T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patient Recruitment
2.3. Isolation of PBMCs
2.4. Monoclonal Antibodies (mAbs)
2.5. Flow Cytometry Assay
2.6. Flow Cytometry Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Demographical Characteristics
3.2. NTB Patients Express Higher CD69+CD4+ T Cells than the VTB Group after Viral Antigen Stimulation
3.3. CD8+ T Cells from TB Patients Vaccinated against COVID-19 Have Lower Frequencies of TNF-α, While CD4+ T Cells Express Higher IL-10 Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, T.; Shah, Z.; Yasmeen, N.; Baloch, Z.; Xia, X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front. Immunol. 2022, 13, 909011. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.Y.; Komarasamy, T.V.; RMT Balasubramaniam, V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol. 2021, 12, 742941. [Google Scholar] [CrossRef] [PubMed]
- Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev. 2018, 27, 170077. [Google Scholar] [CrossRef] [PubMed]
- Muefong, C.N.; Sutherland, J.S. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front. Immunol. 2020, 11, 539802. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.G.; Kwon, K.W.; Kim, K.; Lee, I.; Kim, M.J.; Ha, S.J.; Shin, S.J. Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nat. Commun. 2022, 13, 3155. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.D.; Han, I.; Choi, E.H.; Yadav, D.K. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr. Issues Mol. Biol. 2023, 45, 400–433. [Google Scholar] [CrossRef] [PubMed]
- Mousquer, G.T.; Peres, A.; Fiegenbaum, M. Pathology of TB/COVID-19 Co-Infection: The phantom menace. Tuberculosis 2021, 126, 102020. [Google Scholar] [CrossRef]
- Wells, G.; Glasgow, J.N.; Nargan, K.; Lumamba, K.; Madansein, R.; Maharaj, K.; Perumal, L.Y.; Matthew, M.; Hunter, R.L.; Pacl, H.; et al. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol. Med. 2022, 14, e16283. [Google Scholar] [CrossRef]
- Flores-Lovon, K.; Ortiz-Saavedra, B.; Cueva-Chicaña, L.A.; Aperrigue-Lira, S.; Montes-Madariaga, E.S.; Soriano-Moreno, D.R.; Bell, B.; Macedo, R. Immune responses in COVID-19 and tuberculosis coinfection: A scoping review. Front. Immunol. 2022, 13, 992743. [Google Scholar] [CrossRef]
- du Bruyn, E.; Stek, C.; Daroowala, R.; Said-Hartley, Q.; Hsiao, M.; Schafer, G.; Goliath, R.T.; Abrahams, F.; Jackson, A.; Wasserman, S.; et al. Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nat. Commun. 2023, 14, 188. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Fleming, J.; Yu, Y.; Gu, Y.; Liu, C.; Fan, L.; Wang, X.; Cheng, M.; Bi, L.; et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv 2020. [Google Scholar] [CrossRef]
- Gonzalez-Perez, M.; Sanchez-Tarjuelo, R.; Shor, B.; Nistal-Villan, E.; Ochando, J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front. Immunol. 2021, 12, 632478. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, D.; Abhimanyu; Peton, N.; Vo, W.; Allison, C.C.; Wang, X.; Johnson, W.E.; Coussens, A.K. Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. iScience 2022, 25, 104464. [Google Scholar] [CrossRef] [PubMed]
- Petrone, L.; Petruccioli, E.; Vanini, V.; Cuzzi, G.; Gualano, G.; Vittozzi, P.; Nicastri, E.; Maffongelli, G.; Grifoni, A.; Sette, A.; et al. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int. J. Infect. Dis. 2021, 113 (Suppl. S1), S82–S87. [Google Scholar] [CrossRef] [PubMed]
- Chiok, K.R.; Dhar, N.; Banerjee, A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023, 26, 106629. [Google Scholar] [CrossRef]
- Riou, C.; du Bruyn, E.; Stek, C.; Daroowala, R.; Goliath, R.T.; Abrahams, F.; Said-Hartley, Q.; Allwood, B.W.; Hsiao, N.Y.; Wilkinson, K.A.; et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J. Clin. Investig. 2021, 131, e149125. [Google Scholar] [CrossRef]
- Pathak, L.; Gayan, S.; Pal, B.; Talukdar, J.; Bhuyan, S.; Sandhya, S.; Yeger, H.; Baishya, D.; Das, B. Coronavirus Activates an Altruistic Stem Cell-Mediated Defense Mechanism that Reactivates Dormant Tuberculosis: Implications in Coronavirus Disease 2019 Pandemic. Am. J. Pathol. 2021, 191, 1255–1268. [Google Scholar] [CrossRef]
- Mejia, O.R.; Gloag, E.S.; Li, J.; Ruane-Foster, M.; Claeys, T.A.; Farkas, D.; Wang, S.H.; Farkas, L.; Xin, G.; Robinson, R.T. Mice infected with Mycobacterium tuberculosis are resistant to acute disease caused by secondary infection with SARS-CoV-2. PLoS Pathog. 2022, 18, e1010093. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Wang, H.; Gong, W. The Potential Roles of BCG Vaccine in the Prevention or Treatment of COVID-19. Front. Biosci. 2022, 27, 157. [Google Scholar] [CrossRef]
- Pittet, L.F.; Messina, N.L.; Orsini, F.; Moore, C.L.; Abruzzo, V.; Barry, S.; Bonnici, R.; Bonten, M.; Campbell, J.; Croda, J.; et al. Randomized Trial of BCG Vaccine to Protect against COVID-19 in Health Care Workers. N. Engl. J. Med. 2023, 388, 1582–1596. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Shuai, H.; Gong, H.R.; Hu, J.C.; Yan, B.; Yuen, T.T.T.; Hu, Y.F.; Yoon, C.; Wang, X.L.; Hou, Y.; et al. Bacillus Calmette-Guérin-induced trained immunity protects against SARS-CoV-2 challenge in K18-hACE2 mice. JCI Insight 2022, 7, e157393. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.H.; Zheng, X.F.; Yi, L.; Wang, J.; Wang, X.J.; Wei, P.J.; Jia, H.Y.; Zhou, L.J.; Zhao, Y.L.; Zhang, H.T. CD137 is a Useful Marker for Identifying CD4+ T Cell Responses to Mycobacterium tuberculosis. Scand. J. Immunol. 2017, 85, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T Cell Activation. Annu. Rev. Immunol. 2009, 27, 591. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Wang, L.; Gu, L.; Qu, R.; Lowrie, D.B.; Hu, Z.; Sha, W.; Fan, X.Y. Decreased Expression of CD69 on T Cells in Tuberculosis Infection Resisters. Front. Microbiol. 2020, 11, 557348. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xue, Y.; Mao, L.; Lin, Q.; Tang, G.; Song, H.; Liu, W.; Tong, S.; Hou, H.; Huang, M.; et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front. Immunol. 2021, 12, 721013. [Google Scholar] [CrossRef]
- Musvosvi, M.; Huang, H.; Wang, C.; Xia, Q.; Rozot, V.; Krishnan, A.; Acs, P.; Cheruku, A.; Obermoser, G.; Leslie, A.; et al. T cell receptor repertoires associated with control and disease progression following Mycobacterium tuberculosis infection. Nat. Med. 2023, 29, 258–269. [Google Scholar] [CrossRef]
- Ueland, T.; Heggelund, L.; Lind, A.; Holten, A.R.; Tonby, K.; Michelsen, A.E.; Jenum, S.; Jørgensen, M.J.; Barratt-Due, A.; Skeie, L.G.; et al. Elevated plasma sTIM-3 levels in patients with severe COVID-19. J. Allergy Clin. Immunol. 2021, 147, 92–98. [Google Scholar] [CrossRef]
- Kalfaoglu, B.; Almeida-Santos, J.; Tye, C.A.; Satou, Y.; Ono, M. T-cell dysregulation in COVID-19. Biochem. Biophys. Res. Commun. 2021, 538, 204–210. [Google Scholar] [CrossRef]
- Najafi-Fard, S.; Aiello, A.; Navarra, A.; Cuzzi, G.; Vanini, V.; Migliori, G.B.; Gualano, G.; Cerva, C.; Grifoni, A.; Sette, A.; et al. Characterization of the immune impairment of patients with tuberculosis and COVID-19 coinfection. Int. J. Infect. Dis. 2023, 130 (Suppl. S1), S34–S42. [Google Scholar] [CrossRef]
- Sancho, D.; Gómez, M.; Sánchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 2005, 26, 136–140. [Google Scholar] [CrossRef]
- Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 2005, 23, 23–68. [Google Scholar] [CrossRef] [PubMed]
- Fernández Do Porto, D.A.; Jurado, J.O.; Pasquinelli, V.; Alvarez, I.B.; Aspera, R.H.; Musella, R.M.; García, V.E. CD137 differentially regulates innate and adaptive immunity against Mycobacterium tuberculosis. Immunol. Cell Biol. 2012, 90, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef] [PubMed]
- Mertowska, P.; Smolak, K.; Mertowski, S.; Grywalska, E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int. J. Mol. Sci. 2023, 24, 10115. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Hansen, M.R.; Tripp, R.A. Interferons—Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023, 11, 2179. [Google Scholar] [CrossRef]
- Aiello, A.; Najafi-Fard, S.; Goletti, D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: Similarities and differences. Front. Immunol. 2023, 14, 1244556. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Baker, P.J.; Amaral, E.P.; Castro, E.; Bohrer, A.C.; Torres-Juárez, F.; Jordan, C.M.; Nelson, C.E.; Barber, D.L.; Johnson, R.F.; Hilligan, K.L.; et al. Co-infection of mice with SARS-CoV-2 and Mycobacterium tuberculosis limits early viral replication but does not affect mycobacterial loads. Front. Immunol. 2023, 14, 1240419. [Google Scholar] [CrossRef]
- Cronan, M.R. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front. Immunol. 2022, 13, 820134. [Google Scholar] [CrossRef]
- Brighenti, S.; Andersson, J. Local Immune Responses in Human Tuberculosis: Learning from the Site of Infection. J. Infect. Dis. 2012, 205, S316–S324. [Google Scholar] [CrossRef]
- Koupaei, M.; Naimi, A.; Moafi, N.; Mohammadi, P.; Tabatabaei, F.S.; Ghazizadeh, S.; Heidary, M.; Khoshnood, S. Clinical Characteristics, Diagnosis, Treatment, and Mortality Rate of TB/COVID-19 Coinfectetd Patients: A Systematic Review. Front. Med. 2021, 8, 740593. [Google Scholar] [CrossRef] [PubMed]
- Starshinova, A.; Kudryavtsev, I.; Rubinstein, A.; Malkova, A.; Dovgaluk, I.; Kudlay, D. Tuberculosis and COVID-19 Dually Affect Human Th17 Cell Immune Response. Biomedicines 2023, 11, 2123. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.Y.; Zulkafli, N.E.S.; Ad’hiah, A.H. Serum profiles of pro-inflammatory and anti-inflammatory cytokines in non-hospitalized patients with mild/moderate COVID-19 infection. Immunol. Lett. 2023, 260, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chess, L. Regulation of immune responses by T cells. N. Engl. J. Med. 2006, 354, 1166–1176. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Panelli, M.C.; Wang, E.; Nagorsen, D.; Marincola, F.M. The dual role of IL-10. Trends Immunol. 2003, 24, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Parato, K.G.; Kumar, A.; Badley, A.D.; Sanchez-Dardon, J.L.; Chambers, K.A.; Young, C.D.; Lim, W.T.; Kravcik, S.; Cameron, D.W.; Angel, J.B. Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10. AIDS 2002, 16, 1251–1256. [Google Scholar] [CrossRef]
- Cai, G.; Kastelein, R.A.; Hunter, C.A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-q when combined with IL-18. Eur. J. Immunol. 1999, 29, 2658–2665. [Google Scholar] [CrossRef]
- de Andrade, A.G.; Comberlang, F.C.; Cavalcante-Silva, L.H.A.; Kessen, T.S.L. COVID-19 vaccination: Effects of immunodominant peptides of SARS-CoV-2. Cytokine 2023, 170, 156339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante-Silva, L.H.A.; Leite, E.G.; Almeida, F.S.; Andrade, A.G.d.; Comberlang, F.C.; Lucena, C.K.R.; Pachá, A.S.C.; Csordas, B.G.; Keesen, T.S.L. T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19. Microorganisms 2023, 11, 2810. https://doi.org/10.3390/microorganisms11112810
Cavalcante-Silva LHA, Leite EG, Almeida FS, Andrade AGd, Comberlang FC, Lucena CKR, Pachá ASC, Csordas BG, Keesen TSL. T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19. Microorganisms. 2023; 11(11):2810. https://doi.org/10.3390/microorganisms11112810
Chicago/Turabian StyleCavalcante-Silva, Luiz Henrique Agra, Ericka Garcia Leite, Fernanda Silva Almeida, Arthur Gomes de Andrade, Fernando Cézar Comberlang, Cintya Karina Rolim Lucena, Anna Stella Cysneiros Pachá, Bárbara Guimarães Csordas, and Tatjana S. L. Keesen. 2023. "T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19" Microorganisms 11, no. 11: 2810. https://doi.org/10.3390/microorganisms11112810
APA StyleCavalcante-Silva, L. H. A., Leite, E. G., Almeida, F. S., Andrade, A. G. d., Comberlang, F. C., Lucena, C. K. R., Pachá, A. S. C., Csordas, B. G., & Keesen, T. S. L. (2023). T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19. Microorganisms, 11(11), 2810. https://doi.org/10.3390/microorganisms11112810