Lanzoni, O.; Khlopko, Y.A.; Cherkasov, S.V.; Potekhin, A.A. High-Throughput Sequencing of the 16S rRNA Gene as a Survey to Analyze the Microbiomes of Free-Living Ciliates Paramecium. Microb. Ecol. 2019, 78, 286–298. [Google Scholar] [CrossRef]
- Mclntyre, A.D. Ecology of marine meiobenthos. Biol. Rev. 1969, 44, 245–288. [Google Scholar] [CrossRef]
- Bagarinao, T. Sulfide as an environmental factor and toxicant: Tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 1992, 24, 21–62. [Google Scholar] [CrossRef]
- Paul, B.D.; Snyder, S.H.; Kashfi, K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol. 2021, 38, 101772. [Google Scholar] [CrossRef]
- Epstein, S.S.; Burkovsky, I.V.; Shiaris, M.P. Ciliate grazing on bacteria, flagellates, and microalgae in a temperate zone sandy tidal flat: Ingestion rates and food niche partitioning. J. Exp. Mar. Biol. Ecol. 1992, 165, 103–123. [Google Scholar] [CrossRef]
- Starink, M.; Krylova, I.N.; Bär-Gilissen, M.-J.; Bak, R.P.M.; Cappenberg, T.E. Rates of Benthic Protozoan Grazing on Free and Attached Sediment Bacteria Measured with Fluorescently Stained Sediment. Appl. Environ. Microbiol. 1994, 60, 2259–2264. [Google Scholar] [CrossRef] [Green Version]
- Vernberg, F.; Vernberg, W. Adaptations to extreme environments. In Physiological Ecology of Estuarine Organisms; University of South Carolina Press: Columbia, SC, USA, 1975; pp. 165–180. [Google Scholar]
- Fenchel, T.; Finlay, B.J. The biology of free-living anaerobic ciliates. Eur. J. Protistol. 1991, 26, 201–215. [Google Scholar] [CrossRef]
- Fokin, S.I. Bacterial endocytobionts of ciliophora and their interactions with the host cell. Int. Rev. Cytol. 2004, 236, 181–250. [Google Scholar]
- Epstein, S.S.; Bazylinski, D.A.; Fowle, W.H. Epibiotic bacteria on several ciliates from marine sediments. J. Eukaryot. Microbiol. 1998, 45, 64–70. [Google Scholar] [CrossRef]
- Rotterová, J.; Edgcomb, V.P.; Cepicka, I.; Beinart, R. Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments. J. Eukaryot. Microbiol. 2022, 69, e12912. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Bellone, A.; Fokin, S.I.; Boscaro, V.; Vannini, C. Detecting Associations between Ciliated Protists and Prokaryotes with Culture-Independent Single-Cell Microbiomics: A Proof-of-Concept Study. Microb. Ecol. 2019, 78, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Edgcomb, V.P.; Leadbetter, E.R.; Bourland, W.; Beaudoin, D.; Bernhard, J.M. Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: A survival mechanism in low oxygen, sulfidic sediments? Front. Microbiol. 2011, 2, 55. [Google Scholar] [CrossRef] [Green Version]
- Seah, B.K.B.; Schwaha, T.; Volland, J.M.; Huettel, B.; Dubilier, N.; Gruber-Vodicka, H.R. Specificity in diversity: Single origin of a widespread ciliate-bacteria symbiosis. Proc. Biol. Sci. 2017, 284, 20170764. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Zhang, X.; Zou, S.; Ji, D.; Zhang, Q. Detection of Prokaryotes on the Astomatous Ciliated Protist Kentrophoros flavus (Ciliophora, Karyorelictea) Revealed A Consistently Associated Muribaculaceae-Like Bacterium. Front. Mar. Sci. 2022, 9, 854. [Google Scholar] [CrossRef]
- Azovsky, A.I.; Mazei, Y.A. Diversity and Distribution of Free-living Ciliates from High-Arctic Kara Sea Sediments. Protist 2018, 169, 141–157. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, J.; Warren, A.; Al-Rasheid, K.A.; Al-Farraj, S.A.; Song, W. Morphological and molecular information of a new species of Geleia (Ciliophora, Karyorelictea), with redescriptions of two Kentrophoros species from China. Eur. J. Protistol. 2011, 47, 172–185. [Google Scholar] [CrossRef]
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.J.; Appler, K.E.; Gong, X. New microbial biodiversity in marine sediments. Annu. Rev. Mar. Sci. 2021, 13, 161–175. [Google Scholar] [CrossRef]
- Brown, C.T.; Hug, L.A.; Thomas, B.C.; Sharon, I.; Castelle, C.J.; Singh, A.; Wilkins, M.J.; Wrighton, K.C.; Williams, K.H.; Banfield, J.F. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 2015, 523, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Hug, L.A.; Baker, B.J.; Anantharaman, K.; Brown, C.T.; Probst, A.J.; Castelle, C.J.; Butterfield, C.N.; Hernsdorf, A.W.; Amano, Y.; Ise, K. A new view of the tree of life. Nat. Microbiol. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Hayward, B.H.; Drosteb, R.; Epstein, S.S. Interstitial ciliates: Benthic microaerophiles or planktonic anaerobes? J. Eukaryot. Microbiol. 2003, 50, 356–359. [Google Scholar] [CrossRef]
- Foissner, W.; O‘Donoghue, P. Morphology and infraciliature of some freshwater ciliates (Protozoa: Ciliophora) from Western and South Australia. Invertebr. Syst. 1989, 3, 661–696. [Google Scholar] [CrossRef]
- Yoon, H.S.; Price, D.C.; Stepanauskas, R.; Rajah, V.D.; Sieracki, M.E.; Wilson, W.H.; Yang, E.C.; Duffy, S.; Bhattacharya, D. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 2011, 332, 714–717. [Google Scholar] [CrossRef]
- Gong, J.; Qing, Y.; Zou, S.; Fu, R.; Su, L.; Zhang, X.; Zhang, Q. Protist-bacteria associations: Gammaproteobacteria and Alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front. Microbiol. 2016, 7, 498. [Google Scholar] [CrossRef] [Green Version]
- Stoeck, T.; Hayward, B.; Taylor, G.T.; Varela, R.; Epstein, S.S. A Multiple PCR-primer Approach to Access the Microeukaryotic Diversity in Environmental Samples. Protist 2006, 157, 31–43. [Google Scholar] [CrossRef]
- Gürtler, V.; Stanisich, V.A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 1996, 142, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.S.; Handley, K.M.; Wrighton, K.C.; Frischkorn, K.R.; Thomas, B.C.; Banfield, J.F. Short-Read Assembly of Full-Length 16S Amplicons Reveals Bacterial Diversity in Subsurface Sediments. PLoS ONE 2013, 8, e56018. [Google Scholar] [CrossRef] [Green Version]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Alloui, T.; Boussebough, I.; Chaoui, A.; Nouar, A.Z.; Chettah, M.C. Usearch: A Meta Search Engine based on a new result merging strategy. In Proceedings of the 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, 12–14 November 2015; pp. 531–536. [Google Scholar]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Zheng, P.; Zhang, X.; Zhang, Q.; Ji, D. Protist Interactions and Seasonal Dynamics in the Coast of Yantai, Northern Yellow Sea of China as Revealed by Metabarcoding. J. Ocean Univ. China 2020, 19, 961–974. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Rinker, T.W.; Kurkiewicz, D. pacman: Package Management for R; GitHub: San Francisco, CA, USA, 2018. [Google Scholar]
- Hördt, A.; López, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.-M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Göker, M. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Alvarez-Ponce, D.; Weitzman, C.; Tillett, R.; Sandmeier, F.; Tracy, R. High quality draft genome sequences of Mycoplasma agassizii strains PS6T and 723 isolated from Gopherus tortoises with upper respiratory tract disease. Stand. Genom. Sci. 2018, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.-l.; Sun, Y.-C.; Xue, J.; Sun, P.; Yan, H.; Khan, M.S.; Wang, L.-W.; Zhang, X.; Sun, J.-G. Variovorax beijingensis sp. nov., a novel plant-associated bacterial species with plant growth-promoting potential isolated from different geographic regions of Beijing, China. Syst. Appl. Microbiol. 2020, 43, 126135. [Google Scholar] [CrossRef]
- Yoon, J.; Kang, D.-H. Terasakiella salincola sp. nov., a marine alphaproteobacterium isolated from seawater, and emended description of the genus Terasakiella. Int. J. Syst. Evol. Microbiol. 2018, 68, 2048–2053. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO WIN: Two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 1996, 12, 543–548. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Qing, Y.; Guo, X.; Warren, A. “Candidatus Sonnebornia yantaiensis”, a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst. Appl. Microbiol. 2014, 37, 35–41. [Google Scholar] [CrossRef]
- Wallner, G.; Amann, R.; Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993, 14, 136–143. [Google Scholar] [CrossRef]
- Snaidr, J.; Amann, R.; Huber, I.; Ludwig, W.; Schleifer, K.-H. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 1997, 63, 2884–2896. [Google Scholar] [CrossRef] [Green Version]
- Amann, R.I.; Krumholz, L.; Stahl, D.A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 1990, 172, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Daims, H.; Brühl, A.; Amann, R.; Schleifer, K.-H.; Wagner, M. The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set. Syst. Appl. Microbiol. 1999, 22, 434–444. [Google Scholar] [CrossRef]
- Omar, A.; Zhang, Q.; Zou, S.; Gong, J. Morphology and phylogeny of the soil ciliate Metopus yantaiensis n. sp. (Ciliophora, Metopida), with identification of the intracellular bacteria. J. Eukaryot. Microbiol. 2017, 64, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, L.Ş.; Noguera, D.R. Development of thermodynamic models for simulating probe dissociation profiles in fluorescence in situ hybridization. Biotechnol. Bioeng. 2007, 96, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Han, J.I.; Choi, H.K.; Lee, S.W.; Orwin, P.M.; Kim, J.; Laroe, S.L.; Kim, T.G.; O’Neil, J.; Leadbetter, J.R.; Lee, S.Y.; et al. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J. Bacteriol. 2011, 193, 1183–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalenberger, A.; Hodge, S.; Bryant, A.; Hawkesford, M.J.; Singh, B.K.; Kertesz, M.A. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ. Microbiol. 2008, 10, 1486–1500. [Google Scholar] [CrossRef] [PubMed]
- Kamagata, Y.; Fulthorpe, R.R.; Tamura, K.; Takami, H.; Forney, L.J.; Tiedje, J.M. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl. Environ. Microbiol. 1997, 63, 2266–2272. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, C.; Hugunin, K.; Maute, C.; Dysko, R. Bacteria from drinking water supply and their fate in gastrointestinal tracts of germ-free mice: A phylogenetic comparison study. Water Res. 2010, 44, 5050–5058. [Google Scholar] [CrossRef]
- Haaijer, S.; Harhangi, H.R.; Meijerink, B.B.; Strous, M.; Pol, A.; Smolders, A.J.; Verwegen, K.; Jetten, M.S.; Op den Camp, H.J. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME J. 2008, 2, 1231–1242. [Google Scholar] [CrossRef]
- Wang, Y.P.; Gu, J.D. Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 2006, 15, 549–557. [Google Scholar] [CrossRef]
- Corsaro, D.; Michel, R.; Walochnik, J.; Müller, K.-D.; Greub, G. Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia ‘Candidatus Metachlamydia lacustris’ (Chlamydiae: Parachlamydiaceae). Eur. J. Protistol. 2010, 46, 86–95. [Google Scholar] [CrossRef]
- Török, J.K. Intraspecific polymorphism and prokaryotic symbionts in clonal amoeboid organisms. OTKA Res. Rep. 2010. Available online: http://real.mtak.hu/id/eprint/2428 (accessed on 13 October 2022).
- Costa, R.; Fugas, M.; Caeiro, M.F.; Vale, F.F.; Amorim, A.; Morgado, F.; de Matos, A.P.A. Reservoirs of human pathogens: Amoeba-associated microorganisms in the environment. Microsc. Microanal. 2013, 19, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.K.; Halpern, A.L.; Beeson, K.; Tran, B.; Venter, J.C.; Martiny, J.B. It‘s all relative: Ranking the diversity of aquatic bacterial communities. Environ. Microbiol. 2008, 10, 2200–2210. [Google Scholar] [CrossRef]
- Rotterová, J.; Salomaki, E.; Pánek, T.; Bourland, W.; Žihala, D.; Táborský, P.; Edgcomb, V.P.; Beinart, R.A.; Kolísko, M.; Čepička, I. Genomics of New Ciliate Lineages Provides Insight into the Evolution of Obligate Anaerobiosis. Curr. Biol. 2020, 30, 2037–2050.e6. [Google Scholar] [CrossRef]
- Orsi, W.; Charvet, S.; Vdacny, P.; Bernhard, J.; Edgcomb, V. Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Front. Microbiol. 2012, 3, 341. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.B. Mycoplasma and cancer: In search of the link. Oncotarget 2011, 2, 271. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, M.; Itirli, G.; Onay, H.; Bulut, H.; Koyuncuoglu, M.; Pehlivan, S. Does Mycoplasma sp. play role in small cell lung cancer? Lung Cancer 2004, 45, 129–130. [Google Scholar] [CrossRef]
- Razin, S. Peculiar properties of mycoplasmas: The smallest self-replicating prokaryotes. FEMS Microbiol. Lett. 1992, 100, 423–431. [Google Scholar] [CrossRef]
- Vishnyakov, I.E. Symphony of minimalism: Peculiar endosymbiosis of mycoplasmas and protists. Protistology 2021, 15, 24–33. [Google Scholar] [CrossRef]
- Schulz, F.; Horn, M. Intranuclear bacteria: Inside the cellular control center of eukaryotes. Trends Cell Biol. 2015, 25, 339–346. [Google Scholar] [CrossRef]
- Fokin, S.I.; Serra, V. Bacterial symbiosis in ciliates (Alveolata, Ciliophora): Roads traveled and those still to be taken. J. Eukaryot. Microbiol. 2022, 69, e12886. [Google Scholar] [CrossRef]
- Schrallhammer, M.; Potekhin, A. Epidemiology of Nucleus-Dwelling Holospora: Infection, Transmission, Adaptation, and Interaction with Paramecium. Results Probl. Cell Differ. 2020, 69, 105–135. [Google Scholar] [CrossRef]
- Chaudhry, R.; Ghosh, A.; Chandolia, A. Pathogenesis of Mycoplasma pneumoniae: An update. Indian J. Med. Microbiol. 2016, 34, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ueno, P.M.; Timenetsky, J.; Centonze, V.E.; Wewer, J.J.; Cagle, M.; Stein, M.A.; Krishnan, M.; Baseman, J.B. Interaction of Mycoplasma genitalium with host cells: Evidence for nuclear localization. Microbiology 2008, 154, 3033–3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Matsuura, M.; Seto, K. Enumeration, isolation, and species identification of mycoplasmas in saliva sampled from the normal and pathological human oral cavity and antibody response to an oral mycoplasma (Mycoplasma salivarium). J. Clin. Microbiol. 1986, 23, 1034–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.; Rao, R.S.; Raj, A.T. Role of Mycoplasma in the initiation and progression of oral cancer. J. Int. Oral Health 2015, 7, i–ii. [Google Scholar] [PubMed]
- Haferkamp, I.; Schmitz-Esser, S.; Wagner, M.; Neigel, N.; Horn, M.; Neuhaus, H.E. Tapping the nucleotide pool of the host: Novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol. Microbiol. 2006, 60, 1534–1545. [Google Scholar] [CrossRef] [Green Version]
- Bierne, H.; Cossart, P. When bacteria target the nucleus: The emerging family of nucleomodulins. Cell. Microbiol. 2012, 14, 622–633. [Google Scholar] [CrossRef]
- Dallo, S.; Baseman, J. Intracellular DNA replication and long-term survival of pathogenic mycoplasmas. Microb. Pathog. 2000, 29, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, R.; Fumarola, D.; Fumarola, L.; Miragliotta, G. Detection of Bartonella henselae and Afipia felis DNA by polymerase chain reaction in specimens from patients with cat scratch disease. Eur. J. Clin. Microbiol. 2000, 19, 964–967. [Google Scholar] [CrossRef]
- Lo, S.-C.; Hung, G.-C.; Li, B.; Lei, H.; Li, T.; Nagamine, K.; Zhang, J.; Tsai, S.; Bryant, R. Isolation of novel Afipia septicemium and identification of previously unknown bacteria Bradyrhizobium sp. OHSU_III from blood of patients with poorly defined illnesses. PLoS ONE 2013, 8, e76142. [Google Scholar] [CrossRef]
- Janda, W.M. Amoeba-resistant bacteria: Their role in human infections. Clin. Microbiol. Newsl. 2010, 32, 177–184. [Google Scholar] [CrossRef]
- Moosvi, S.A.; Pacheco, C.C.; McDonald, I.R.; De Marco, P.; Pearce, D.A.; Kelly, D.P.; Wood, A.P. Isolation and properties of methanesulfonate-degrading Afipia felis from Antarctica and comparison with other strains of A. felis. Environ. Microbiol. 2005, 7, 22–33. [Google Scholar] [CrossRef]
- Davis, D.; Chen, G.; Kasibhatla, P.; Jefferson, A.; Tanner, D.; Eisele, F.; Lenschow, D.; Neff, W.; Berresheim, H. DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4 (g), MSA (g), and MSA (p). J. Geophys. Res. Atmos. 1998, 103, 1657–1678. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Zhang, W.; Lin, W.; Pan, H.; Xiao, T.; Wu, L.-F. Genomic analysis of a pure culture of magnetotactic bacterium Terasakiella sp. SH-1. J. Oceanol. Limnol. 2021, 39, 2097–2106. [Google Scholar] [CrossRef]
- Whangsuk, W.; Sungkeeree, P.; Nakasiri, M.; Thiengmag, S.; Mongkolsuk, S.; Loprasert, S. Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42. Int. Biodeterior. Biodegrad. 2015, 99, 45–54. [Google Scholar] [CrossRef]
- Webb, H.K.; Ng, H.J.; Ivanova, E.P. The Family Methylocystaceae; Springer: Berlin/Heidelberg, Germany, 2014; pp. 341–347. [Google Scholar]
- Aylward, F.O.; McDonald, B.R.; Adams, S.M.; Valenzuela, A.; Schmidt, R.A.; Goodwin, L.A.; Woyke, T.; Currie, C.R.; Suen, G.; Poulsen, M. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microbiol. 2013, 79, 3724–3733. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, M.; Brazel, D.; Poulton, N.J.; Swan, B.K.; Gomez, M.L.; Masland, D.; Sieracki, M.E.; Stepanauskas, R. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 2012, 6, 703–707. [Google Scholar] [CrossRef] [Green Version]
Probe | Sequence (5′–3′) | Specificity | Data Source |
---|---|---|---|
Vari-264 | TTCGATCTGTAGCTGGTC | Comamonadaceae | Present study |
Vari-623 | CTGTGACTGCATCGCTGG | Comamonadaceae | Present study |
Myco-692 | TGAGGAACACCAGAGGCT | Mycoplasma | Present study |
Myco-910 | TGAACAAGTGGTGGAGCA | Mycoplasma | Present study |
BONE23A | GAATTCCACCCCCCTCT | Betaproteobacteria | [62] |
ALF968 | GGTAAGGTTCTGCGCGTT | Mainly alphaproteobacteria | [63] |
OTU Family | OTU Name | OTU Abundance | Sequence Length | GC Content (%) | Matched Sequences (Genbank Accession Number) and Identity | Matched Known Species (Genbank Accession Number) and Identity | Curated Classification | Ecological Category |
---|---|---|---|---|---|---|---|---|
Total/I2021-09/I2022-06/I2022-07 (%) | ||||||||
Comamonadaceae | OTU Variovorax sp. | 29.2/24.3/55.7/17.7 | 1479 | 54.70 | Uncultured bacterium (EU803514) 100% | Variovorax paradoxus (FJ527675) 100% | Variovorax sp. | Symbiosis/free-living |
Mycoplasmataceae | OTU Mycoplasma sp. | 22.1/0.09/1.2/42.5 | 1435 | 44.60 | Uncultured Mycoplasma sp. (OP860306) 99.79% | Mycoplasma wenyonii (EF221880) 99.65% | Mycoplasma sp. | Parasitism/symbiosis |
Terasakiellaceae | OTU Terasakiella sp. | 14.8/23.8/10.2/13.3 | 1441 | 52.88 | Uncultured bacterium from environmental samples (EU594271) 97.78% | Terasakiella brassicae (NR148851) 97.78% | Terasakiella sp. | Free-living |
Nitrobacteraceae | OTU Afipia sp. | 8.7/14.5/13.8/3.7 | 1435 | 55.47 | Afipia genosp. (EF371496) 100% | Afipia genosp. (EF371496) 100% | Afipia sp. | Potential pathogens/ free-living |
Sphingomonadaceae | OTU Sphingobium sp. | 8.1/15.2/11.0/3.4 | 1431 | 54.65 | Sphingobium sp. (AY689029) 100% | Sphingobium limneticum (AY689029) 99.86% | Sphingobium sp. | Free-living |
Alteromonadaceae | OTU unclassified Alteromonadaceae sp. | 4.6/0.2/0.5/8.6 | 1466 | 52.18 | Uncultured bacterium from environmental samples (EU617867) 96.4% | Fluviicola taffensis (NR074547) 94.90% | unclassified Alteromonadaceae sp. | Free-living |
Xanthomonadiceae | OTU Pseudoxanthomonas sp. | 1.2/5.1/0/0 | 1491 | 55.33 | Pseudoxanthomonas mexicana (CP095186) 100% | Pseudoxanthomonas mexicana (CP095186) 100% | Pseudoxanthomonas sp. | Free-living/symbiosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Bi, L.; Gentekaki, E.; Zhao, J.; Shen, P.; Zhang, Q. Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea). Microorganisms 2023, 11, 1500. https://doi.org/10.3390/microorganisms11061500
Zhang X, Bi L, Gentekaki E, Zhao J, Shen P, Zhang Q. Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea). Microorganisms. 2023; 11(6):1500. https://doi.org/10.3390/microorganisms11061500
Chicago/Turabian StyleZhang, Xiaoxin, Luping Bi, Eleni Gentekaki, Jianmin Zhao, Pingping Shen, and Qianqian Zhang. 2023. "Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea)" Microorganisms 11, no. 6: 1500. https://doi.org/10.3390/microorganisms11061500
APA StyleZhang, X., Bi, L., Gentekaki, E., Zhao, J., Shen, P., & Zhang, Q. (2023). Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea). Microorganisms, 11(6), 1500. https://doi.org/10.3390/microorganisms11061500