Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Primers, and Culture Conditions
2.2. Electrotransformation
2.3. Plasmid Curing Using sucB Gene
2.4. Genome Reduction Using Cre/loxP System
2.4.1. Vector Construction
2.4.2. Genome-Reduction Strategy
3. Results
3.1. Isolation of Plasmid-Cured Strains
3.2. Development of Large Fragment Deletion (Genome-Reduction) Strategy Using the Cre/lox System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, Y.; Kishimoto, M.; Shintani, M.; Yoshida, N. Oligotrophic Gene Expression in Rhodococcus erythropolis N9T-4 under Various Nutrient Conditions. Microorganisms 2022, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Goethals, K.; Vereecke, D.; Jaziri, M.; Van Montagu, M.; Holsters, M. Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 2001, 39, 27–52. [Google Scholar] [CrossRef]
- Meijer, W.G.; Prescott, J.F. Rhodococcus equi. Vet. Res. 2004, 35, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Konishi, M.; Nishi, S.; Fukuoka, T.; Kitamoto, D.; Watsuji, T.O.; Nagano, Y.; Yabuki, A.; Nakagawa, S.; Hatada, Y.; Horiuchi, J. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar. Biotechnol. 2014, 16, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Roslee, A.F.A.; Zakaria, N.N.; Convey, P.; Zulkharnain, A.; Lee, G.L.Y.; Gomez-Fuentes, C.; Ahmad, S.A. Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ507. Extremophiles 2020, 24, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.J.; Kulakov, L.A.; Allen, C.C.R. Biodegradation and Rhodococcus—Masters of catabolic versatility. Curr. Opin. Biotechnol. 2005, 16, 282–290. [Google Scholar] [CrossRef]
- Maeda, M.; Chung, S.Y.; Song, E.; Kudo, T. Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis Ta421, isolated from a termite ecosystem. Appl. Environ. Microbiol. 1995, 61, 549–555. [Google Scholar] [CrossRef]
- Dabrock, B.; Kesseler, M.; Averhoff, B.; Gottschalk, G. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 1994, 60, 853–860. [Google Scholar] [CrossRef]
- Kitagawa, W.; Kimura, N.; Kamagata, Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J. Bacteriol. 2004, 186, 4894–4902. [Google Scholar] [CrossRef]
- Kitagawa, W.; Tamura, T. Three types of antibiotics produced from Rhodococcus erythropolis strains. Microb. Environ. 2008, 23, 167–171. [Google Scholar] [CrossRef]
- Iwatsuki, M.; Uchida, R.; Takakusagi, Y.; Matsumoto, A.; Jiang, C.L.; Takahashi, Y.; Arai, M.; Kobayashi, S.; Matsumoto, M.; Inokoshi, J.; et al. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J. Antibiot. 2007, 60, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Harunari, E.; Bando, M.; Igarashi, Y. Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus. J. Antibiot. 2022, 75, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.F. Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. Int. J. Syst. Evol. Microbiol. 2005, 55, 1575–1579. [Google Scholar] [CrossRef]
- Hackbusch, S.; Noirungsee, N.; Viamonte, J.; Sun, X.; Bubenheim, P.; Kostka, J.E.; Muller, R.; Liese, A. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. Mar. Pollut. Bull. 2020, 150, 110683. [Google Scholar] [CrossRef]
- Ocampo-Sosa, A.A.; Lewis, D.A.; Navas, J.; Quigley, F.; Callejo, R.; Scortti, M.; Leadon, D.P.; Fogarty, U.; Vazquez-Boland, J.A. Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J. Infect. Dis. 2007, 196, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Tilford, P.E. Fasciation of sweet peas caused by Phytomonas fascians n. sp. J. Agric. Res. 1936, 53, 0383–0394. [Google Scholar]
- Watanabe, K.; Shimizu, H.; Aihara, H.; Nakamura, R.; Suzuki, K.; Komagata, K. Isolation and identification of cholesterol-degrading Rhodococcus strains from food of animal origin and their cholesterol oxidase activities. J. Gen. Appl. Microbiol. 1986, 32, 137–147. [Google Scholar] [CrossRef]
- Holder, J.W.; Ulrich, J.C.; DeBono, A.C.; Godfrey, P.A.; Desjardins, C.A.; Zucker, J.; Zeng, Q.; Leach, A.L.; Ghiviriga, I.; Dancel, C.; et al. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet. 2011, 7, e1002219. [Google Scholar] [CrossRef]
- Benning, S.; Brugnone, N.; Siani, R.; Kublik, S.; Schloter, M.; Rad, V. Complete genome sequences of two Rhodococcus sp. strains with large and linear chromosomes, isolated from apple rhizosphere. Microbiol. Resour. Announc. 2021, 10, e0015921. [Google Scholar] [CrossRef]
- McLeod, M.P.; Warren, R.L.; Hsiao, W.W.L.; Araki, N.; Myhre, M.; Fernandes, C.; Miyazawa, D.; Wong, W.; Lillquist, A.L.; Wang, D.; et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 2006, 103, 15582–15587. [Google Scholar] [CrossRef]
- Rhodococcus opacus B4, Complete Sequence. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NC_012522.1 (accessed on 30 December 2022).
- Stamler, R.A.; Vereecke, D.; Zhang, Y.; Schilkey, F.; Devitt, N.; Randall, J.J. Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus Isolates PBTS 1 and PBTS 2. Genome Announc. 2016, 4, e00495-16. [Google Scholar] [CrossRef] [PubMed]
- Rhodococcus rhodochrous Strain EP4 Chromosome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP032221.1 (accessed on 30 December 2022).
- Prescottella equi Strain DSSKP-R-001 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP027793.1 (accessed on 30 December 2022).
- Rhodococcus ruber Strain C1 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP044211.1 (accessed on 30 December 2022).
- Rhodococcus triatomae Strain DSM 44893 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP048813.1 (accessed on 30 December 2022).
- Rhodococcus globerulus Strain D757 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP079698.1 (accessed on 30 December 2022).
- Kitagawa, W.; Hata, M. Complete genome sequence of Rhodococcus erythropolis JCM 2895, an antibiotic protein-producing strain. Microbiol. Resour. Announc. 2022, 11, e0068222. [Google Scholar] [CrossRef] [PubMed]
- Kirby, R. Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol. Lett. 2011, 319, 1–10. [Google Scholar] [CrossRef]
- Chen, C.W.; Huang, C.H.; Lee, H.H.; Tsai, H.H.; Kirby, R. Once the circle has been broken: Dynamics and evolution of Streptomyces chromosomes. Trends Genet. 2002, 18, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Crespi, M.; Messens, E.; Caplan, A.B.; Vanmontagu, M.; Desomer, J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992, 11, 795–804. [Google Scholar] [CrossRef]
- Stes, E.; Francis, I.; Pertry, I.; Dolzblasz, A.; Depuydt, S.; Vereecke, D. The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol. Lett. 2013, 342, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Kobayashi, H.; Masai, E.; Fukuda, M. Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 2001, 67, 2021–2028. [Google Scholar] [CrossRef]
- Kitagawa, W.; Miyauchi, K.; Masai, E.; Fukuda, M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J. Bacteriol. 2001, 183, 6598–6606. [Google Scholar] [CrossRef] [PubMed]
- Kosono, S.; Maeda, M.; Fuji, F.; Arai, H.; Kudo, T. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol. 1997, 63, 3282–3285. [Google Scholar] [CrossRef]
- Stecker, C.; Johann, A.; Herzberg, C.; Averhoff, B.; Gottschalk, G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 2003, 185, 5269–5274. [Google Scholar] [CrossRef]
- Kitagawa, W.; Tamura, T. A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. J. Antibiot. 2008, 61, 680–682. [Google Scholar] [CrossRef]
- Kitagawa, W.; Hata, M.; Sekizuka, T.; Kuroda, M.; Ishikawa, J. Draft genome sequence of Rhodococcus erythropolis JCM 6824, an aurachin RE antibiotic producer. Genome Announ. 2014, 2, e01026-14. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, W.; Mitsuhashi, S.; Hata, M.; Tamura, T. Identification of a novel bacteriocin-like protein and structural gene from Rhodococcus erythropolis JCM 2895, using suppression-subtractive hybridization. J. Antibiot. 2018, 71, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Van der Geize, R.; Hessels, G.I.; van Gerwen, R.; van der Meijden, P.; Dijkhuizen, L. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol. Lett. 2001, 205, 197–202. [Google Scholar] [CrossRef]
- Nakashima, N.; Tamura, T. A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35 degrees C. Biotechnol. Bioeng. 2004, 86, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Mitani, Y.; Tamura, T. Construction of random transposition mutagenesis system in Rhodococcus erythropolis using IS1415. J. Biotechnol. 2006, 121, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitagawa, W.; Kumagai, T.; Tajima, N.; Nishimiya, Y.; Tamano, K.; Yasutake, Y.; Tamura, T.; Kameda, T. Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci. Rep. 2019, 9, 8338. [Google Scholar] [CrossRef]
- Nakashima, N.; Tamura, T. Isolation and characterization of a rolling-circle-type plasmid form Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl. Environ. Microbiol. 2004, 70, 5557–5568. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Tamura, N.; Tamura, T. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 2007, 386, 173–182. [Google Scholar] [CrossRef]
- Shao, Z.; Dick, W.A.; Behki, R.M. An improved Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett. Appl. Microbiol. 1995, 21, 261–266. [Google Scholar] [CrossRef]
- Fukuda, M.; Shimizu, S.; Okita, N.; Seto, M.; Masai, E. Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1. Antonie Van Leeuwenhoek 1998, 74, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Redenbach, M.; Scheel, J.; Schmidt, U. Chromosome topology and genome size of selected actinomycetes species. Antonie Van Leeuwenhoek 2000, 78, 227–235. [Google Scholar] [CrossRef]
- Takai, S.; Sugawara, T.; Watanabe, Y.; Sasaki, Y.; Tsubaki, S.; Sekizaki, T. Effect of growth temperature on maintenance of virulent Rhodococcus equi. Vet. Microbiol. 1994, 39, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Molinatto, G.; Franzil, L.; Steels, S.; Puopolo, G.; Pertot, I.; Ongena, M. Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production. Front. Microbiol. 2017, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.K.; Dubey, A.K. Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia coli overexpressing target gene. Biotechnol. Lett. 1995, 17, 1155–1160. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, S.A.; Seo, S.O.; Li, L.; Han, N.S. Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700. Lett. Appl. Microbiol. 2019, 68, 430–436. [Google Scholar] [CrossRef]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol. Adv. 2021, 49, 107748. [Google Scholar] [CrossRef]
- Kitagawa, W.; Takami, S.; Miyauchi, K.; Masai, E.; Kamagata, Y.; Tiedje, J.M.; Fukuda, M. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J. Bacteriol. 2002, 184, 509–518. [Google Scholar] [CrossRef]
- Schafer, A.; Tauch, A.; Jager, W.; Kalinowski, J.; Thierbach, G.; Puhler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- Suzuki, N.; Nonaka, H.; Tsuge, Y.; Inui, M.; Yukawa, H. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 2005, 71, 8472–8480. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C.; Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 1978, 134, 1141–1156. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, N.; Tamura, T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 2009, 37, e103. [Google Scholar] [CrossRef] [PubMed]
- Takai, S.; Sekizaki, T.; Ozawa, T.; Sugawara, T.; Watanabe, Y.; Tsubaki, S. Association between a large plasmid and 15- to 17-kilodalton antigens in virulent Rhodococcus equi. Infect. Immun. 1991, 59, 4056–4060. [Google Scholar] [CrossRef]
- Gasson, M.J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 1983, 154, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fazlurrahman; Batra, M.; Pandey, J.; Suri, C.R.; Jain, R.K. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Lett. Appl. Microbiol. 2009, 49, 721–729. [Google Scholar] [CrossRef]
- Coleman, N.V.; Spain, J.C.; Duxbury, T. Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J. Appl. Microbiol. 2002, 93, 463–472. [Google Scholar] [CrossRef]
- Dodge, A.G.; Wackett, L.P.; Sadowsky, M.J. Plasmid localization and organization of melamine degradation genes in Rhodococcus sp. strain Mel. Appl. Environ. Microbiol. 2012, 78, 1397–1403. [Google Scholar] [CrossRef]
- Kitagawa, W.; Ozaki, T.; Nishioka, T.; Yasutake, Y.; Hata, M.; Nishiyama, M.; Kuzuyama, T.; Tamura, T. Cloning and heterologous expression of the aurachin RE biosynthesis gene cluster afford a new cytochrome P450 for quinoline N-hydroxylation. ChemBioChem 2013, 14, 1085–1093. [Google Scholar] [CrossRef]
- Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef]
- Ghosh, K.; Van Duyne, G.D. Cre-loxP biochemistry. Methods 2002, 28, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Ohtsubo, Y.; Ikeda-Ohtsubo, W.; Nagata, Y.; Tsuda, M. GenomeMatcher: A graphical user interface for DNA sequence comparison. BMC Bioinform. 2008, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.; Lazos, O.; Haines, A.; Thomas, C. An efficient stress-free strategy to displace stable bacterial plasmids. Biotechniques 2010, 48, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Hynes, M.F.; Quandt, J.; O’Connell, M.P.; Pühler, A. Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 1989, 78, 111–120. [Google Scholar] [CrossRef] [PubMed]
Strain | Deletion Size (bp) | Total Deletion Size (bp) | Genome Size (bp) | Description |
---|---|---|---|---|
R. erythropolis JCM 2895 | 0 | 0 | 6,773,716 | Wild-type, 1 chromosome and 4 plasmids |
R0901 | 79,600 | 79,600 | 6,694,116 | pR09C01 cured strain of JCM 2895 |
R0902 | 227,989 | 307,589 | 6,466,127 | pR09L01 cured strain of R0901 |
R0903 | 5420 | 313,009 | 6,460,707 | pREC01 cured strain of R0902 |
R0904 | 5444 | 318,453 | 6,455,263 | pREC02 cured strain of R0903 |
R0905 | 117,555 | 436,008 | 6,337,754 | T1 reduction strain of R0904 |
R0906 | 6428 | 442,436 | 6,331,332 | T2 reduction strain of R0905 |
R0907 | 20,023 | 462,459 | 6,311,355 | T3 reduction strain of R0906 |
R0908 | 45,236 | 507,695 | 6,266,177 | T4 reduction strain of R0907 |
R0909 | 21,194 | 528,889 | 6,245,042 | T5 reduction strain of R0908 |
R0910 | 45,770 | 574,659 | 6,199,331 | T6 reduction strain of R0909 |
R0911 | 27,820 | 602,479 | 6,171,581 | T7 reduction strain of R0910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagawa, W.; Hata, M. Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms 2023, 11, 268. https://doi.org/10.3390/microorganisms11020268
Kitagawa W, Hata M. Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms. 2023; 11(2):268. https://doi.org/10.3390/microorganisms11020268
Chicago/Turabian StyleKitagawa, Wataru, and Miyako Hata. 2023. "Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis" Microorganisms 11, no. 2: 268. https://doi.org/10.3390/microorganisms11020268
APA StyleKitagawa, W., & Hata, M. (2023). Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms, 11(2), 268. https://doi.org/10.3390/microorganisms11020268