Nanotechnology—A Light of Hope for Combating Antibiotic Resistance
Abstract
:1. Introduction
2. Viewpoint and Discussion with Conclusions
2.1. Antibiotic Resistance—A Menace to the Global Community
2.2. Heavy Metals and Antibiotic Resistance
2.3. Nanotechnology—A Combatting Approach for Antibiotic Resistance
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoeb, M.; Islam, R.; Parvin, N. Antibiotic Resistance: A Global Threat to Humanity. In Transcending Humanitarian Engineering Strategies for Sustainable Futures; IGI Global: Hershey, PA, USA, 2023; pp. 82–105. [Google Scholar]
- Smith, W.P.; Wucher, B.R.; Nadell, C.D.; Foster, K.R. Bacterial defences: Mechanisms, evolution and antimicrobial resistance. Nat. Rev. Microbiol. 2023, 1–16. [Google Scholar] [CrossRef]
- Munir, S.; Rentha Fathima, M.; Melath, A.; Kayakool, S.; Arjun, M.R. The Chemical Essence of life Antibiotics. J. Dent. Sci. Res. Rev. Rep. 2023, 146, 2–13. [Google Scholar] [CrossRef]
- Chu, L.; Su, D.; Wang, H.; Aili, D.; Yimingniyazi, B.; Jiang, Q.; Dai, J. Association between Antibiotic Exposure and Type 2 Diabetes Mellitus in Middle-Aged and Older Adults. Nutrients 2023, 15, 1290. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.O.; Mohammed, K.A. A review of the effects of excessive antibiotic prescription on public health. Int. J. Res. Anal. Rev. 2023, 10, 284–289. [Google Scholar]
- Bui, D.S.; Nguyen, T. A real challenge to tackle the overuse of antibiotics in LMIC: A case from Vietnam. Lancet Reg. Health–West. Pac. 2023, 30, 100650. [Google Scholar] [CrossRef]
- Puvača, N.; Tankosić, J.V.; Ignjatijević, S.; Carić, M.; Prodanović, R. Antimicrobial Resistance in the Environment: Review of the Selected Resistance Drivers and Public Health Concerns. J. Agron. Technol. Eng. Manag. 2022, 5, 793–802. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, W.; Qiao, J.; Song, L. Occurrence and prevalence of antibiotic resistance in landfill leachate. Environ. Sci. Pollut. Res. 2015, 22, 12525–12533. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Saroj, S.D. Antimicrobial Resistance: Collaborative Measures of Control; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 2022, 11, e1260. [Google Scholar] [CrossRef]
- Sun, R.; Yao, T.; Zhou, X.; Harbarth, S.; Lin, L. Non-biomedical factors affecting antibiotic use in the community: A mixed-methods systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 345–354. [Google Scholar] [CrossRef]
- Amponsah, O.K.O.; Nagaraja, S.B.; Ayisi-Boateng, N.K.; Nair, D.; Muradyan, K.; Asense, P.S.; Wusu-Ansah, O.K.; Terry, R.F.; Khogali, M.; Buabeng, K.O. High Levels of Outpatient Antibiotic Prescription at a District Hospital in Ghana: Results of a Cross Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10286. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.; Joshi, J.; Frost, I. From Policy to Practice. Steering Against Superbugs: The Global Governance of Antimicrobial Resistance; Oxford University Press: Oxford, UK, 2023; p. 159. [Google Scholar]
- Lin, Z.; Yuan, T.; Zhou, L.; Cheng, S.; Qu, X.; Lu, P.; Feng, Q. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ. Geochem. Health 2021, 43, 1741–1758. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Hu, X.; Zhang, Y.; Jiang, W.; Zhang, X. Co/La modified Ti/PbO2 anodes for chloramphenicol degradation: Catalytic performance and reaction mechanism. Chemosphere 2021, 285, 131568. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, Y.; Dong, H.; Li, J.; Zhang, W.; Shao, Y.; Shao, Y. Effects of heavy metals and antibiotics on antibiotic resistance genes and microbial communities in soil. Process Saf. Environ. Prot. 2023, 169, 418–427. [Google Scholar] [CrossRef]
- Feng, D.S.; Wang, H.G.; Zhang, X.S.; Kong, L.R.; Tian, J.C.; Li, X.F. Using an inverse PCR method to clone the wheat cytokinin oxidase/dehydrogenase gene TaCKX1. Plant Mol. Biol. Report. 2008, 26, 143–155. [Google Scholar] [CrossRef]
- Liu, C.; Feng, C.; Duan, Y.; Wang, P.; Peng, C.; Li, Z.; Yu, L.; Liu, M.; Wang, F. Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong province, China. Environ. Pollut. 2023, 319, 120998. [Google Scholar] [CrossRef]
- Khan, R.T.; Rasool, S. Nanotechnology: A new strategy to combat bacterial infections and antibiotic resistant bacteria. In Nanotechnology and Human Health; Elsevier: Amsterdam, The Netherlands, 2023; pp. 167–190. [Google Scholar]
- Brar, B.; Marwaha, S.; Poonia, A.K.; Koul, B.; Kajla, S.; Rajput, V.D. Nanotechnology: A contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch. Microbiol. 2023, 205, 62. [Google Scholar] [CrossRef]
- Karwowska, E. Antibacterial potential of nanocomposite-based materials–a short review. Nanotechnol. Rev. 2017, 6, 243–254. [Google Scholar] [CrossRef]
- Makarenko, N.; Makarenko, V. Nanotechnologies in crop cultivation: Ecotoxicological aspects. Biosyst. Divers. 2019, 27, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C.M.; Zhang, L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 2011, 133, 4132–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, X.; Xiao, Q.; Cheng, Y.; Ren, E.; Lian, L.; Zhang, Y.; Gao, H.; Wang, X.; Leung, W.; Chen, X.; et al. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 2019, 13, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Joo, J.; Kang, J.; Kim, B.; Braun, G.B.; She, Z.G.; Kim, D.; Mann, A.P.; Mölder, T.; Teesalu, T.; et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2018, 2, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Ahmad Nor, Y.; Yu, M.; Yang, Y.; Zhang, J.; Zhang, H.; Xu, C.; Mitter, N.; Yu, C. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462. [Google Scholar] [CrossRef]
- Lakshminarayanan, R.; Ye, E.; Young, D.J.; Li, Z.; Loh, X.J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 2018, 7, 1701400. [Google Scholar] [CrossRef] [Green Version]
- Altun, E.; Aydogdu, M.O.; Chung, E.; Ren, G.; Homer-Vanniasinkam, S.; Edirisinghe, M. Metal-based nanoparticles for combating antibiotic resistance. Appl. Phys. Rev. 2021, 8, 041303. [Google Scholar] [CrossRef]
- Van Vlerken, L.E.; Amiji, M.M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv. 2006, 3, 205–216. [Google Scholar] [CrossRef]
- He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011, 32, 7711–7720. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Shao, Q.; Min, Y.; Costa, M.; Yeow, E.K.; Xing, B. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Adv. Healthc. Mater. 2014, 3, 1230–1239. [Google Scholar] [CrossRef]
- Falanga, A.; Del Genio, V.; Galdiero, S. Peptides and dendrimers: How to combat viral and bacterial infections. Pharmaceutics 2021, 13, 101. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Athinarayanan, J.; Periasamy, V.S.; Adisa, A.R.; Al-Shuniaber, M.A.; Gassem, M.A.; Alshatwi, A.A. Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb. Pathog. 2018, 120, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Robinson, S.M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D.F.; Sahar, A.; Riley, M.A.; Rotello, V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014, 8, 10682–10686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Zhang, B.; Lin, N.; Gao, J.Q. Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilm. Biomater. Sci. 2023, 11, 1648–1664. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wang, L.; Mei, A.; Xu, Y.; Ruan, X.; Wang, W.; Shao, J.; Yang, D.; Dong, X. Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers. Small 2023, 19, 2206220. [Google Scholar] [CrossRef] [PubMed]
- Sasani, M.; Fataei, E.; Safari, R.; Nasehi, F.; Mosayyebi, M. Antimicrobial Pote ntials of Iron Oxide and Silver Nanoparticles Green-Synthesized in Fusarium solani. J. Chem. Health Risks 2021, 13, 95–104. [Google Scholar]
- Tajkarimi, M.; Rhinehardt, K.; Thomas, M.; Ewunkem, J.A.; Campbell, A.; Boyd, S.; Turner, D.; Harrison, S.H.; Graves, J.L. Selection for ionic-confers silver nanoparticle resistance in Escherichia coli. JSM Nanotechnol. Nanomed. 2017, 5, 1047. [Google Scholar]
- Graves, J.L., Jr.; Ewunkem, A.J.; Ward, J.; Staley, C.; Thomas, M.D.; Rhinehardt, K.L.; Han, J.; Harrison, S.H. Experimental evolution of gallium resistance in Escherichia coli. Evol. Med. Public Health 2019, 2019, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ewunkem, A.J.; Rodgers, L.; Campbell, D.; Staley, C.; Subedi, K.; Boyd, S.; Graves, J.L., Jr. Experimental evolution of magnetite nanoparticle resistance in Escherichia coli. Nanomaterials 2021, 11, 790. [Google Scholar] [CrossRef]
- Graves, J.L., Jr. Principles and Applications of Antimicrobial Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Williams, P.D. Darwinian interventions: Taming pathogens through evolutionary ecology. Trends Parasitol. 2010, 26, 83–92. [Google Scholar] [CrossRef]
Nanomaterials | Applications | References |
---|---|---|
Lipid-based nanoparticles | Targeted delivery of antibiotics to combat bacterial resistance | [29] |
Metal-based nanoparticles | Enhancing the efficacy of antimicrobial agents against resistant pathogens | [30] |
Polymeric nanoparticles | Overcoming multidrug resistance in cancer cells through combination therapy | [31] |
Mesoporous silica nanoparticles | Controlled release of antimicrobial agents to overcome resistance in bacteria | [32] |
Quantum dots | Imaging and monitoring drug-resistant cancer cells for personalized medicine | [33] |
Dendrimers | Delivery of gene-silencing agents to combat drug resistance in viral infections | [34] |
Nanoemulsions | Targeted delivery of antimicrobial agents against resistant pathogens | [35] |
Gold nanoparticles | Overcoming multidrug resistance in chemotherapy | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muteeb, G. Nanotechnology—A Light of Hope for Combating Antibiotic Resistance. Microorganisms 2023, 11, 1489. https://doi.org/10.3390/microorganisms11061489
Muteeb G. Nanotechnology—A Light of Hope for Combating Antibiotic Resistance. Microorganisms. 2023; 11(6):1489. https://doi.org/10.3390/microorganisms11061489
Chicago/Turabian StyleMuteeb, Ghazala. 2023. "Nanotechnology—A Light of Hope for Combating Antibiotic Resistance" Microorganisms 11, no. 6: 1489. https://doi.org/10.3390/microorganisms11061489
APA StyleMuteeb, G. (2023). Nanotechnology—A Light of Hope for Combating Antibiotic Resistance. Microorganisms, 11(6), 1489. https://doi.org/10.3390/microorganisms11061489