Haplosporidium pinnae Parasite Detection in Seawater Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Characterization of the H. pinnae Ribosomal Unit
Primer Name | 5′–3′ | TM °C | Reference |
---|---|---|---|
Forward | |||
HPNF1 | AGCTTGACGGTAGGATATGGG | 61 | Catanese et al., 2018 [1] |
18EUK581 | GTGCCAGCAGCCGCG | 57 | Carnegie et al., 2003 [46] |
HpF3 | GCGGGCTTAGTTCAGGGG | 61 | López-Sanmartín et al., 2019 [27] |
HapF1 | GTTCTTTCWTGATTCTATGMA | 53 | Renault et al., 2017 [47] |
HPNF3 | CATTAGCATGGAATAATAAAACACGAC | 62 | Catanese et al., 2018 [1] |
HPN18SF | CGCCTAGAAGCTCTGTGAACCTT | 65 | This study |
HPNITSF | ACTGCGATAAGACTTGCGAACCGTCATTGTG | 72 | This study |
LSU5 | AGGTCGACCCGCTGAAYTTAAGCA | 66 | Olson et al., 2003 [48] |
HPNITSsec2F | TCTTGAAACACGGACCAAGGAGTCT | 66 | This study |
HPNITSsec1F | CACTTGGCAGTTTGATCCCGTAAAGC | 68 | This study |
HPN28SF | TCTTAAGGTAGCCAAATGCCTCGTCA | 66 | This study |
HPNIGSsec1 | CCGTCGTGAGACAGGTTAGTTTTACCC | 70 | This study |
Reverse | |||
HPNIGSR | CTCAGTTCTGCCTACTTCGGTCGT | 67 | This study |
HPN18SR | GCTGCTAACCGTTATTTCTTGTCACTACCTC | 71 | This study |
HpR3 | AAAACCAACAAAGGCCCGAA | 61 | López-Sanmartín et al., 2019 [27] |
18EUK1134 | TTTAAGTTTCAGCCTTGCG | 53 | Carnegie et al., 2003 [46] |
HPNR3 | GCGACGGCTATTTAGATGGCTGA | 65 | Catanese et al., 2018 [1] |
HapR2 | GATGAAYAATTGCAATCAYCT | 54 | Renault et al., 2017 [47] |
DiplostR4 | TATGCTTAAATTCAGCGGGT | 54 | Galazzo et al., 2002 [49] |
HPNITS2R | TACCACCTGCTTCATGCTACAATGTCGT | 69 | This study |
1500R | GCTATCCTGAGGGAAACTTCG | 61 | Olson et al., 2003 [48] |
HPN28ITSR | CCACGCCCGGCTGTCTCTATAAACTGA | 71 | This study |
2.3. Filtered Water Analyses
2.4. Ethical Approval
3. Results
3.1. Characterization of the Nuclear Ribosomal DNA Unit
3.2. H. pinnae Detection from Water Samples
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catanese, G.; Grau, A.; Valencia, J.M.; Garcia-March, J.R.; Vázquez-Luis, M.; Alvarez, E.; Deudero, S.; Darriba, S.; Carballal, M.J.; Villalba, A. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel. Pinna nobilis in the Western Mediterranean Sea. J. Invertebr. Pathol. 2018, 157, 9–24. [Google Scholar] [CrossRef]
- Ford, S.E.; Tripp, M.R. Disease and defense mechanisms. In The Eastern Oyster Crassostrea Virginica; Kennedy, V.S., Newell, R.I.E., Eble, A.F., Eds.; College Park: Orlando, FL, USA, 1996; pp. 581–660. [Google Scholar]
- Engelsma, M.; Culloty, S.; Lynch, S.; Arzul, I.; Carnegie, R. Bonamia parasites: A rapidly changing perspective on a genus of important mollusc pathogens. Dis. Aquat. Org. 2014, 110, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Darriba, S. First haplosporidan parasite reported infecting a member of the Superfamily Pinnoidea (Pinna nobilis) during a mortality event in Alicante (Spain, Western Mediterranean). J. Invertebr. Pathol. 2017, 148, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Luis, M.; Álvarez, E.; Barrajón, A.; García-March, J.R.; Grau, A.; Hendriks, I.E.; Jiménez, S.; Kersting, D.; Moreno, D.; Pérez, M.; et al. S.O.S. Pinna nobilis: A mass mortality event in Western Mediterranean Sea. Front. Mar. Sci. 2017, 4, 220. [Google Scholar] [CrossRef]
- Carella, F.; Aceto, S.; Pollaro, F.; Miccio, A.; Iaria, C.; Carrasco, N.; Prado, P.; De Vico, G. A mycobacterial disease is associated with the silent mass mortality of the pen shell Pinna nobilis along the Tyrrhenian coastline of Italy. Sci. Rep. 2019, 9, 2725. [Google Scholar] [CrossRef] [PubMed]
- Panarese, R.; Tedesco, P.; Chimienti, G.; Latrofa, M.S.; Quaglio, F.; Passantino, G.; Buonavoglia, C.; Gustinelli, A.; Tursi, A.; Otranto, D. Haplosporidium pinnae, associated with mass mortality in endangered Pinna nobilis (Linnaeus 1758) fan mussels. J. Invertebr. Pathol. 2019, 164, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Katsanevakis, S.; Tsirintanis, K.; Tsaparis, D.; Doukas, D.; Sini, M.; Athanassopoulou, F.; Kolygas, M.N.; Tontis, D.; Koutsoubas, D.; Bakopoulos, V. The cryptogenic parasite Haplosporidium pinnae invades the Aegean Sea and causes the collapse of Pinna nobilis populations. Aquat. Invasions 2019, 14, 150–164. [Google Scholar] [CrossRef]
- Betti, F.; Venturini, S.; Merotto, L.; Cappanera, V.; Ferrando, S.; Aicardi, S.; Mandich, A.; Castellano, M.; Povero, P. Population trends of the fan mussel Pinna nobilis from Portofino MPA (Ligurian Sea, Western Mediterranean Sea) before and after a mass mortality event and a catastrophic storm. Eur. Zool. J. 2021, 88, 18–25. [Google Scholar] [CrossRef]
- Kersting, D.; Benabdi, M.; Čižmek, H.; Grau, A.; Jimenez, C.; Katsanevakis, S.; Öztürk, B.; Tuncer, S.; Tunesi, L.; Vázquez-Luis, M.; et al. Pinna nobilis. In The IUCN Red List of Threatened Species; IUCN Global Species Programme Red List Unit: Cambridge, UK, 2019. [Google Scholar]
- Čižmek, H.; Čolić, B.; Gračan, R.; Grau, A.; Catanese, G. An emergency situation for pen shells in the Mediterranean: The Adriatic Sea, one of the last Pinna nobilis shelters is now affected by the Mass Mortality Event. J. Invertebr. Pathol. 2020, 173, 107388. [Google Scholar] [CrossRef]
- Šaric, T.; Župan, I.; Aceto, S.; Villari, G.; Pali´c, D.; De Vico, G.; Carella, F. Epidemiology of Noble Pen Shell (Pinna nobilis L. 1758). Mass Mortality Events in Adriatic Sea is characterised with rapid spreading and acute disease progression. Pathogens 2020, 9, 776. [Google Scholar] [CrossRef]
- Carella, F.; Antuofermo, E.; Farina, S.; Salati, F.; Mandas, D.; Prado, P.; Panarese, R.; Marino, F.; Fiocchi, E.; Pretto, T.; et al. In the wake of the ongoing Mass Mortality Events: Co-occurrence of Mycobacterium, Haplosporidium and other pathogens in Pinna nobilis collected in Italy and Spain (Mediterranean Sea). Front. Mar. Sci. 2020, 7, 48. [Google Scholar] [CrossRef]
- Lattos, A.; Giantsis, I.A.; Karagiannis, D.; Michaelidis, B. First detection of the invasive Haplosporidian and Mycobacteria parasites hosting the endangered bivalve Pinna nobilis in Thermaikos Gulf, North Greece. Mar. Env. Res. 2020, 155, 104889. [Google Scholar] [CrossRef] [PubMed]
- Prado, P.; Carrasco, N.; Catanese, G.; Grau, A.; Cabanes, P.; Carella, F.; García-March, J.R.; Tena, J.; Roque, A.; Bertomeu, E.; et al. Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L. Aquaculture 2020, 519, 734899. [Google Scholar] [CrossRef]
- Scarpa, F.; Sanna, D.; Azzena, I.; Mugetti, D.; Cerruti, F.; Hosseini, S.; Cossu, P.; Pinna, S.; Grech, D.; Cabana, D.; et al. Multiple non-species-specific pathogens possibly triggered the Mass Mortality in Pinna nobilis. Life 2020, 10, 238. [Google Scholar] [CrossRef]
- Box, A.; Capó, X.; Tejada, S.; Catanese, G.; Grau, A.; Deudero, S.; Sureda, A.; Valencia, J.M. Antioxidant response of the fan mussel Pinna nobilis affected by Haplosporidium pinnae. Pathogens 2020, 9, 932. [Google Scholar] [CrossRef]
- Grau, A.; Villalba, A.; Navas, J.I.; Hansjosten, B.; Valencia, J.M.; García-March, J.R.; Prado, P.; Follana-Berná, G.; Morage, T.; Vázquez-Luis, M.; et al. Wide-geographic and long-term analysis of the role of pathogens in the decline of Pinna nobilis to critically endangered species. Front. Mar. Sci. 2022, 9, 666640. [Google Scholar] [CrossRef]
- Tiscar, P.G.; Rubino, F.; Paoletti, B.; Di Francesco, C.E.; Mosca, F.; Della Salda, L.; Hattab, J.; Smoglica, C.; Morelli, S.; Fanelli, G. New insights about Haplosporidium pinnae and the pen shell Pinna nobilis mass mortality events. J. Invertebr. Pathol. 2022, 190, 107735. [Google Scholar] [CrossRef]
- Trigos, S.; García-March, J.; Vicente, N.; Tena, J.; Torres, J. Utilization of muddy detritus as organic matter source by the fan mussel Pinna nobilis. Mediterr. Mar. Sci. 2014, 15, 667–674. [Google Scholar] [CrossRef]
- Basso, L.; Vázquez-Luis, M.; García-March, J.R.; Deudero, S.; Alvarez, E.; Vicente, N.; Duarte, C.M.; Hendriks, I.E. The pen shell, Pinna nobilis: A review of population status and recommended research priorities in the Mediterranean Sea. Adv. Mar. Biol. 2015, 71, 109–160. [Google Scholar] [CrossRef]
- Cosentino, A.; Giacobbe, S. Aspects of epizoobiontic mollusc assemblages on Pinna shells. II. Does the Mediterranean P. nobilis represent an isle of biodiversity? Cah. Biol. Mar. 2008, 49, 161–172. [Google Scholar]
- Rabaoui, L.; Tlig-Zouari, S.; Cosentino, A.; Hassine, O.K.B. Associated fauna of the fan shell Pinna nobilis (Mollusca: Bivalvia) in the northern and eastern Tunisian coasts. Sci. Mar. 2009, 73, 129–141. [Google Scholar] [CrossRef]
- Alomar, C.; Vázquez-Luis, M.; Magraner, K.; Lozano, L.; Deudero, S. Evaluating stable isotopic signals at bivalve Pinna nobilis under different human pressures. J. Exp. Mar. Biol. Ecol. 2015, 467, 77–86. [Google Scholar] [CrossRef]
- Prado, P.; Cabanes, P.; Hernandis, S.; García-March, J.R.; Tena, J. Stable isotope analyses reveal major nutritional deficiencies in captive vs. field juvenile individuals of Pinna nobilis. Mar. Environ. Res. 2021, 168, 105304. [Google Scholar] [CrossRef] [PubMed]
- Kinne, O. Diseases of Marine Animals. Volume II. In Introduction, Bivalvia to Scaphopoda; Biologische Anstalt Helgoland: Hamburg, Germany, 1983; p. 571. ISBN 3-9800818-X. [Google Scholar]
- López-Sanmartín, M.; Catanese, G.; Grau, A.; Valencia, J.M.; Garcıía-March, J.R.; Navas, J.I. Real-Time PCR based test for the early diagnosis of Haplosporidium pinnae affecting fan mussel Pinna nobilis. PLoS ONE 2019, 14, e0212028. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Taylor, J.W. Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol. Biol. Evol. 1992, 9, 636–653. [Google Scholar]
- Schlotterer, C.; Hauser, M.T.; von Haeseler, A.; Tautz, D. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol. 1994, 11, 513–522. [Google Scholar]
- Odorico, D.M.; Miller, D.J. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. Mol. Biol. Evol. 1997, 14, 465–473. [Google Scholar] [CrossRef]
- Gonzalez, I.L.; Chambers, C.; Gorski, J.L.; Stambolian, D.; Schmickel, R.D.; Sylvester, J.E. Sequence and structure correlation of human ribosomal transcribed spacers. J. Mol. Biol. 1990, 212, 27–35. [Google Scholar] [CrossRef]
- Ritland, C.E.; Ritland, K.; Straus, N.A. Variation in the ribosomal internal transcribed spacers (ITS1 and ITS2) among eight taxa of the Mimulus guttatus species complex. Mol. Biol. Evol. 1993, 10, 1273–1288. [Google Scholar]
- Hershkovitz, M.A.; Lewis, L.A. Deep-level diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 1996, 13, 1276–1295. [Google Scholar] [CrossRef]
- HIillis, D.M.; Dixon, M.T. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 1991, 66, 411–453. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.W.; Vacquier, V.D. Exploring the phylogenetic utility of ITS sequences for animals: A test case for abalone (Haliotis). J. Mol. Evol. 2002, 54, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Coissac, E.; Hajibabaei, M.; Rieseberg, L.H. Environmental DNA. Mol. Ecol. 2012, 21, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.R.; Lawson Handley, L.; Carpenter, A.I.; Ghazali, M.; Di Muri, C.; Macgregor, C.J.; Logan, T.W.; Law, A.; Breithaupt, T.; Read, D.S.; et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 2019, 238, 108225. [Google Scholar] [CrossRef]
- Ward, G.; Neuhauser, S.; Groben, R.; Ciaghi, S.; Berney, C.; Romac, S.; Bass, D. Environmental sequencing fills the gap between parasitic Haplosporidians and free-living giant Amoebae. J. Eukaryot. Microbiol. 2018, 65, 574–586. [Google Scholar] [CrossRef]
- Eiler, A.; Löfgren, A.; Hjerne, O.; Nordén, S.; Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 2018, 8, 5452. [Google Scholar] [CrossRef]
- Friedman, C.S.; Wight, N.; Crosson, L.M.; White, S.J.; Strenge, R.M. Validation of a quantitative PCR assay for detection and quantification of ‘Candidatus Xenohaliotis californiensis’. Dis. Aquat. Organ. 2014, 108, 251–259. [Google Scholar] [CrossRef]
- Mérou, N.; Lecadet, C.; Pouvreau, S.; Arzul, I. An eDNA/eRNA-based approach to investigate the life cycle of non-cultivable shellfish micro-parasites: The case of Bonamia ostreae, a parasite of the European flat oyster Ostrea edulis. Microb. Biotechnol. 2020, 13, 1807–1818. [Google Scholar] [CrossRef]
- Harrison, J.B.; Sunday, J.M.; Rogers, S.M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. 2019, 286, 20191409. [Google Scholar] [CrossRef]
- Catanese, G.; Tena-Medialdea, J.; Bel Dajković, M.A.; Mičić, M.; García-March, J.R. An incubation water eDNA method for a non-destructive rapid molecular identification of the two congeneric Pinna nobilis and Pinna rudis bivalve juveniles. MethodX 2022, 9, 101708. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Carnegie, R.B.; Meyer, G.R.; Blackbourn, J.; Cochennec-Laureau, N.; Berthe, F.C.J.; Bower, S.M. Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis. Dis. Aquat. Org. 2003, 54, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Renault, T.; Stokes, N.A.; Chollet, B.; Cochennec, N.; Berthe, F.; Gérard, A.; Burreson, E.M. Haplosporidiosis in the Pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 2000, 42, 207–214. [Google Scholar] [CrossRef]
- Olson, P.D.; Cribb, T.H.; Tkach, V.V.; Bray, R.A.; Littlewood, D.T.J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 2003, 33, 733–755. [Google Scholar] [CrossRef]
- Galazzo, D.E.; Dayanandan, S.; Marcogliese, D.J.; McLaughlin, J.D. Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA sequence data and comparisons with European congeners. Can. J. Zool. 2002, 80, 2207–2217. [Google Scholar] [CrossRef]
- Carnegie, R.B.; Barber, B.J.; Robledo, J.A. Development and validation of a TaqMan real-time quantitative PCR assay for the detection of Haplosporidium nelsoni in the eastern oyster, Crassostrea virginica. J. Invertebr. Pathol. 2014, 120, 46–52. [Google Scholar]
- Arzul, I.; Garcia, C.; Chollet, B.; Serpin, D.; Lupo, C.; Noyer, M.; Tourbiez, D.; Berland, C.; Dégremont, L.; Travers, M.A. First characterization of the parasite Haplosporidium costale in France and development of a real-time PCR assay for its rapid detection in the Pacific oyster, Crassostrea gigas. Transbound Emerg. Dis. 2022, 69, e2041–e2058. [Google Scholar] [CrossRef]
- Hartikainen, H.; Stentiford, G.D.; Bateman, K.S.; Berney, C.; Feist, S.W.; Longshaw, M.; Okamura, B.; Stone, D.; Ward, G.; Wood, C.; et al. Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates. Curr. Biol. 2014, 24, 807–812. [Google Scholar] [CrossRef]
- Ko, Y.T.; Ford, S.E.; Fong, D. Characterization of the small subunit ribosomal RNA gene of the oyster parasite Haplosporidium costale. Mol. Mar. Biol. Biotechnol. 1995, 4, 236–240. [Google Scholar]
- Carnegie, R.B.; Barber, B.J.; Culloty, S.C.; Figueras, A.J.; Distel, D.L. Development of a PCR assay for detection of the oyster pathogen Bonamia ostreae and support for its inclusion in the Haplosporidia. Dis. Aquat. Org. 2000, 42, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, S.G.; Balseiro, P.; Casal, G.; Gestal, C.; Aranguren, R.; Stokes, N.A.; Carnegie, R.B.; Novoa, B.; Burreson, E.M.; Figueras, A. Ultrastructural and molecular characterization of Haplosporidium montforti n. sp., parasite of the European abalone Haliotis tuberculata. J. Invertebr. Pathol 2006, 92, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Palm, G.; Richter, N.; Schnotz, W. Cognitive load of graphical representations: A longitudinal perspective. Learn. Instr. 2009, 19, 309–320. [Google Scholar]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Hassouna, N.; Michot, B.; Bachellerie, J.P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acids. Res. 1984, 12, 3563–3583. [Google Scholar] [CrossRef]
- Hirai, J.; Shimode, S.; Tsuda, A. Evaluation of ITS2-28S as a molecular marker for identification of calanoid copepods in the subtropical western North Pacific. J. Plankton Res. 2013, 35, 644–656. [Google Scholar] [CrossRef]
- Lopez-Nuñez, R.; Cortés Melendreras, E.; Giménez Casalduero, F.; Prado, P.; Lopez-Moya, F.; Lopez-Llorca, L.V. Detection of Haplosporidium pinnae from Pinna nobilis Faeces. J. Mar. Sci. Eng. 2022, 10, 276. [Google Scholar] [CrossRef]
- Nebot-Colomer, E.; Álvarez, E.; Belando, M.D.; Deudero, S.; Catanese, G.; Bernardeau Esteller, J.; García Muñoz, R.; Ramos Segura, A.; Ruiz, J.M.; Vázquez Luis, M. Living under threat: Will one of the last Pinna nobilis populations be able to survive? Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 32, 1–13. [Google Scholar] [CrossRef]
- Prado, P.; Grau, A.; Catanese, G.; Cabanes, P.; Carella, F.; Fernández-Tejedor, M.; Andree, K.B.; Añón, T.; Hernandis, S.; Tena, J.; et al. Pinna nobilis in suboptimal environments are more resilient to disease but more vulnerable to catastrophic events. Mar. Environ. Res. 2021, 163, 105220. [Google Scholar] [CrossRef]
- Cabanellas-Reboredo, M.; Vázquez-Luis, M.; Mourre, B.; Alvarez, E.; Deudero, S.; Amores, A.; Addis, P.; Ballesteros, E.; Barrajón, A.; Coppa, S.; et al. Tracking the dispersion of a pathogen causing mass mortality in the pen shell Pinna nobilis: A collaborative effort of scientists and citizens. Sci. Rep. 2019, 9, 13355. [Google Scholar] [CrossRef]
- Peyran, C.; Boissin, E.; Morage, T.; Nebot-Colomer, E.; Iwankow, G.; Planes, S. Genetic homogeneity of the critically endangered fan mussel, Pinna nobilis, throughout lagoons of the Gulf of Lion (North-Western Mediterranean Sea). Sci. Rep. 2021, 11, 7805. [Google Scholar] [CrossRef]
- Donato, G.; Vázquez-Luis, M.; Nebot-Colomer, E.; Lunetta, A.; Giacobbe, S. Noble fan-shell, Pinna nobilis, in Lake Faro (Sicily, Italy): Ineluctable decline or extreme opportunity? Estuar. Coast. Shelf Sci. 2021, 261, 107536. [Google Scholar] [CrossRef]
- Labidi, S.; Vázquez-Luis, M.; Catanese, G.; Grau, A.; Khammassi, M.; Ben youssef, S.; Sghaier Achouri, M. First detection of the invasive protozoan Haplosporidium pinnae in the Critically Endangered bivalve Pinna nobilis in south Mediterranean Sea (Bizerte Lagoon, Tunis). Medit. Mar. Sci. 2022, 35, 5. [Google Scholar]
- Donato, G.; Lunetta, A.; Spinelli, A.; Catanese, G.; Giacobbe, S. Sanctuaries are not inviolable: Haplosporidium pinnae as responsible for the collapse of the Pinna nobilis population in Lake Faro (central Mediterranean). J. Invert. Pathol.
- García-March, J.R.; Tena-Medialdea, J.; Henandis-Caballero, S.; Vázquez-Luis, M.; López, D.; Téllez, C.; Prado, P.; Navas, J.; Bernal, J.; Catanese, G.; et al. Can we save a marine species affected by a highly-infective-highly-lethal waterborne disease from extinction? Biol. Conserv. 2020, 243, 108498. [Google Scholar] [CrossRef]
- Arzul, I.; Carnegie, R. New perspective on the Haplosporidian parasites of molluscs. J. Invertebr. Pathol. 2015, 131, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Stentiford, G.D.; Sritunyalucksana, K.; Flegel, T.W.; Williams, B.A.; Withyachumnarnkul, B.; Itsathitphaisarn, O. New paradigms to help solve the global aquaculture disease crisis. PLoS Pathog. 2013, 9, e1003793. [Google Scholar] [CrossRef] [PubMed]
- Vilela, H. Sporozoaires parasites de la palourde, Tapes decussatus (L.). Rev. Fac. Ciências 1951, 1, 379–386. [Google Scholar]
- Haskin, H.; Hertig, M.; Canning, E. Protozoa in the Tissues of Arthropods. J. Invertebr. Pathol. 1966, 8, 1–10. [Google Scholar]
- Azevedo, C.; Conchas, R.F.; Montes, J. Description of Haplosporidium edule n. sp. (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 2003, 39, 161–167. [Google Scholar] [CrossRef]
- Jo, J.Y.; Oh, M.J.; Lee, J.H.; Choi, S.H.; Lee, S.D.; Noh, J.K. Saprolegniosis outbreak caused by Saprolegnia parasitica in farmed rainbow trout (Oncorhynchus mykiss) in Korea. Fish Shellfish Immunol. 2017, 60, 26–32. [Google Scholar]
2020 | 2021 | 2022 | |||
---|---|---|---|---|---|
Sanctuary | Delta Ebro | Alfacs | 1W | 1P | |
Fangar | 1P | ||||
Mar Menor | Baron | 1W | 1P | 1P | |
Pueblo Calido | 1W | 1P | |||
Perdiguera | 1W | 1P | |||
Pedrucho | 1P | ||||
Open Sea | Balearic Islands | Cabrera | 3P | 1P | |
Mallorca | 1P | ||||
Ibiza | 1P | ||||
Murcia Region | Isla Grossa | 1P | 2P | ||
Cabo de Palos | 2P | 2P | 1P | ||
Valencian Community | Alicante | 1W, 3Wf | |||
Columbretes | 5P | ||||
Catalonia | Girona | 3P |
All Fragments | Fragment A | Fragment B | Fragment C | ||
---|---|---|---|---|---|
All samples | Ethanol | 1/11 (9.1%) | 0/11 (0%) | 1/11 (9.1%) | 1/11 (9.1%) |
RNAlater | 7/17 (41.2%) | 3/17 (17.6%) | 3/17 (17.6%) | 5/17 (29.4%) | |
Frozen Filter | 15/28 (53.6%) | 7/28 (25%) | 10/28 (35.7%) | 15/28 (53.6%) | |
Aquarium | Ethanol | - | - | - | - |
RNAlater | 6/7 (85.7%) | 2/7 (28.6%) | 3/7 (42.9%) | 4/7 (57.1%) | |
Frozen Filter | 12/12 (100%) | 7/12 (58.3%) | 10/12 (83.3%) | 12/12 (100%) | |
Open sea | Ethanol | 1/7 (14.3%) | 0/7 (0%) | 1/7 (14.3%) | 1/7 (14.3%) |
RNAlater | 1/8 (12.5%) | 1/8 (12.5%) | 0/8 (0%) | 1/8 (12.5%) | |
Frozen Filter | 3/11 (27.3%) | 0/11 (0%) | 0/11 (0%) | 3/11 (27.3%) | |
Sanctuary | Ethanol | 0/4 (0%) | 0/4 (0%) | 0/4 (0%) | 0/4 (0%) |
RNAlater | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | |
Frozen Filter | 0/5 (0%) | 0/5 (0%) | 0/5 (0%) | 0/5 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moro-Martínez, I.; Vázquez-Luis, M.; García-March, J.R.; Prado, P.; Mičić, M.; Catanese, G. Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms 2023, 11, 1146. https://doi.org/10.3390/microorganisms11051146
Moro-Martínez I, Vázquez-Luis M, García-March JR, Prado P, Mičić M, Catanese G. Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms. 2023; 11(5):1146. https://doi.org/10.3390/microorganisms11051146
Chicago/Turabian StyleMoro-Martínez, Irene, Maite Vázquez-Luis, José Rafael García-March, Patricia Prado, Milena Mičić, and Gaetano Catanese. 2023. "Haplosporidium pinnae Parasite Detection in Seawater Samples" Microorganisms 11, no. 5: 1146. https://doi.org/10.3390/microorganisms11051146
APA StyleMoro-Martínez, I., Vázquez-Luis, M., García-March, J. R., Prado, P., Mičić, M., & Catanese, G. (2023). Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms, 11(5), 1146. https://doi.org/10.3390/microorganisms11051146