The Challenge of Bacteremia Treatment due to Non-Fermenting Gram-Negative Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Variables and Definitions
2.3. Antibiotic Susceptibility
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Bacterial Isolates and Antibiotic Sensitivity
3.3. Antibiotic Treatment
3.4. Variables Associated with Clinical Success
3.5. Risk Factors Associated with Clinical Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef] [PubMed]
- Huh, K.; Chung, D.R.; Ha, Y.E.; Ko, J.H.; Kim, S.H.; Kim, M.J.; Huh, H.J.; Lee, N.Y.; Cho, S.Y.; Kang, C.I.; et al. Impact of Difficult-to-Treat Resistance in Gram-negative Bacteremia on Mortality: Retrospective Analysis of Nationwide Surveillance Data. Clin. Infect. Dis. 2020, 71, E487–E496. [Google Scholar] [CrossRef] [PubMed]
- Pintado, V.; Ruiz-Garbajosa, P.; Aguilera-Alonso, D.; Baquero-Artigao, F.; Bou, G.; Cantón, R.; Grau, S.; Gutiérrez-Gutiérrez, B.; Larrosa, N.; Machuca, I.; et al. Executive summary of the consensus document of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the diagnosis and antimicrobial treatment of infections due to carbapenem-resistant Gram-negative bacteria. Enferm. Infecc. Microbiol. Clin. 2022, in press. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Karageorgopoulos, D.E.; Rafailidis, P.I. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: A systematic review of microbiological, animal and clinical studies. Int. J. Antimicrob. Agents 2009, 34, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Sadyrbaeva-Dolgova, S.; García-Fumero, R.; Exposito-Ruiz, M.; Pasquau-Liaño, J.; Jiménez-Morales, A.; Hidalgo-Tenorio, C. Incidence of nephrotoxicity associated with intravenous colistimethate sodium administration for the treatment of multidrug-resistant gram-negative bacterial infections. Sci. Rep. 2022, 12, 15261. [Google Scholar] [CrossRef]
- Chumbita, M.; Monzo-Gallo, P.; Lopera-Mármol, C.; Aiello, T.F.; Puerta-Alcalde, P.; Garcia-Vidal, C. New treatments for multidrug-resistant non-fermenting Gram-negative bacilli Infections. Rev. Española Quimioter. 2022, 35 (Suppl. S3), 51–53. [Google Scholar] [CrossRef]
- Lamy, B.; Sundqvist, M.; Idelevich, E.A. Bloodstream infections—Standard and progress in pathogen diagnostics. Clin. Microbiol. Infect. 2020, 26, 142–150. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2021, 21, 241–251. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Baltas, I.; Stockdale, T.; Tausan, M.; Kashif, A.; Anwar, J.; Anvar, J.; Koutoumanou, E.; Sidebottom, D.; Garcia-Arias, V.; Wright, M.; et al. Impact of antibiotic timing on mortality from Gram-negative bacteraemia in an English district general hospital: The importance of getting it right every time. J. Antimicrob. Chemother. 2021, 76, 813–819. [Google Scholar] [CrossRef]
- Pasquau-Liaño, J.; Sadyrbaeva-Dolgova, S.; Sequera-Arquellada, S.; García-Vallecillos, C.; Hidalgo-Tenorio, C.; Pasquau, J.; Española De Quimioterapia, R. Timing in antibiotic therapy: When and how to start, de-escalate and stop antibiotic therapy. Proposals from a stablished antimicrobial stewardship program. Rev. Española Quimioter. 2022, 35, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Gracia-Ahufinger, I.; Pérez-Nadales, E.; Causse, M.; Castón, J.J.; Guzman-Puche, J.; Torre-Giménez, J.; Kindelán, L.; et al. Risks of Infection and Mortality among Patients Colonized with Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin. Infect. Dis. 2018, 66, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannella, M.; Trecarichi, E.M.; De Rosa, F.G.; Del Bono, V.; Bassetti, M.; Lewis, R.E.; Losito, A.R.; Corcione, S.; Saffioti, C.; Bartoletti, M.; et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study. Clin. Microbiol. Infect. 2014, 20, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, J.E. Resistance in nonfermenting gram-negative bacteria: Multidrug resistance to the maximum. Am. J. Infect. Control 2006, 34, S29–S37. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [Green Version]
- Onorato, L.; Macera, M.; Calò, F.; Cirillo, P.; Di Caprio, G.; Coppola, N. Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: A meta-analysis. Int. J. Antimicrob. Agents 2022, 59, 106512. [Google Scholar] [CrossRef]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [Green Version]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Abdel Fattah, M.; Haquin, J.; et al. Combination versus monotherapy as definitive treatment for Pseudomonas aeruginosa bacteraemia: A multicentre retrospective observational cohort study. J. Antimicrob. Chemother. 2021, 76, 2172–2181. [Google Scholar] [CrossRef]
- Kaye, K.S.; Marchaim, D.; Thamlikitkul, V.; Carmeli, Y.; Chiu, C.-H.; Daikos, G.; Dhar, S.; Durante-Mangoni, E.; Gikas, A.; Kotanidou, A.; et al. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM Evid. 2022, 2, EVIDoa2200131. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aerug. Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.L.; Abad, C.L.R. The clinical profile and outcomes of adult patients given intravenous colistin for multidrug-resistant gram negative infections in a Philippine tertiary hospital. Int. J. Infect. Dis. 2020, 93, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Junco, S.J.; Bowman, M.C.; Turner, R.B. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int. J. Antimicrob. Agents 2021, 58, 106367. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef]
- Martinez-Nadal, G.; Puerta-Alcalde, P.; Gudiol, C.; Cardozo, C.; Albasanz-Puig, A.; Marco, F.; Laporte-Amargós, J.; Moreno-García, E.; Domingo-Doménech, E.; Chumbita, M.; et al. Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients with Bacteremia in the Era of Multidrug Resistance. Clin. Infect. Dis. 2020, 70, 1068–1074. [Google Scholar] [CrossRef]
- Chumbita, M.; Puerta-Alcalde, P.; Gudiol, C.; Garcia-Pouton, N.; Laporte-Amargós, J.; Ladino, A.; Albasanz-Puig, A.; Helguera, C.; Bergas, A.; Grafia, I.; et al. Impact of Empirical Antibiotic Regimens on Mortality in Neutropenic Patients with Bloodstream Infection Presenting with Septic Shock. Antimicrob. Agents Chemother. 2022, 66, e01744-21. [Google Scholar] [CrossRef]
- Ohnuma, T.; Chihara, S.; Costin, B.; Treggiari, M.M.; Bartz, R.R.; Raghunathan, K.; Krishnamoorthy, V. Association of Appropriate Empirical Antimicrobial Therapy with In-Hospital Mortality in Patients with Bloodstream Infections in the US. JAMA Netw. Open 2023, 6, E2249353. [Google Scholar] [CrossRef]
- Losito, A.R.; Raffaelli, F.; Del Giacomo, P.; Tumbarello, M. New Drugs for the Treatment of Pseudomonas aeruginosa Infections with Limited Treatment Options: A Narrative Review. Antibiotics 2022, 11, 579. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef] [PubMed]
Characteristics of Patients | Total (n = 120) |
---|---|
Sex, male, n (%) | 95 (79.2) |
Age, years, mean (SD) | 63.7 (56.0–74.3) |
Age adjusted Charlson index score, median (IQR) | 4 (3–6) |
Setting: ICU Non-ICU | 37 (30.8) 83 (69.2) |
Comorbidities, n (%) Cancer Diabetes Liver disease Lung disease Neurological disease Immunodeficiency Gastrointestinal disease Hemodyalysis Surgery in 3 prior month | 43 (35.8) 29 (24.2) 9 (7.5) 22 (18.3) 16 (13.3) 38 (31.7) 3 (2.5) 4 (3.3) 11 (9.2) |
Sepsis/Shock septic | 49 (40.8) |
Invasive procedure, n (%) | 113 (94.2) |
Pitt score, median (IQR) Pitt scor ≥ 4, n (%) | 2 (1–4) 38 (31.7) |
Source, n (%) Respiratory Catheter-related Urinary Intraabdominal Skin &soft tissues Unknown foci Others | 44 (36.7) 17 (14.2) 17 (14.2) 13 (10.8) 3 (2.5) 22 (18.3) 4 (3.4) |
Previous MDRO colonization, n (%) | 17 (14.2) |
Admission in previous 30 days, n (%) | 44 (36.7) |
Antibiotic therapy in previous 30 days, n (%) | 74 (61.7) |
Contact with Healthcare facility, n (%) | 38 (31.7) |
Antibiotic therapy at onset of bacteremia, n (%) | 104 (86.7) |
Onset of bacteremia from admission, days, median (IQR) | 22 (10–38) |
Microorganisms, n (%) P. aeruginosa A. baumannii S. maltophilia | 57 (47.5) 34 (28.3) 29 (24.2) |
Combination therapy, n (%) Monotherapy | 45 (37.5) 75 (62.5) |
Appropriate treatment, n (%) | 51 (42.5) |
Clinical success, n (%) | 64 (53.3) |
Overall in-hospital mortality, n (%) | 68 (56.7) |
14-day mortality, n (%) | 43 (35.8) |
28-day mortality, n (%) | 55 (45.8) |
Duration of antibiotic therapy/bacteremia, days, median (IQR) | 11 (4–17) |
Length of hospital stay, days, median (IQR) | 40.5 (23.0–68.8) |
Incidence of C. difficile infection, n (%) | 5 (4.2) |
90-day re-admission, n (%) | 19 (15.8) |
Antibiotics | P. aeruginosa | S. maltophilia | A. baumannii |
---|---|---|---|
Piperacillin-Tazobactam | 68.5 | - | - |
Meropenem | 29.8 | - | - |
Imipenem | 1.8 | - | - |
Ciprofloxacin | 49.2 | - | - |
Levofloxacin | 33.3 | 72.4 | - |
Gentamicin | 66.6 | - | 11.7 |
Amikacin | 75.5 | - | 5.9 |
Tobramycin | 75.4 | - | 11.8 |
Cefepime | 56.1 | - | - |
Ceftazidime | 63.2 | - | - |
Aztreonam | 61.4 | - | - |
Colistin | 70.2 | - | 94.1 |
Trimethoprim-Sulfamethoxazole | - | 93.1 | - |
Microorganisms | Appropriate Treatment (n = 50) | Inappropriate Treatment (n = 70) |
---|---|---|
P. aeruginosa | 31 (62.0) | 26 (37.1) |
A. baumannii | 11 (22.0) | 23 (32.9) |
S. maltophilia | 8 (16.0) | 21 (30.0) |
Variables | Clinical Success (n = 64) | Clinical Failure (n = 56) | p-Value |
---|---|---|---|
Sex, male, n (%) | 53 (82.8) | 42 (75.0) | 0.369 |
Age, years, mean (SD) | 62.64 (51.62–72.69) | 64.73 (58.13–77.25) | 0.157 |
Age adjusted Charlson index score, median (IQR) | 4 (2–6) | 4 (3–6) | 0.076 |
Setting, n (%): ICU others | 9 (14.1) 55 (85.9) | 28 (50.0) 28 (50.0) | <0.001 |
Comorbidities, n (%) Cancer Diabetes Liver disease Lung disease Neurological disease Immunodeficiency Gastrointestinal disease Hemodyalysis Surgery in 3 prior month | 19 (29.7) 19 (29.7) 3 (4.7) 12 (18.8) 9 (14.1) 17 (26.6) 2 (3.1) 3 (4.7) 6 (9.4) | 24 (42.9) 10 (17.9) 6 (10.7) 10 (17.9) 7 (12.5) 55.3 (37.5) 1 (1.8) 3 (1.8) 5 (8.9) | 0.182 0.142 0.301 1.000 1.000 0.240 1.000 0.622 1.000 |
Sepsis/Shock septic | 15 (23.4) | 34 (60.7) | <0.001 |
Invasive procedure, n (%) | 61 (95.3) | 52 (92.9) | 0.704 |
Pitt score, median (IQR) Pitt scor ≥ 4 | 2 (0.0–2.75) 12 (18.8) | 3 (2–5) 26 (46.4) | <0.001 0.002 |
Source, n (%) Respiratory Catheter-related Urinary Intraabdominal Skin & soft tissues Unknown foci Others | 20 (31.2) 11 (17.2) 11 (17.2) 9 (14.1) 2 (3.1) 8 (12.5) 3 (4.7) | 24 (42.9) 6 (10.7) 6 (10.7) 4 (7.1) 1 (1.8) 14 (25.0) 2 (3.6) | 0.275 |
Combination therapy, n (%) Monotherapy | 18 (28.1) 46 (71.9) | 27 (48.2) 29 (51.8) | 0.037 |
Previous MDRO colonization (in 3 prior month) | 11 (17.2) | 6 (10.7) | 0.432 |
Admission in previous 30 days, n (%) | 18 (28.1) | 26 (46.4) | 0.057 |
Antibiotic therapy in previous 30 days, n (%) | 32 (50.0) | 42 (75.0) | 0.008 |
Contact with Healthcare facility, n (%) | 15 (23.4) | 23 (41.1) | 0.049 |
Antibiotic therapy at onset of bacteremia, n (%) | 53 (82.8) | 48 (85.7) | 0.803 |
Onset of bacteremia from admission, days, median (IQR) | 23.5 (10.25–39.75) | 21 (9.25–38) | 0.683 |
Microorganisms, n (%) P. aeruginosa A. baumannii S. maltophilia | 36 (56.2) 12 (18.8) 16 (25.0) | 21 (37.5) 22 (39.3) 13 (23.2) | 0.035 |
Appropriate treatment, n (%) | 26 (40.6) | 24 (42.9) | 0.854 |
Overall in-hospital mortality, n (%) | 16 (25.0) | 52 (92.9) | <0.001 |
14-day mortality, n (%) | 0 (0.0) | 43 (76.8) | <0.001 |
28-day mortality, n (%) | 5 (7.8) | 50 (89.3) | <0.001 |
Duration of antibiotic therapy/bacteremia, days, median (IQR) | 15 (10–18.75) | 4 (2–12) | <0.001 |
Length of hospital stay, days, median (IQR) | 54 (32–86.75) | 33 (16–50.5) | <0.001 |
Incidence of C. difficile infection, n (%). | 2 (3.1) | 3 (5.4) | 0.663 |
90-day re-admission, n (%) | 16 (25.0) | 3 (5.4) | 0.005 |
Odds Ratio | 95%CI | p-Value | |
---|---|---|---|
Age | 0.952 | 0.919–0.987 | 0.007 |
ICU admission | 9.61 | 2.89–31.95 | <0.001 |
Sepsis/Shock septic | 5.19 | 1.80–14.96 | 0.002 |
Antibiotic therapy in previous 30 days | 6.04 | 1.92–19.02 | 0.002 |
Contact with Healthcare facility | 3.157 | 1.12–8.88 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadyrbaeva-Dolgova, S.; Sánchez-Suárez, M.d.M.; Reguera Márquez, J.A.; Hidalgo-Tenorio, C. The Challenge of Bacteremia Treatment due to Non-Fermenting Gram-Negative Bacteria. Microorganisms 2023, 11, 899. https://doi.org/10.3390/microorganisms11040899
Sadyrbaeva-Dolgova S, Sánchez-Suárez MdM, Reguera Márquez JA, Hidalgo-Tenorio C. The Challenge of Bacteremia Treatment due to Non-Fermenting Gram-Negative Bacteria. Microorganisms. 2023; 11(4):899. https://doi.org/10.3390/microorganisms11040899
Chicago/Turabian StyleSadyrbaeva-Dolgova, Svetlana, María del Mar Sánchez-Suárez, Juan Antonio Reguera Márquez, and Carmen Hidalgo-Tenorio. 2023. "The Challenge of Bacteremia Treatment due to Non-Fermenting Gram-Negative Bacteria" Microorganisms 11, no. 4: 899. https://doi.org/10.3390/microorganisms11040899
APA StyleSadyrbaeva-Dolgova, S., Sánchez-Suárez, M. d. M., Reguera Márquez, J. A., & Hidalgo-Tenorio, C. (2023). The Challenge of Bacteremia Treatment due to Non-Fermenting Gram-Negative Bacteria. Microorganisms, 11(4), 899. https://doi.org/10.3390/microorganisms11040899