Age, Sex and BMI Relations with Anti-SARS-CoV-2-Spike IgG Antibodies after BNT162b2 COVID-19 Vaccine in Health Care Workers in Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- D1 (Dose 1): the day of the administration of the BNT162b2 dose 1 (5 January 2021 to 5 February 2021).
- D2 (Dose 2): the day of the administration of the BNT162b2 dose 2 (3 weeks after D1, 26 January 2021 to 26 February 2021).
- M1 (Measurement 1): the day of the 1st blood sample collection (2–4 weeks after D2, 9 February 2021 to 9 March 2021).
- M2 (Measurement 2): the day of the 2nd blood sample collection (6 months after M1, 9 August 2021 to 31 August 2021).
2.2. Specimen Collection and Biobanking
2.3. Quantitative Analysis of Anti-Trimeric Spike IgG Antibodies
2.4. Statistical Analysis
3. Results
3.1. Study 1 (S1)
3.1.1. IgG Values
- 290 health care workers that received the second dose of the COVID-19 vaccine and met the established criteria of non-previous or current COVID-19 disease participated in the study. A total of 86 of them (30%) were male and 204 (70%) were female. The mean age of participants was 50.0 ± 9.84 years; the mean age of men was 52.0 ± 11.0 years, and the mean age of women was 49.5 ± 9.26 years. This difference was marginally insignificant. The mean Body Mass Index (BMI) of participants was 26.05 ± 4.84; the mean BMI of men was 29.34 ± 4.46, and the mean BMI of women was 25.4 ± 4.69. The difference in BMI between men and women was statistically significant (p < 0.0001).
3.1.2. Relation of Sex and Age to IgG Values
3.1.3. Relation of BMI to IgG Values
3.2. Study 2 (S2)
3.2.1. IgG Values
3.2.2. Difference in IgG Values According to Age and Sex
3.2.3. IgG Values According to BMI
3.3. Multivariate Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 82, 1708–1720. [Google Scholar] [CrossRef]
- Faure, E.; Kipnis, E.; Bortolotti, P.; Salik, J. Clinical characteristics of COVID-19 in New York City. N. Engl. J. Med. 2020, 29, 2016–2017. [Google Scholar]
- Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Hussain, A.; Misra, A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur. J. Clin. Nutr. 2020, 74, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, M.; Norouzi, S.; Ruggiero, A.; Khan, M.S.; Myers, S.; Kavanagh, K.; Vemuri, R. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms 2021, 9, 1211. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 2019, 2019–2020. [Google Scholar] [CrossRef]
- Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020, 93, 339–344. [Google Scholar] [CrossRef]
- Bwire, G.M. Coronavirus: Why Men are More Vulnerable to COVID-19 Than Women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef]
- Ghazeeri, G.; Abdullah, L.; Abbas, O. Immunological differences in women compared with men: Overview and contributing factors. Am. J. Reprod. Immunol. 2011, 66, 163–169. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Narishman, M.; Mahimainathan, L.; Araj, E.; Clark, A.E.; Markantonis, J.; Green, A.; Xy, J.; SoRelle, J.A.; Alexis, C.; Fankhauser, K.; et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 spike-specific quantitative IgG and IgM assays in infected, recovered, and vaccinated groups. J. Clin. Microbiol. 2021, 59, e0038821. [Google Scholar]
- Grupel, D.; Gazit, S.; Schreiber, L.; Nadler, V.; Wolf, T.; Lazar, R.; Supino-Rosin, L.; Perez, G.; Peretz, A.; Tov, A.B.; et al. Kinetics of SARS-CoV-2 anti-S IgG after BNT162b2 vaccination. Vaccine 2021, 39, 5337–5340. [Google Scholar] [CrossRef] [PubMed]
- Van Enslande, J.; Gruwier, L.; Godderis, L.; Vermeersch, P. Estimated half-life of SARS-CoV-2 anti-spike antibodies more than double the half-life of anti-nucleocapsid antibodies in healthcare workers. Clin. Infect. Dis. 2021, 73, 2366–2368. [Google Scholar] [CrossRef] [PubMed]
- English, E.; Cook, L.E.; Piec, I.; Dervisevic, S.; Fraser, W.D.; John, W.G. Performance of the Abbott SARS-CoV-2 IgG II Quantitative Antibody Assay Including the New Variants of Concern, VOC 202012/V1 (United Kingdom) and VOC 202012/V2 (South Africa), and First Steps towards Global Harmonization of COVID-19 Antibody Methods. J. Clin. Microbiol. 2021, 59, e0028821. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://covid19.gov.gr/nomothesia-gia-ton-covid-19 (accessed on 21 April 2023).
- Available online: https://kavala.gov.gr/kavala-simera/anakoinwseis/Deltia-Tipou/2020/eody-odigies-gia-xenodoxeio-se-karantina (accessed on 21 April 2023).
- Giugliano, F. Greece Shows How to Handle the Crisis. Bloomberg (10 April 2020). Available online: https://www.bloomberg.com/opinion/articles/2020-04-10/greece-handled-coronavirus-crisis-better-than-italy-and-spain?leadSource=uverify%20wall (accessed on 21 April 2023).
- Tsalidou, M.; Bostanitis, I.; Samaras, K.; Skoumpa, K.; Gara, S.; Varsou, E.; Goutsiou, R.; Bostanitis, C.; Papaioannidou, P. Evaluation of Vaccination Effectiveness Against SARS-CoV-2 in Healthcare Professionals. EMJ Microbiol. Infect. Dis. 2021, 2, 31–33. [Google Scholar]
- Tychala, A.; Sidiropoulou, E.; Dionysopoulou, S.; Gkeka, I.; Meletis, G.; Athanasiadis, A.; Boura-Theodorou, A.; Chantzi, C.; Koutri, M.; Makedou, K.; et al. Antibody response after two doses of the BNT162b2 vaccine among healthcare workers of a Greek COVID 19 referral hospital: A prospective cohort study. Heliyon 2022, 8, e09438. [Google Scholar] [CrossRef]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The effectiveness of the two-dose BNT162b2 vaccine: Analysis of real-world data. Clin. Infect. Dis. 2022, 74, 472–478. [Google Scholar] [CrossRef]
- Danese, E.; Montagnana, M.; Salvagno, G.L.; Peserico, D.; Pighi, L.; de Nitto, S.; Henry, B.M.; Porru, S.; Lippi, G. Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA COVID-19 vaccination: A three-case series. Clin. Chem. Lab. Med. (CCLM) 2021, 59, 1585–1591. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.M.; Vormehr, M.; Quandt, J.; Bidmon, N.; Ulges, A.; Baum, A.; et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. Nature 2021, 595, 572–577. [Google Scholar] [CrossRef]
- Ciabattini, A.; Pastore, G.; Fiorino, F.; Polvere, J.; Lucchesi, S.; Pettini, E.; Auddino, S.; Rancan, I.; Durante, M.; Miscia, M.; et al. Evidence of SARS-Cov-2-specific memory B cells six months after vaccination with BNT162b2 mRNA vaccine. Front. Immunol. 2021, 12, 740708. [Google Scholar] [CrossRef]
- Schiuma, G.; Beltrami, S.; Bortolotti, D.; Rizzo, S.; Rizzo, R. Innate Immune Response in SARS-CoV-2 Infection. Microorganisms. 2022, 10, 501. [Google Scholar] [CrossRef]
- Visalli, G.; Laganà, A.; Lo Giudice, D.; Calimeri, S.; Caccamo, D.; Trainito, A.; Di Pietro, A.; Facciolà, A. Towards a Future of Personalized Vaccinology: Study on Individual Variables Influencing the Antibody Response to the COVID-19 Vaccine. Vaccines 2023, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Anastassopoulou, C.; Antoni, D.; Manoussopoulos, Y.; Stefanou, P.; Argyropoulou, S.; Vrioni, G.; Tsakris, A. Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLoS ONE 2022, 17, e0266958. [Google Scholar] [CrossRef]
- Parthymou, A.; Habeos, E.E.; Habeos, G.I.; Deligakis, A.; Livieratos, E.; Marangos, M.; Chartoumpekis, D.V. Factors associated with anti-SARS-CoV-2 antibody titres 3 months post-vaccination with the second dose of BNT162b2 vaccine: A longitudinal observational cohort study in western Greece. BMJ Open 2022, 12, e057084. [Google Scholar] [CrossRef] [PubMed]
- Renna, L.V.; Bertani, F.; Podio, A.; Boveri, S.; Carrara, M.; Pinton, A.; Milani, V.; Spuria, G.; Nizza, A.F.; Basilico, S.; et al. Impact of BNT162b2 Booster Dose on SARS-CoV-2 Anti-Trimeric Spike Antibody Dynamics in a Large Cohort of Italian Health Care Workers. Vaccines 2023, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Vassilaki, N.; Gargalionis, A.N.; Bletsa, A.; Papamichalopoulos, N.; Kontou, E.; Gkika, M.; Patas, K.; Theodoridis, D.; Manolis, I.; Ioannidis, A.; et al. Impact of Age and Sex on Antibody Response Following the Second Dose of COVID-19 BNT162b2 mRNA Vaccine in Greek Healthcare Workers. Microorganisms 2021, 9, 1725. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Henry, B.M.; di Piazza, G.; Pighi, L.; De Nitto, S.; Bragantini, D.; Gianfilippi, G.L.; Lippi, G. Anti-SARS-CoV-2 Receptor-Binding Domain Total Antibodies Response in Seropositive and Seronegative Healthcare Workers Undergoing COVID-19 mRNA BNT162b2 Vaccination. Diagnostics 2021, 11, 832. [Google Scholar] [CrossRef]
- Cangemi, R.; Di Franco, M.; Angeloni, A.; Zicari, A.; Cardinale, V.; Visentini, M.; Antonelli, G.; Napoli, A.; Anastasi, E.; Romiti, G.F.; et al. Serological Response and Relationship with Gender-Sensitive Variables among Healthcare Workers after SARS-CoV-2 Vaccination. J. Pers. Med. 2022, 12, 994. [Google Scholar] [CrossRef]
- Jin, J.M.; Bai, P.; He, W. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef]
- Israel, A.; Shenhar, Y.; Green, I.; Merzon, E.; Golan-Cohen, A.; Schäffer, A.A.; Ruppin, E.; Vinker, S.; Magen, E. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. Vaccines 2022, 10, 64. [Google Scholar] [CrossRef]
- Canaday, D.H.; Oyebanji, O.A.; Keresztesy, D.; Payne, M.; Wilk, D.; Carias, L.; Aung, H.; St. Denis, K.; Lam, E.C.; Rowley, C.F.; et al. Significant reduction in humoral immunity among healthcare workers and nursing home residents 6 months after COVID-19 BNT162b2 mRNA vaccination. Clin. Infect Dis. 2022, 75, e884–e887. [Google Scholar] [CrossRef] [PubMed]
Total Sample | Men | Women | p (Men-Women) | |
---|---|---|---|---|
Participants | 290 | 86 (30%) | 204 (70%) | |
Mean age (±SD) (min–max) | 50.0 (±9.84) (25–68) | 52.0 (±11.0) (25–68) | 49.5 (±9.26) (26–66) | 0.05 |
Mean SARS-CoV2 IgG value (±SE) (min–max) | 12,741 ± 597 (min 852.5; max = 40,000) | 10,203 ± 1010 (min 1052; max = 40,000) | 13,759 ± 725 (min 852.5; max = 40,000) | 0.007 |
Mean BMI (±SD) (min–max) | 26.05 (±4.84) (18.0–42.1) | 29.34 (±4.46) (18.9–42.1) | 25.4 (±4.69) (18.0–41.0) | <0.0001 |
Total Sample | Men | Women | p (Men-Women) | |
---|---|---|---|---|
Participants | 180 | 61 (34%) | 119 (66%) | |
Mean age (±SD) (min–max) | 51.5 (±8.0) (26–67) | 52.4 (±9.1) (28–67) | 50.0 (±7.3) (26–66) | 0.035 |
Mean SARS-CoV2 IgG value (±SE) (min–max) | 564 ± 57.8 (min 27; max = 8034) | 502 ± 74.0 (min 27; max = 4335) | 596 ± 78.7 (min 40; max = 8034) | 0.256 |
Mean BMI (±SD) (min–max) | 26.6 (±5.0) (18.0–42.1) | 29.6 (±4.66) (18.4–42.1) | 25.5 (±4.86) (18.0–40.4) | 0.000 |
β Value | Standard Error of β Value | p Level | |
---|---|---|---|
Sex | 0.141 | 1400 | 0.026 |
Age | −0.275 | 65.6 | 0.000 |
BMI | 0.062 | 139 | 0.352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaioannidou, P.; Skoumpa, K.; Bostanitis, C.; Michailidou, M.; Stergiopoulou, T.; Bostanitis, I.; Tsalidou, M. Age, Sex and BMI Relations with Anti-SARS-CoV-2-Spike IgG Antibodies after BNT162b2 COVID-19 Vaccine in Health Care Workers in Northern Greece. Microorganisms 2023, 11, 1279. https://doi.org/10.3390/microorganisms11051279
Papaioannidou P, Skoumpa K, Bostanitis C, Michailidou M, Stergiopoulou T, Bostanitis I, Tsalidou M. Age, Sex and BMI Relations with Anti-SARS-CoV-2-Spike IgG Antibodies after BNT162b2 COVID-19 Vaccine in Health Care Workers in Northern Greece. Microorganisms. 2023; 11(5):1279. https://doi.org/10.3390/microorganisms11051279
Chicago/Turabian StylePapaioannidou, Paraskevi, Kalypso Skoumpa, Christos Bostanitis, Maria Michailidou, Theodouli Stergiopoulou, Ioannis Bostanitis, and Maria Tsalidou. 2023. "Age, Sex and BMI Relations with Anti-SARS-CoV-2-Spike IgG Antibodies after BNT162b2 COVID-19 Vaccine in Health Care Workers in Northern Greece" Microorganisms 11, no. 5: 1279. https://doi.org/10.3390/microorganisms11051279
APA StylePapaioannidou, P., Skoumpa, K., Bostanitis, C., Michailidou, M., Stergiopoulou, T., Bostanitis, I., & Tsalidou, M. (2023). Age, Sex and BMI Relations with Anti-SARS-CoV-2-Spike IgG Antibodies after BNT162b2 COVID-19 Vaccine in Health Care Workers in Northern Greece. Microorganisms, 11(5), 1279. https://doi.org/10.3390/microorganisms11051279