A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens
Abstract
:1. Introduction
2. Methods and Materials
2.1. Lactic Acid Bacteria Isolation (LAB) and Characterization
2.2. Probiotic Potential of Selected LAB
2.3. Antibacterial Activity Well Diffusion
2.4. Lyophilization of Cell-Free Supernatant (CFS)
2.5. Antibacterial Activity by Dose- and Time-Based Killing Assay, Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.6. Antibacterial Activity by Co-Culture Method
2.7. Statistical Analysis
3. Results
3.1. LAB Strain Isolation and Characterization
3.2. Potential Probiotic Properties of Isolated Strains
3.2.1. LAB in Simulated GIT Conditions
3.2.2. Hydrophobicity and Auto-Aggregation
3.3. The Antibacterial Activities of Selected Isolates L. citreum KCC-57 and L. citreum KCC-58
3.3.1. Agar Well Diffusion
3.3.2. Time-Killing Assay
3.3.3. MIC and MBC
3.3.4. Co-Culture of LAB with Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Wellcome Collection: London, UK, 2014. [Google Scholar]
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- CDC. Antibiotic Resistance Threats in the United States; US Department of Health and Human Services: Atlanta, GA, USA, 2019. [Google Scholar]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska-Turak, E.; Hornowska, Ł.; Pobiega, K.; Gniewosz, M.; Witrowa-Rajchert, D. The influence of Lactobacillus bacteria type and kind of carrier on the properties of spray-dried microencapsules of fermented beetroot powders. Int. J. Food Sci. Technol. 2021, 56, 2166–2174. [Google Scholar] [CrossRef]
- Aponte, M.; Murru, N.; Shoukat, M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front. Microbiol. 2020, 11, 562048. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, K.; Soundharrajan, I.; Srisesharam, S.; Kim, D.; Kuppusamy, P.; Lee, K.D.; Choi, K.C. Probiotic Characteristics and Antifungal Activity of Lactobacillus plantarum and Its Impact on Fermentation of Italian Ryegrass at Low Moisture. Appl. Sci. 2020, 10, 417. [Google Scholar] [CrossRef]
- Soundharrajan, I.; Kuppusamy, P.; Srisesharam, S.; Lee, J.C.; Sivanesan, R.; Kim, D.; Choi, K.C. Positive metabolic effects of selected probiotic bacteria on diet-induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB J. 2020, 34, 12289–12307. [Google Scholar] [CrossRef]
- Byakika, S.; Mukisa, I.M.; Mugabi, R.; Muyanja, C. Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli. Isolated from a Fermented Sorghum-Millet Beverage. Int. J. Microbiol. 2019, 2019, 2013539. [Google Scholar] [CrossRef]
- Kang, C.-H.; Han, S.H.; Kim, Y.; Paek, N.-S.; So, J.-S. In Vitro Probiotic Properties of Lactobacillus salivarius MG242 Isolated from Human Vagina. Probiotics Antimicrob. Proteins 2018, 10, 343–349. [Google Scholar] [CrossRef]
- Kim, D.; Min, Y.; Yang, J.; Heo, Y.; Kim, M.; Hur, C.-G.; Lee, S.-C.; Lee, H.-K.; Song, K.-D.; Heo, J.; et al. Multi-Probiotic Lactobacillus Supplementation Improves Liver Function and Reduces Cholesterol Levels in Jeju Native Pigs. Animals 2021, 11, 2309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ali Esmail, G.; Fahad Alzeer, A.; Valan Arasu, M.; Vijayaraghavan, P.; Choon Choi, K.; Abdullah Al-Dhabi, N. Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens. Saudi J. Biol. Sci. 2020, 27, 3505–3513. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Garriga, M.; Rubio, R.; Aymerich, T.; Ruas-Madiedo, P. Potentially probiotic and bioprotective lactic acid bacteria starter cultures antagonise the Listeria monocytogenes adhesion to HT29 colonocyte-like cells. Benef. Microbes 2015, 6, 337–343. [Google Scholar] [CrossRef]
- Zawistowska-Rojek, A.; Kośmider, A.; Stępień, K.; Tyski, S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch. Microbiol. 2022, 204, 285. [Google Scholar] [CrossRef]
- Guan, C.; Chen, X.; Jiang, X.; Zhao, R.; Yuan, Y.; Chen, D.; Zhang, C.; Lu, M.; Lu, Z.; Gu, R. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Adv. 2020, 10, 24234–24240. [Google Scholar] [CrossRef]
- Iosca, G.; De Vero, L.; Di Rocco, G.; Perrone, G.; Gullo, M.; Pulvirenti, A. Anti-Spoilage Activity and Exopolysaccharides Production by Selected Lactic Acid Bacteria. Foods 2022, 11, 1914. [Google Scholar] [CrossRef] [PubMed]
- Pujato, S.A.; del L Quiberoni, A.; Candioti, M.C.; Reinheimer, J.A.; Guglielmotti, D.M. Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk. J. Dairy Res. 2014, 81, 137–145. [Google Scholar] [CrossRef]
- Woo, C.; Jung, S.; Fugaban, J.I.I.; Bucheli, J.E.V.; Holzapfel, W.H.; Todorov, S.D. Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. J. Appl. Microbiol. 2021, 131, 1226–1239. [Google Scholar] [CrossRef]
- Holland, R.; Liu, S.Q. Lactic Acid Bacteria In Leuconostoc spp. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 138–142. [Google Scholar]
- Soundharrajan, I.; Yoon, Y.H.; Muthusamy, K.; Jung, J.-S.; Lee, H.J.; Han, O.-K.; Choi, K.C. Isolation of Lactococcus lactis from Whole Crop Rice and Determining Its Probiotic and Antimicrobial Properties towards Gastrointestinal Associated Bacteria. Microorganisms 2021, 9, 2513. [Google Scholar] [CrossRef] [PubMed]
- Valan Arasu, M.; Jung, M.-W.; Ilavenil, S.; Jane, M.; Kim, D.-H.; Lee, K.-D.; Park, H.-S.; Hur, T.-Y.; Choi, G.-J.; Lim, Y.-C.; et al. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. J. Appl. Microbiol. 2013, 115, 1172–1185. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Penna, A.L.B. Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruit flours. Int. Dairy J. 2015, 41, 1–6. [Google Scholar] [CrossRef]
- Kimoto-Nira, H.; Suzuki, C.; Sasaki, K.; Kobayashi, M.; Mizumachi, K. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. Int. J. Food Microbiol. 2010, 143, 226–229. [Google Scholar] [CrossRef]
- Del Re, B.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000, 31, 438–442. [Google Scholar] [CrossRef]
- Soundharrajan, I.; Kim, D.; Kuppusamy, P.; Muthusamy, K.; Lee, H.J.; Choi, K.C. Probiotic and Triticale Silage Fermentation Potential of Pediococcus pentosaceus and Lactobacillus brevis and Their Impacts on Pathogenic Bacteria. Microorganisms 2019, 7, 318. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef]
- Soleimani, N.; Kermanshahi, R.; Yakhchali, B.; Sattari, T. Antagonistic activity of probiotic lactobacilli against Staphylococcus aureus isolated from bovine mastitis. Afr. J. Microbiol. Res. 2010, 420, 2169–2173. [Google Scholar]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- von Klitzing, E.; Ekmekciu, I.; Bereswill, S.; Heimesaat, M.M. Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice. Gut Pathog. 2017, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Strickertsson, J.A.B.; Desler, C.; Martin-Bertelsen, T.; Machado, A.M.D.; Wadstrøm, T.; Winther, O.; Rasmussen, L.J.; Friis-Hansen, L. Enterococcus faecalis Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells. PLoS ONE 2013, 8, e63147. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef]
- Sharma, C.; Singh, B.P.; Thakur, N.; Gulati, S.; Gupta, S.; Mishra, S.K.; Panwar, H. Antibacterial effects of Lactobacillus isolates of curd and human milk origin against food-borne and human pathogens. 3 Biotech. 2017, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suissa, R.; Oved, R.; Jankelowitz, G.; Turjeman, S.; Koren, O.; Kolodkin-Gal, I. Molecular genetics for probiotic engineering: Dissecting lactic acid bacteria. Trends Microbiol. 2021, 30, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Fuochi, V.; Petronio, G.P.; Lissandrello, E.; Furneri, P.M. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int. J. Immunopathol. Parmacol. 2015, 28, 426–433. [Google Scholar] [CrossRef]
- Shewale, R.N.; Sawale, P.; Khedkar, C.; Singh, A. Selection criteria for probiotics: A review. Int. J. Probiotics Prebiotics 2014, 9, 17–22. [Google Scholar]
- Wang, Y.; Li, A.; Jiang, X.; Zhang, H.; Mehmood, K.; Zhang, L.; Jiang, J.; Waqas, M.; Iqbal, M.; Li, J. Probiotic Potential of Leuconostoc pseudomesenteroides and Lactobacillus Strains Isolated From Yaks. Front. Microbiol. 2018, 9, 2987. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Chen, Y.-H.; Chen, J.-H.; Hsu, P.-S.; Wu, T.-H.; Lin, C.-F.; Peng, C.-C.; Wu, M.-C. A potential probiotic Leuconostoc mesenteroides TBE-8 for honey bee. Sci. Rep. 2021, 11, 18466. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef]
- Mourad, K.; Karam, N.E. Microbiological study of naturally fermented Algerian green olives: Isolation and identification of lactic acid bacteria and yeasts along with the effects of brine solutions obtained at the end of olive fermentation on Lactobacillus plantarum growth. Grasas Aceites 2006, 57, 292–300. [Google Scholar] [CrossRef]
- Buriti, F.C.; Castro, I.A.; Saad, S.M. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. Int. J. Food Microbiol. 2010, 137, 121–129. [Google Scholar] [CrossRef]
- Yadav, R.; Shukla, P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Criti. Rev. Food Sci. Nut. 2017, 57, 3233–3242. [Google Scholar] [CrossRef]
- Yadav, V.; Varum, F.; Bravo, R.; Furrer, E.; Bojic, D.; Basit, A.W. Inflammatory bowel disease: Exploring gut pathophysiology for novel therapeutic targets. Transl. Res. J. Lab. Clin. Med. 2016, 176, 38–68. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Zavaleta, O.; López-Malo, A.; Hernández-Mendoza, A.; García, H.S. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int. J. Food Microbiol. 2014, 173, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Inglin, R.C.; Stevens, M.J.; Meile, L.; Lacroix, C.; Meile, L. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods 2015, 114, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Chang, H.C. Growth inhibition of foodborne pathogens by kimchi prepared with bacteriocin-producing starter culture. J. Food Sci. 2011, 76, M72–M78. [Google Scholar] [CrossRef] [PubMed]
Code | Stain | Motile | Shape | Catalase | Growth Condition | Strain | Species |
---|---|---|---|---|---|---|---|
KCC-57 | Positive | Non | Cocci | Negative | Facultative anaerobic | Leuconostoc | citreum |
KCC-58 | Positive | Non | Cocci | Negative | Facultative anaerobic | Leuconostoc | citreum |
Code | Species Name | Zone of Inhibition (mm) | |||
---|---|---|---|---|---|
E. coli | S. aureus | P. aeruginosa | E. faecalis | ||
KCC-57 | L. citreum | 34.3 ± 1.2 | 22.0 ± 2.9 | 17.5 ± 0.35 | 18.5 ± 1.06 |
KCC-58 | L. citreum | 32.6 ± 2.4 | 27.3 ± 3.2 | 18.5 ± 0.35 | 22.5 ± 1.77 |
Pathogens | KCC-57 | KCC-58 | ||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
E. coli | 12.5 | 25 | 12.5 | 25 |
E. faecalis | 12.5 | - | 6.25 | 12.5 |
P. aeruginosa | 12.5 | 25 | 12.5 | 25 |
S. aureus | 25 | - | 12.5 | 25 |
Groups | Growth on MRA Agar | Growth on NA | Groups | Growth on MRA Agar | Growth on NA | Groups | Growth on NA |
---|---|---|---|---|---|---|---|
Bacterial growth (107 CFU/mL) after 12 h | |||||||
KCC-57 alone | 5.92 ± 0.68 | KCC-58 alone | 5.72 ± 0.42 | ||||
KCC-57 ± SA | 2.52 ± 0.69 | 0.38 ± 0.12 | KCC-58 + SA | 4.32 ± 1.30 | 0.776 ± 0.07 | SA alone | 28.0 ± 0.56 |
KCC-57 ± PA | 5.10 ± 0.66 | 0.78 ± 0.02 | KCC-58 + PA | 4.56 ± 0.05 | 0.736 ± 0.03 | PA alone | 28.4 ± 1.98 |
KCC-57 ± EC | 5.80 ± 0.14 | 0.02 ± 0.02 | KCC-58EC | 2.60 ± 1.13 | 0.028 ± 0.02 | EC alone | 29.5 ± 2.80 |
KCC-57 ± EF | 3.40 ± 0.56 | 0.18 ± 0.02 | KCC-58 + EF | 3.60 ± 0.28 | 0.144 ± 0.01 | EF alone | 23.4 ± 0.07 |
Bacterial growth (107 CFU/mL) after 24 h | |||||||
KCC-57 alone | 6.92 ± 0.19 | KCC-58 alone | 7.72 ± 0.65 | ||||
KCC-57 + SA | 1.16 ± 0.03 | 0.564 ± 0.10 | KCC-58 + SA | 2.46 ± 0.05 | 0.10 ± 0.01 | SA alone | 54.0 ± 6.29 |
KCC-57 + PA | 1.02 ± 0.01 | 0.288 ± 0.01 | KCC-58 + PA | 3.32 ± 0.07 | 0.23 ± 0.04 | PA alone | 47.3 ± 1.81 |
KCC-57 + EC | 3.80 ± 0.14 | 0.104 ± 0.01 | KCC-58 + EC | 2.70 ± 0.01 | 1.36 ± 0.07 | EC alone | 35.6 ± 2.26 |
KCC-57 + EF | 3.50 ± 0.35 | 0.288 ± 0.09 | KCC-58 + EF | 3.20 ± 0.42 | 0.14 ± 0.01 | EF alone | 38.7 ± 3.40 |
Bacterial growth (107 CFU/mL) after 36 h | |||||||
KCC-57 alone | 6.66 ± 0.24 | KCC-58 alone | 6.49 ± 0.46 | ||||
KCC-57 + SA | 2.21 ± 0.50 | 0.384 ± 0.12 | KCC-58 + SA | 1.59 ±0.52 | 0.676 ± 0.07 | SA alone | 48.8 ± 2.95 |
KCC-57 + PA | 3.34 ± 0.08 | 0.528 ± 0.34 | KCC-58 + PA | 1.64 ± 0.15 | 1.080 ± 0.09 | PA alone | 33.8 ± 2.07 |
KCC-57 + EC | 3.00 ± 0.42 | 0.116 ± 0.03 | KCC-58 + EC | 2.50 ± 0.21 | 0.064 ± 0.01 | EC alone | 37.7 ± 2.76 |
KCC-57 + EF | 2.30± 0.21 | 0.120 ± 0.00 | KCC-58 + EF | 2.10 ± 0.49 | 0.120 ± 0.01 | EF alone | 38.5 ± 5.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthusamy, K.; Han, H.-S.; Soundharrajan, I.; Jung, J.-S.; Valan Arasu, M.; Choi, K.-C. A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens. Microorganisms 2023, 11, 469. https://doi.org/10.3390/microorganisms11020469
Muthusamy K, Han H-S, Soundharrajan I, Jung J-S, Valan Arasu M, Choi K-C. A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens. Microorganisms. 2023; 11(2):469. https://doi.org/10.3390/microorganisms11020469
Chicago/Turabian StyleMuthusamy, Karnan, Hyo-Shim Han, Ilavenil Soundharrajan, Jeong-Sung Jung, Mariadhas Valan Arasu, and Ki-Choon Choi. 2023. "A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens" Microorganisms 11, no. 2: 469. https://doi.org/10.3390/microorganisms11020469
APA StyleMuthusamy, K., Han, H.-S., Soundharrajan, I., Jung, J.-S., Valan Arasu, M., & Choi, K.-C. (2023). A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens. Microorganisms, 11(2), 469. https://doi.org/10.3390/microorganisms11020469