Localization of C Cycle Enzymes in Arable and Forest Phaeozems within Levels of Soil Microstructure
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Study Site, Soil Sampling, and Basic Properties
2.3. Enzyme Activity (EA) Analyses
2.4. Community-Level Physiological Profiling (CLPP)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Pentoses | Arabinose, ribose, xylose |
Hexoses | Glucose, fructose, rhamnose |
Oligoses | Cellobiose, lactose, maltose, sucrose |
Salts of carboxylic acids | Acetate, aspartate, citrate, succinate, maleinate, pyruvate, octanoate, lactate |
Amino acids | Glycine, proline, leucine, methionine, histidine, alanine, asparagine, valine, serine, phenylalanine, glutamine, arginine, lysine |
Alcohols | Dulcitol, glycerol, inositol, sorbitol, mannitol |
Polymers | Soluble starch, corn starch, Dextran 500, Tween 20, Tween 80, gelatin, pullulan |
Miscellaneous (amides, amines phosphorylated carbons) | Creatinine, carbamide, β-glycerophosphate, glucosamine sulfate |
Enzymes Tested | Associated with Soil Solids < 20 µm | Sum of Activities, Determined in Supernatants | ||
---|---|---|---|---|
Forest | Arable | Forest | Arable | |
β-glucosidase | 7.63 ± 0.54 Ab | 15.74 ± 0.55 Bb | 130.07 ± 36.48 Aa | 69.87 ± 19.01 Ba |
Cellobiohydrolase | 3.52 ± 0.22 Bb | 14.58 ± 1.39 Aa | 18.46 ± 2.21 Aa | 3.51 ± 0.95 Bb |
Chitinase | 4.39 ± 0.42 Ba | 14.66 ± 0.33 Ab | 98.74 ± 88.11 Aa | 29.83 ± 8.82 Aa |
Xylanase | 4.71 ± 0.57 Bb | 15.27 ± 0.28 Aa | 18.92 ± 10.63 Aa | 0.91 ± 1.26 Bb |
References
- Young, I.M.; Crawford, J.W. Interactions and self-organization in the soil-microbe complex. Science 2004, 304, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Nunan, N.; Leloup, J.; Ruamps, L.S.; Pouteau, V.; Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 2007, 7, 4280. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Yudina, A.; Kuzyakov, Y. Dual nature of soil structure: The unity of aggregates and pores. Geoderma 2023, 434, 116478. [Google Scholar] [CrossRef]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amézaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Nannipieri, P. Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In Nucleic Acids and Proteins in Soil; Nannipieri, P., Smalla, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–94. [Google Scholar]
- Nunan, N.; Schmidt, H.; Raynaud, X. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos. Trans. R. Soc. B 2020, 375, 20190249. [Google Scholar] [CrossRef]
- Allison, S.D.; Weintraub, M.N.; Gartner, T.B.; Waldrop, M.P. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 229–243. [Google Scholar]
- McCarthy, J.F.; Ilavsky, J.; Jastrow, J.D.; Mayer, L.M.; Perfect, E.; Zhuang, J. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochim. Cosmochim. Acta 2008, 72, 4725–4744. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Yudina, A.V.; Fomin, D.S.; Kotelnikova, A.D.; Milanovskii, E.Y. From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: A review. Eurasian Soil Sci. 2018, 51, 1326–1347. [Google Scholar] [CrossRef]
- Powlson, D.S. The effects of grinding on microbial and non-microbial organic matter in soil. J. Soil Sci. 1980, 31, 77–85. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Dungait, J.A.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Guber, A.K. Soil pores and their contributions to soil carbon processes. Geoderma 2017, 287, 31–39. [Google Scholar] [CrossRef]
- Schimel, J.P.; Weintraub, M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biol. Biochem. 2003, 35, 549–563. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Goodall, T.; Allison, S.D.; Griffiths, R.I. Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biol. Biochem. 2019, 132, 36–39. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils. 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Khaziev, F.K. Methods of Soil Enzymology; Nauka: Moscow, Russia, 2005; 252p. [Google Scholar]
- Perez Mateos, M.; Gonzalez Carcedo, S. Effect of fractionation on location of enzyme activities in soil structural units. Biol. Fertil. Soils 1985, 1, 153–159. [Google Scholar] [CrossRef]
- Stemmer, M.; Gerzabek, M.H.; Kandeler, E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol. Biochem. 1998, 30, 9–17. [Google Scholar] [CrossRef]
- Stemmer, M.; Gerzabek, M.H.; Kandeler, E. Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol. Biochem. 1998, 31, 9–18. [Google Scholar] [CrossRef]
- Kandeler, E.; Stemmer, M.; Klimanek, E.M. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol. Biochem. 1999, 31, 261–273. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Sun, J.; Wang, X.; He, P. Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl. Soil Ecol. 2015, 94, 59–71. [Google Scholar] [CrossRef]
- Le Roux, X.; Bouskill, N.J.; Niboyet, A.; Barthes, L.; Dijkstra, P.; Field, C.B.; Hungate, B.A.; Lerondelle, C.; Pommier, T.; Tang, J.; et al. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: A trait-based approach. Front. Microbiol. 2016, 7, 628. [Google Scholar] [CrossRef] [PubMed]
- Ingwersen, J.; Poll, C.; Streck, T.; Kandeler, E. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol. Biochem. 2008, 40, 864–878. [Google Scholar] [CrossRef]
- Schweizer, S.A. Perspectives from the Fritz-Scheffer Awardee 2021: Soil organic matter storage and functions determined by patchy and piled-up arrangements at the microscale. J. Plant Nutr. Soil Sci. 2022, 185, 694–706. [Google Scholar] [CrossRef]
- Shoba, S.A.; Dobrovolsky, G.V.; Alyabina, I.O. National Atlas of Soils of the Russian Federation; Astrel: Moscow, Russia, 2006; pp. 130–131. [Google Scholar]
- Yudina, A.V.; Milanovskiy, Y.Y. The microaggregate analysis of soils by the method of laser diffraction: The specificities of sample preparation and result interpretation. Dokuchaev Soil Bull. 2017, 89, 3–20. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Rumpel, C.; Kögel-Knabner, I. Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. Eur. J. Soil Sci. 1999, 50, 87–94. [Google Scholar] [CrossRef]
- Amelung, W.; Zech, W. Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 1999, 92, 73–85. [Google Scholar] [CrossRef]
- Graf-Rosenfellner, M.; Kayser, G.; Guggenberger, G.; Kaiser, K.; Büks, F.; Kaiser, M.; Mueller, C.W.; Schrumpf, M.; Rennert, T.; Welp, G.; et al. Replicability of aggregate disruption by sonication—An inter-laboratory test using three different soils from Germany. J. Plant Nutr. Soil Sci. 2018, 181, 894–904. [Google Scholar] [CrossRef]
- Fomin, D.; Timofeeva, M.; Ovchinnikova, O.; Valdes-Korovkin, I.; Holub, A.; Yudina, A. Energy-based indicators of soil structure by automatic dry sieving. Soil Tillage Res. 2021, 214, 105183. [Google Scholar] [CrossRef]
- Zhelezova, A.D.; Kutovaya, O.V.; Dmitrenko, V.N.; Tkhakhahova, A.K.; Khohlov, S.F. Estimation of DNA quantity in different groups of microorganisms within genetic horizons of the dark-gray soil. Dokuchaev Soil Bull. 2015, 78, 87–98. [Google Scholar] [CrossRef]
- Artemyeva, Z.S.; Kogut, B.M. The effect of tillage on organic carbon stabilization in microaggregates in different climatic zones of European Russia. Agriculture 2016, 6, 63. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service; U.S. Department of Agriculture Handbook; United States Deptartment of Agriculture, Naturel Resources Conservation Service: Portland, OR, USA, 1999.
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—A case study on loamy haplic Luvisol. Front. Microbiol. 2015, 6, 1126. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.; Dzantor, E.K.; Momen, B. Soil microbial community profiles and functional diversity in limestone cedar glades. Catena 2016, 147, 216–224. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Zheng, J.; Liu, J.; Liu, S.; Lin, W.; Wu, C. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations. Sci. Rep. 2017, 7, 6691. [Google Scholar] [CrossRef]
- Vorobyova, E.; Soina, V.; Gorlenko, M.; Minkovskaya, N.; Zalinova, N.; Mamukelashvili, A.; Gilichinsky, D.; Rivkina, E.; Vishnivetskaya, T. The deep cold biosphere: Facts and hypothesis. FEMS Microbiol. Rev. 1997, 20, 277–290. [Google Scholar] [CrossRef]
- Cheptsov, V.S.; Vorobyova, E.A.; Manucharova, N.A.; Gorlenko, M.V.; Pavlov, A.K.; Vdovina, M.A.; Lomasov, V.N.; Bulat, S.A. 100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions. Extremophiles 2017, 21, 1057–1067. [Google Scholar] [CrossRef]
- Christensen, B.T. Carbon and nitrogen in particle size fractions isolated from Danish arable soils by ultrasonic dispersion and gravity-sedimentation. Acta Agric. Scand. 1985, 35, 175–187. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Voroney, R.P.; Kachanoski, R.G. Ultrasonic dispersion of aggregates: Distribution of organic matter in size fractions. Can. J. Soil Sci. 1988, 68, 395–403. [Google Scholar]
- Neumann, D.; Heuer, A.; Hemkemeyer, M.; Martens, R.; Tebbe, C.C. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol. Ecol. 2013, 86, 71–84. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Christensen, B.T.; Martens, R.; Tebbe, C.C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 2015, 90, 255–265. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Dohrmann, A.B.; Christensen, B.T.; Tebbe, C.C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. 2018, 9, 149. [Google Scholar] [CrossRef]
- Kandeler, E.; Tscherko, D.; Bruce, K.D.; Stemmer, M.; Hobbs, P.J.; Bardgett, R.D.; Amelung, W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 2000, 32, 390–400. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Haberhauer, G.; Kandeler, E.; Sessitsch, A.; Kirchmann, H. Response of organic matter pools and enzyme activities in particle size fractions to organic amendments in a long-term field experiment. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2002; Volume 28, pp. 329–344. [Google Scholar]
- Semenov, V.M.; Lebedeva, T.N.; Pautova, N.B. Particulate organic matter in noncultivated and arable soils. Eurasian Soil Sci. 2019, 52, 396–404. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Quality. Soil Biol. Biochem. 2008, 40, 2146–2155. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
Enzymes Tested | Forest | Arable |
---|---|---|
β-glucosidase | 137.70 ± 36.57 a | 85.61 ± 18.80 b |
Cellobiohydrolase | 21.97 ± 2.17 a | 18.09 ± 1.99 b |
Chitinase | 103.13 ± 88.49 a | 44.49 ± 8.88 a |
Xylanase | 23.62 ± 10.85 a | 16.18 ± 1.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudina, A.; Ovchinnikova, O.; Cheptsov, V.; Fomin, D. Localization of C Cycle Enzymes in Arable and Forest Phaeozems within Levels of Soil Microstructure. Microorganisms 2023, 11, 1343. https://doi.org/10.3390/microorganisms11051343
Yudina A, Ovchinnikova O, Cheptsov V, Fomin D. Localization of C Cycle Enzymes in Arable and Forest Phaeozems within Levels of Soil Microstructure. Microorganisms. 2023; 11(5):1343. https://doi.org/10.3390/microorganisms11051343
Chicago/Turabian StyleYudina, Anna, Olga Ovchinnikova, Vladimir Cheptsov, and Dmitry Fomin. 2023. "Localization of C Cycle Enzymes in Arable and Forest Phaeozems within Levels of Soil Microstructure" Microorganisms 11, no. 5: 1343. https://doi.org/10.3390/microorganisms11051343
APA StyleYudina, A., Ovchinnikova, O., Cheptsov, V., & Fomin, D. (2023). Localization of C Cycle Enzymes in Arable and Forest Phaeozems within Levels of Soil Microstructure. Microorganisms, 11(5), 1343. https://doi.org/10.3390/microorganisms11051343