Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the Strains
2.2. Assessment of Growth in Rich, Complex, and Defined Media
2.3. Bioreactor Cultivations
2.3.1. Pre-Inoculum
2.3.2. Cultivation of GLp in the Presence of an Mpc Inhibitor
2.3.3. Small-Scale Batch Cultivation
2.3.4. Batch and Fed-Batch in Medium-Scale Cultivations
2.4. Quantitation of Metabolites on HPLC
2.5. Biomass Determination and Kinetic Parameters of Cultivations
2.6. Quantitative RT-PCR
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of the Mpc Inhibitor UK-5099 on Lactic acid Production by GLp
3.2. Auxotrophy to Leucine Indicates the Lack of Mpc1 Activity
3.3. Lactic Acid Production in GLp and GLpm in Aerobiosis with 4% Glycerol
3.4. Relative Expression Level of VHb
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Anumanthan, A.; Gao, X.-G.; Ilangovan, K.; Suzara, V.V.; Düzgüneş, N.; Renugopalakrishnan, V. Expression of Recombinant Proteins in Pichia Pastoris. Appl. Biochem. Biotechnol. 2007, 142, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Ishigami, M.; Terai, G.; Nakamura, Y.; Hashiba, N.; Nishi, T.; Nakazawa, H.; Hasunuma, T.; Asai, K.; Umetsu, M.; et al. A Streamlined Strain Engineering Workflow with Genome-Wide Screening Detects Enhanced Protein Secretion in Komagataella Phaffii. Commun. Biol. 2022, 5, 561. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sethuraman, N.; Stadheim, T.A.; Zha, D.; Prinz, B.; Ballew, N.; Bobrowicz, P.; Choi, B.-K.; Cook, W.J.; Cukan, M.; et al. Optimization of Humanized IgGs in Glycoengineered Pichia Pastoris. Nat. Biotechnol. 2006, 24, 210–215. [Google Scholar] [CrossRef]
- Kurtzman, C. Description of Komagataella Phaffii Sp. Nov. and the Transfer of Pichia Pseudopastoris to the Methylotrophic Yeast Genus Komagataella. Int. J. Syst. Evol. Microbiol. 2005, 55, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Mattanovich, D.; Graf, A.; Stadlmann, J.; Dragosits, M.; Redl, A.; Maurer, M.; Kleinheinz, M.; Sauer, M.; Altmann, F.; Gasser, B. Genome, Secretome and Glucose Transport Highlight Unique Features of the Protein Production Host Pichia Pastoris. Microb. Cell Factories 2009, 8, 29. [Google Scholar] [CrossRef]
- Klein, M.; Swinnen, S.; Thevelein, J.M.; Nevoigt, E. Glycerol Metabolism and Transport in Yeast and Fungi: Established Knowledge and Ambiguities. Environ. Microbiol. 2017, 19, 878–893. [Google Scholar] [CrossRef]
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Valorisation of Crude Glycerol to Value-Added Products: Perspectives of Process Technology, Economics and Environmental Issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef]
- OECD-FAO Biofuels. In Agricultural Outlook 2022–2031; FAO: Québec City, QC, Canada, 2022.
- Castillo Martinez, F.A.; Balciunas, E.M.; Salgado, J.M.; Domínguez González, J.M.; Converti, A.; de Oliveira, R.P.S. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Grand View Research, Inc. Lactic Acid Market Size, Share & Trends Analysis Report by Raw Material (Sugarcane, Corn, Cassava), By Application (PLA, Food & Beverages), By Region, And Segment Forecasts, 2021–2028; Grand View Research: San Francisco, CA, USA, 2021. [Google Scholar]
- Brzeziński, M.; Biela, T. Stereocomplexed Polylactides. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–10. ISBN 978-3-642-36199-9. [Google Scholar]
- de Lima, P.B.A.; Mulder, K.C.L.; Melo, N.T.M.; Carvalho, L.S.; Menino, G.S.; Mulinari, E.; de Castro, V.H.; dos Reis, T.F.; Goldman, G.H.; Magalhães, B.S.; et al. Novel Homologous Lactate Transporter Improves L-Lactic Acid Production from Glycerol in Recombinant Strains of Pichia Pastoris. Microb. Cell Factories 2016, 15, 158. [Google Scholar] [CrossRef]
- Pacheco, A.; Talaia, G.; Sá-Pessoa, J.; Bessa, D.; Gonçalves, M.J.; Moreira, R.; Paiva, S.; Casal, M.; Queirós, O. Lactic Acid Production in Saccharomyces Cerevisiae Is Modulated by Expression of the Monocarboxylate Transporters Jen1 and Ady2. FEMS Yeast Res. 2012, 12, 375–381. [Google Scholar] [CrossRef]
- Song, J.-Y.; Park, J.-S.; Kang, C.D.; Cho, H.-Y.; Yang, D.; Lee, S.; Cho, K.M. Introduction of a Bacterial Acetyl-CoA Synthesis Pathway Improves Lactic Acid Production in Saccharomyces Cerevisiae. Metab. Eng. 2016, 35, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kang, C.D.; Lee, S.H.; Park, Y.K.; Cho, K.M. Engineering Cellular Redox Balance in Saccharomyces Cerevisiae for Improved Production of L-Lactic Acid. Biotechnol. Bioeng. 2015, 112, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zhang, B.; Hua, Y.; Zhu, Y.; Li, W.; Wang, D.; Hong, J. Efficient L-Lactic Acid Production from Corncob Residue Using Metabolically Engineered Thermo-Tolerant Yeast. Bioresour. Technol. 2019, 273, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, J.H.; Yeo, H.J.; Seol, J.; Kim, S.R.; Jung, Y.H. Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces Cerevisiae. Appl. Biochem. Biotechnol. 2019, 189, 206–216. [Google Scholar] [CrossRef]
- Ilmén, M.; Koivuranta, K.; Ruohonen, L.; Rajgarhia, V.; Suominen, P.; Penttilä, M. Production of L-Lactic Acid by the Yeast Candida Sonorensis Expressing Heterologous Bacterial and Fungal Lactate Dehydrogenases. Microb. Cell Fact. 2013, 12, 53. [Google Scholar] [CrossRef]
- Melo, N.T.M.; Mulder, K.C.L.; Nicola, A.M.; Carvalho, L.S.; Menino, G.S.; Mulinari, E.; Parachin, N.S. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia Pastoris (Komagataella Phaffii) Engineered for Lactic Acid Production. Bioengineering 2018, 5, 17. [Google Scholar] [CrossRef]
- Bender, T.; Martinou, J.-C. The Mitochondrial Pyruvate Carrier in Health and Disease: To Carry or Not to Carry? Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 2436–2442. [Google Scholar] [CrossRef]
- Papa, S.; Francavilla, A.; Paradies, G.; Meduri, B. The Transport of Pyruvate in Rat Liver Mitochondria. FEBS Lett. 1971, 12, 285–288. [Google Scholar] [CrossRef]
- Bricker, D.K.; Taylor, E.B.; Schell, J.C.; Orsak, T.; Boutron, A.; Chen, Y.-C.; Cox, J.E.; Cardon, C.M.; Van Vranken, J.G.; Dephoure, N.; et al. A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans. Science 2012, 337, 96–100. [Google Scholar] [CrossRef]
- Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.-L.; Zamboni, N.; Westermann, B.; Kunji, E.R.S.; Martinou, J.-C. Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science 2012, 337, 93–96. [Google Scholar] [CrossRef]
- Bender, T.; Pena, G.; Martinou, J.-C. Regulation of Mitochondrial Pyruvate Uptake by Alternative Pyruvate Carrier Complexes. EMBO J. 2015, 34, 911–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wakai, S.; Sasakura, N.; Tsutsumi, H.; Hata, Y.; Ogino, C.; Kondo, A. Pyruvate Metabolism Redirection for Biological Production of Commodity Chemicals in Aerobic Fungus Aspergillus Oryzae. Metab. Eng. 2020, 61, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Melo, N.T.M.; Pontes, G.C.; Procópio, D.P.; de Gois e Cunha, G.C.; Eliodório, K.P.; Paes, H.C.; Basso, T.O.; Parachin, N.S. Evaluation of Product Distribution in Chemostat and Batch Fermentation in Lactic Acid-Producing Komagataella Phaffii Strains Utilizing Glycerol as Substrate. Microorganisms 2020, 8, 781. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hughes, D.E.; Bailey, J.E. Intracellular Expression of Vitreoscilla Hemoglobin Alters the Aerobic Metabolism of Saccharomyces Cerevisiae. Biotechnol. Prog. 1994, 10, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.-J.; Lee, C.-K. Expression of Bacterial Hemoglobin in the Yeast, Pichia Pastoris, with a Low O2-Induced Promoter. Biotechnol. Lett. 2005, 27, 1491–1497. [Google Scholar] [CrossRef]
- Prielhofer, R.; Barrero, J.J.; Steuer, S.; Gassler, T.; Zahrl, R.; Baumann, K.; Sauer, M.; Mattanovich, D.; Gasser, B.; Marx, H. GoldenPiCS: A Golden Gate-Derived Modular Cloning System for Applied Synthetic Biology in the Yeast Pichia Pastoris. BMC Syst. Biol. 2017, 11, 123. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Liu, D. Improved Production of Aspergillus Usamii Endo-β-1,4-Xylanase in Pichia Pastoris via Combined Strategies. Biomed. Res. Int. 2016, 2016, 3265895. [Google Scholar] [CrossRef][Green Version]
- Wu, S.; Letchworth, G.J. High Efficiency Transformation by Electroporation of Pichia Pastoris Pretreated with Lithium Acetate and Dithiothreitol. BioTechniques 2004, 36, 152–154. [Google Scholar] [CrossRef]
- Halestrap, A.P. The Mitochondrial Pyruvate Carrier. Kinetics and Specificity for Substrates and Inhibitors. Biochem. J. 1975, 148, 85–96. [Google Scholar] [CrossRef]
- McCommis, K.S.; Kovacs, A.; Weinheimer, C.J.; Shew, T.M.; Koves, T.R.; Ilkayeva, O.R.; Kamm, D.R.; Pyles, K.D.; King, M.T.; Veech, R.L.; et al. Nutritional Modulation of Heart Failure in Mitochondrial Pyruvate Carrier–Deficient Mice. Nat. Metab. 2020, 2, 1232–1247. [Google Scholar] [CrossRef]
- Tavoulari, S.; Thangaratnarajah, C.; Mavridou, V.; Harbour, M.E.; Martinou, J.-C.; Kunji, E.R. The Yeast Mitochondrial Pyruvate Carrier Is a Hetero-Dimer in Its Functional State. EMBO J. 2019, 38, e100785. [Google Scholar] [CrossRef] [PubMed]
- Kohlhaw, G.B. Leucine Biosynthesis in Fungi: Entering Metabolism through the Back Door. Microbiol. Mol. Biol. Rev. 2003, 67, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Matsuda, F.; Okamoto, K.; Ishii, J.; Kondo, A.; Shimizu, H. Repression of Mitochondrial Metabolism for Cytosolic Pyruvate-Derived Chemical Production in Saccharomyces Cerevisiae. Microb. Cell Fact. 2019, 18, 177. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, G.; Chen, Y.; Jiang, S.; Ma, Y.; Zheng, P.; Guo, X.; Xiao, D. Enhanced Production of Ethyl Lactate in Saccharomyces Cerevisiae by Genetic Modification. J. Agric. Food Chem. 2020, 68, 13863–13870. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, S.; Hahn, J.-S. Improvement of Isobutanol Production in Saccharomyces Cerevisiae by Increasing Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier. Appl. Microbiol. Biotechnol. 2016, 100, 7591–7598. [Google Scholar] [CrossRef]
- Haarasilta, S.; Taskinen, L. Location of Three Key Enzymes of Gluconeogenesis in Baker’s Yeast. Arch. Microbiol. 1977, 113, 159–161. [Google Scholar] [CrossRef]
- Palmieri, L.; Vozza, A.; Agrimi, G.; Marco, V.D.; Runswick, M.J.; Palmieri, F.; Walker, J.E. Identification of the Yeast Mitochondrial Transporter for Oxaloacetate and Sulfate *. J. Biol. Chem. 1999, 274, 22184–22190. [Google Scholar] [CrossRef]
- Chen, H.; Chu, J.; Zhang, S.; Zhuang, Y.; Qian, J.; Wang, Y.; Hu, X. Intracellular Expression of Vitreoscilla Hemoglobin Improves S-Adenosylmethionine Production in a Recombinant Pichia Pastoris. Appl. Microbiol. Biotechnol. 2007, 74, 1205–1212. [Google Scholar] [CrossRef]
- Wu, J.-M.; Hsu, T.-A.; Lee, C.-K. Expression of the Gene Coding for Bacterial Hemoglobin Improves Beta-Galactosidase Production in a Recombinant Pichia Pastoris. Biotechnol. Lett. 2003, 25, 1457–1462. [Google Scholar] [CrossRef]
Material | Description | Reference | |
---|---|---|---|
Strain | |||
GLp | GS115: pGAP-LDH Bos taurus Δpdc1 | [19] | |
GLpm | GLp: VHb V. stercoraria Δmpc1 | This work | |
Plasmid | |||
mpc-VHb-HygR | This work | ||
Primers | Sequence (5′→3′) | ||
MPC1F | CTCAGATCGATAGAGTGCAAG | MPC1F with MPC1R: 543 bp amplicon in wild type and no amplicon in transformant. RAD9F with MPC1R: amplification occurs only if insertion occurs in the locus. | This work |
MPC1R | GGAGAAGCTCCATTCGAC | This work | |
RAD9F | CTCTATGCCTTGAACTATGTCG | This work | |
qVHbF | CATCTTGCCAGCCGTTAAGAAG | Relative quantification of the heterologous hemoglobin expression. | This work |
qVHbR | AACAACTCCTGACCGACGATAG | This work | |
qACT1F | TGTTGGTTGTCCTCGGTTGA | Constitutive control for quantitative PCR. | This work |
qACT1R | TGAGCTTGGATTCGGCAGAT | This work |
Strain | YP | UAB | UAB + Leucine |
---|---|---|---|
GLp (parental) | 0.245 ± 0.008 a | 0.207 ± 0.005 b | 0.209 ± 0.008 b |
GLpm (Δmpc1) | 0.185 ± 0.000 c | 0.074 ± 0.000 d | 0.097 ± 0.001 e |
Strain | Specific Growth Rate (h−1) | Titer of Lactic Acid (g L−1) | Productivity (g L−1 h−1) | YP/S (g L−1/g L−1) | YX/S (g L−1/g L−1) | Medium |
---|---|---|---|---|---|---|
GLp (parental) | 0.308 ± 0.001 | 10.57 ± 0.55 | 0.145 ± 0.025 | 0.230 ± 0.003 | 0.523 ± 0.021 | 4% glycerol YP |
GLpm (Δmpc1) | 0.165 ± 0.006 | 10.25 ± 0.49 | 0.153 ± 0.007 | 0.278 ± 0.021 | 0.645 ± 0.062 | 4% glycerol YP |
GLpm | 0.058 ± 0.007 | 9.11 ± 0.72 | 0.122 ± 0.010 | 0.143 ± 0.011 | 0.506 ± 0.009 | 6% glycerol UAB |
GLpm * | 0.021 ± 0.003 | 19.57 ± 3.07 | 0.163 ± 0.034 | 0.117 ± 0.025 | 0.302 ± 0.030 | 2% glycerol UAB fed−10% glycerol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Junqueira, A.C.; Moreira Melo, N.T.; Skorupa Parachin, N.; Costa Paes, H. Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms 2023, 11, 483. https://doi.org/10.3390/microorganisms11020483
de Oliveira Junqueira AC, Moreira Melo NT, Skorupa Parachin N, Costa Paes H. Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms. 2023; 11(2):483. https://doi.org/10.3390/microorganisms11020483
Chicago/Turabian Stylede Oliveira Junqueira, Ana Caroline, Nadielle Tamires Moreira Melo, Nádia Skorupa Parachin, and Hugo Costa Paes. 2023. "Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation" Microorganisms 11, no. 2: 483. https://doi.org/10.3390/microorganisms11020483
APA Stylede Oliveira Junqueira, A. C., Moreira Melo, N. T., Skorupa Parachin, N., & Costa Paes, H. (2023). Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms, 11(2), 483. https://doi.org/10.3390/microorganisms11020483