Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Study of Doughs’ Properties
2.2.1. pH
2.2.2. TTA
2.2.3. D/L Lactic Acid Titration
- V = Final volume (mL).
- v = Sample volume (mL).
- d = Light path (1 cm).
- ε = Extinction coefficient of NADH (at 340 nm = 6.3 L × mmol−1 × cm−1).
- MW = Molecular weight of the substance to be assayed (in this case, for lactic acid, MW = 90.1 g/mol).
2.3. LAB Characterization
2.3.1. Cultures Preparation and Enumeration
2.3.2. Phenotypic and Biochemical Characterization
- Gram characterization
- (a)
- Catalase test
- (b)
- Homo/Heterofermentative test
2.3.3. Molecular Characterization of LAB
- (a)
- DNA extraction:
- (b)
- DNA quantitation and dilution:
- (c)
- Polymerase Chain Reaction (PCR):
- 16S/2-23S/10 primer set: This primer set consists of universal primers that serve to amplify the rrn operon region, which helps in genus identification.
- tRNAala-23S/7 primer set: These primers serve to amplify the tRNAala DNA sequence of the rrn operon, which was later used for RFLP for species differentiation.
- Fructilactobacillus sanfranciscensis species-specific primers: These primers are specific to Fructilactobacillus sanfranciscensis species, the most commonly encountered species in cereal products.
- Denaturation: 1 min at 94 °C.
- Primer annealing: 1 min at the optimal primer annealing temperature.
- Extension: 1 min at 72 °C.
- (d)
- Restriction fragment length polymorphism (RFLP)
- (e)
- Gel electrophoresis
2.3.4. LAB Antagonistic Effects
- (a)
- Agar well diffusion assay
- (b)
- Inoculation in medium containing liquid phase from LAB-containing media.
2.3.5. Statistical Evaluation
3. Results
3.1. Dough’s Specific Properties
3.2. Colony Count
3.3. Phenotypic and Biochemical Characterization
3.4. Molecular Characterization
3.5. LAB Antagonistic Effects
- (a)
- Well diffusion assay.
- (b)
- Inoculation in medium containing liquid phase from LAB-containing media.
4. Discussion
4.1. Doughs’ Specific Properties
4.2. LAB Characterization
4.3. LAB Antagonistic Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bread. Available online: https://www.britannica.com/topic/bread (accessed on 3 September 2023).
- Preedy, V.R.; Watson, R.; Patel, V.B. Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier Science & Technology: San Diego, CA, USA, 2011. [Google Scholar]
- Rosell, C.M. Bread: Chemistry of Baking. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 484–489. [Google Scholar]
- Betoret, E.; Rosell, C.M. Chapter 21—Improved nutritional and Dietary Quality of Breads. In Breadmaking, 3rd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 619–646. [Google Scholar]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough bread: A contemporary cereal fermented product. J. Food. Process. Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- De Moreno De Leblanc, A.; Chaves, S.; Perdigón, G. Effect of Yoghurt on the Cytokine Profile using a Murine Model of Intestinal Inflammation. Eur. J. Inflamm. 2009, 7, 97–109. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; del Carmen, S.; Miyoshi, A.; Azevedo, V.; Sesma, F.; Langella, P.; de LeBlanc, A.D.M. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J. Biotechnol. 2011, 151, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; López, R.L.; Pulido, R.P.; Burgos, M.J.G. (Eds.) Application of Lactic Acid Bacteria and Their Bacteriocins for Food Biopreservation. In Food Biopreservation; Springer: New York, NY, USA, 2014; pp. 15–22. [Google Scholar]
- Lindgren, S.E.; Dobrogosz, W.J. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 1990, 7, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Soro-Yao, A.A.; Brou, K.; Amani, G.; Thonart, P.; Djè, K.M. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review. Trop. Life Sci. Res. 2014, 25, 81–100. [Google Scholar] [PubMed]
- Huys, G.; Daniel, H.; De Vuyst, L. Taxonomy and Biodiversity of Sourdough Yeasts and Lactic Acid Bacteria. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: New York, NY, USA, 2013; pp. 105–154. [Google Scholar]
- Kline, L.; Sugihara, T.F. Microorganisms of the San Francisco sour dough bread process: II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl. Microbiol. 1971, 21, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Gram Staining: Principle, Procedure, Interpretation, Examples and Animation. Available online: https://microbiologyinfo.com/gram-staining-principle-procedure-interpretation-examples-and-animation/ (accessed on 3 September 2023).
- Åhman, J.; Matuschek, E.; Kahlmeter, G. Evaluation of ten brands of pre-poured Mueller-Hinton agar plates for EUCAST disc diffusion testing. Clin. Microbiol. Infect. 2022, 28, 1499.e1–1499.e5. [Google Scholar] [CrossRef] [PubMed]
- Tyl, C.; Sadler, G.D. pH and Titratable Acidity. In Food Analysis; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 389–406. [Google Scholar]
- Bartkiene, E.; Schleining, G.; Rekstyte, T.; Krungleviciute, V.; Juodeikiene, G.; Vaiciulyte-Funk, L.; Maknickiene, Z. Influence of the addition of lupin sourdough with different lactobacilli on dough properties and bread quality. Int. J. Food Sci. Technol. 2013, 48, 2613–2620. [Google Scholar] [CrossRef]
- Kitahara, K.; Obayashi, A. Dl-Forming Lactic Acid BacterIA. J. Gen. Appl. Microbiol. 1955, 1, 237–245. [Google Scholar] [CrossRef]
- Mirdamadi, S.; Sadeghi, H.; Sharafi, N.; Fallahpour, M.; Aziz Mohseni, F.; Bakhtiari, M.R. Comparison of lactic acid isomers produced by fungal and bacterial strains. Iran. Biomed. J. 2002, 6, 69–75. [Google Scholar]
- Rachman, C.; Kabadjova, P.; Valcheva, R.; Prévost, H.; Dousset, X. Identification of Carnobacterium Species by Restriction Fragment Length Polymorphism of the 16S-23S rRNA Gene Intergenic Spacer Region and Species-Specific PCR. Appl. Environ. Microbiol. 2004, 70, 4468–4477. [Google Scholar] [CrossRef] [PubMed]
- Rachman, C.N.; Kabadjova, P.; Prévost, H.; Dousset, X. Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S–23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J. Appl. Microbiol. 2003, 95, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
Reagent | Quantity (µL) |
---|---|
Reaction buffer mix with MgCl2 | 25 |
Forward primer (0.5 µM) | 1 |
Reverse primer (0.5 µM) | 1 |
DNA template (20–100 ng/µL) | 1 |
Water (ddH2O Nuclease free) | 22 |
Final volume | 50 |
Primer Set | Forward Primer | Reverse Primer | Optimal Annealing Temperature |
---|---|---|---|
16S/2-23S/10 | CTT GTA CAC ACC GCC CGT C | CCT TTC CCT CAC GT ACT G | 60 °C |
tRNAala-23S/7 | TAG CTC AGC TGG GAG AGC | GGT ACT TAG ATG TTT CAG | 60 °C |
Fructilactobacillus sanfranciscensis species specific | AAG TCG CCC AAT TGA TTC TTA GT | TTC ACC CTA ATC ATC TGT CCC A | 65 °C |
Restriction Enzyme | Source | Restriction Site | Temperature | Provider |
---|---|---|---|---|
HindIII | Haemophilus Influenzae | A/AGCTT | 37 °C | Thermo Fisher Scientific, Waltham, MA, USA |
HinfI | Haemophilus Influenzae | G/ANTC | 37 °C | Promega, Madison, WI, USA |
TaqI | Thermus Aquaticus | T/CGA | 65 °C | Promega |
Flour Type | pH | TTA (mL/N/10/10 g) |
---|---|---|
Wheat | 5.85 | 5.2 |
Oat | 5.73 | 4.8 |
Rice | 4.66 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleib, J.; Rizk, Z.; Tannouri, A.; Abou-Khalil, R. Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments. Microorganisms 2023, 11, 2815. https://doi.org/10.3390/microorganisms11112815
Kleib J, Rizk Z, Tannouri A, Abou-Khalil R. Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments. Microorganisms. 2023; 11(11):2815. https://doi.org/10.3390/microorganisms11112815
Chicago/Turabian StyleKleib, Jihad, Ziad Rizk, Abdo Tannouri, and Rony Abou-Khalil. 2023. "Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments" Microorganisms 11, no. 11: 2815. https://doi.org/10.3390/microorganisms11112815
APA StyleKleib, J., Rizk, Z., Tannouri, A., & Abou-Khalil, R. (2023). Molecular Characterization of Lactic Acid Bacteria in Bakery and Pastry Starter Ferments. Microorganisms, 11(11), 2815. https://doi.org/10.3390/microorganisms11112815