Possible Mechanisms of Lymphopenia in Severe Tuberculosis
Abstract
:1. Introduction
2. Lymphopenia Is Common in TB Patients
3. The Possible Mechanisms That Cause Lymphopenia
3.1. Macrophages Inhibit Lymphocyte Proliferation
3.2. M. tuberculosis-Induced Apoptosis of T Lymphocyte
3.3. M. tuberculosis-Mediated Bone Marrow Hematopoietic Dysfunction
3.4. T Cell Exhaustion
3.5. Tissue Redistribution of Lymphocytes
3.6. Aging-Related Immunosuppression
3.7. Activation-Induced Cell Death in Lymphocytes
3.8. Myeloid-Deprived Suppressor Cells
4. Potential Immunotherapies
4.1. Reducing Apoptosis
4.2. Targeting Lymphocyte Generation
Strategy | Major Changes | Intervention Methods | Intervention Mechanism |
---|---|---|---|
Reducing apoptosis | FasL ↑ | Fas antibody [109] | Attenuates CD3/IL-2-induced T cell apoptosis |
Bcl-2 ↓ | Bcl-2 overexpression [44] | Protects T cells from TNF receptor-related apoptosis | |
IFN-γ, IL-4, TNF-α, or TGF-β ↑ | IFN-γ antibody [46], IL-4 antibody [34], TNF-α antibody [34], TGF-β antibody [44] | Reduces the cytokines-mediated lymphocyte apoptosis | |
Targeting lymphocyte generation | IL-7, IL-2, SCF, NOTCH1, GATA2, IRF4, Pax5 ↓ | IL-7, IL-2, SCF [118], NOTCH1 enhancer, GATA2 enhancer [12,120], IRF4 enhancer, and Pax5 enhancer [121,122] | Promote lymphopoiesis |
IFR8, Batf2 ↑ | IFR8 and Batf2 inhibitors [59] | Reduces myeloid differentiation to promote lymphopoiesis |
5. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A. The white plague returns to London—With a vengeance. Lancet 2011, 377, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 2023, 4, e20. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J. Immune cell interactions in tuberculosis. Cell 2022, 185, 4682–4702. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ye, Z.; Li, L.; Yang, L.; Gong, W. Next-generation TB vaccines: Progress, challenges, and prospects. Vaccines 2023, 11, 1304. [Google Scholar] [CrossRef]
- Prezzemolo, T.; Guggino, G.; La Manna, M.P.; Di Liberto, D.; Dieli, F.; Caccamo, N. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front. Immunol. 2014, 5, 180. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; He, M.; Cui, H.; Zhang, J.; Shi, L.; Wang, W.; Xu, W.; Gao, B.; Ding, J. Weak binder for MHC molecule is a potent Mycobacterium tuberculosis-specific CTL epitope in the context of HLA-A24 allele. Microb. Pathog. 2012, 53, 162–167. [Google Scholar] [CrossRef]
- Ruiz-Bedoya, C.A.; Mota, F.; Tucker, E.W.; Mahmud, F.J.; Reyes-Mantilla, M.I.; Erice, C.; Bahr, M.; Flavahan, K.; de Jesus, P.; Kim, J.; et al. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J. Clin. Investig. 2022, 132, e155851. [Google Scholar] [CrossRef]
- Erbes, R.; Oettel, K.; Raffenberg, M.; Mauch, H.; Schmidt-Ioanas, M.; Lode, H. Characteristics and outcome of patients with active pulmonary tuberculosis requiring intensive care. Eur. Respir. J. 2006, 27, 1223–1228. [Google Scholar] [CrossRef]
- Li, F.; Ma, Y.; Li, X.; Zhang, D.; Han, J.; Tan, D.; Mi, Y.; Yang, X.; Wang, J.; Zhu, B. Severe persistent mycobacteria antigen stimulation causes lymphopenia through impairing hematopoiesis. Front. Cell. Infect. Microbiol. 2023, 13, 1079774. [Google Scholar] [CrossRef]
- Achi, H.V.; Ahui, B.J.; Anon, J.C.; Kouassi, B.A.; Dje-Bi, H.; Kininlman, H. Pancytopenia: A severe complication of miliary tuberculosis. Rev. Des Mal. Respir. 2013, 30, 33–37. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Niu, H.; Lv, W.; Han, X.; Zhang, Y.; Zhu, B. Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Mol. Immunol. 2019, 112, 115–122. [Google Scholar] [CrossRef]
- Duro, R.P.; Figueiredo Dias, P.; Ferreira, A.A.; Xerinda, S.M.; Lima Alves, C.; Sarmento, A.C.; Dos Santos, L.C. Severe tuberculosis requiring intensive care: A descriptive analysis. Crit. Care Res. Pract. 2017, 2017, 9535463. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.G.; Rohlwink, U.K.; Proust, A.; Figaji, A.A.; Wilkinson, R.J. The pathogenesis of tuberculous meningitis. J. Leukoc. Biol. 2019, 105, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.S.; Medeiros, E.A.; Weckx, L.Y.; Bonnez, W.; Salomão, R.; Kallas, E.G. Immunophenotypic characterization of peripheral T lymphocytes in Mycobacterium tuberculosis infection and disease. Clin. Exp. Immunol. 2002, 128, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, B.R.; García, A.; Minotti, A.; González Montaner, P.; Moracho, L.; Morcillo, N.S.; Palmero, D.J.; Sasiain, M.D.C.; de la Barrera, S. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin. Exp. Immunol. 2021, 203, 267–280. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Niu, H.; Ma, L.; Chen, J.; Zhang, Y.; Peng, L.; Gan, C.; Ma, X.; Zhu, B. IL-2 restores T-cell dysfunction induced by persistent Mycobacterium tuberculosis antigen stimulation. Front. Immunol. 2019, 10, 2350. [Google Scholar] [CrossRef]
- Li, K.; Ran, R.; Jiang, Z.; Fan, C.; Li, T.; Yin, Z. Changes in T-lymphocyte subsets and risk factors in human immunodeficiency virus-negative patients with active tuberculosis. Infection 2020, 48, 585–595. [Google Scholar] [CrossRef]
- Sheu, T.T.; Chiang, B.L. Lymphopenia, lymphopenia-induced proliferation, and autoimmunity. Int. J. Mol. Sci. 2021, 22, 4152. [Google Scholar] [CrossRef]
- Deveci, F.; Akbulut, H.H.; Celik, I.; Muz, M.H.; Ilhan, F. Lymphocyte subpopulations in pulmonary tuberculosis patients. Mediat. Inflamm. 2006, 2006, 89070. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Q.; Zhang, Y.; Li, X.; Liang, Q.; Guo, R.; Zhang, L.; Han, X.; Wang, J.; Shao, L.; et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J. Infect. 2023, 86, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.; Chen, D.; Wu, X.; Chen, H.; Qiu, Q.; Yang, X.; Zhan, Z. Active tuberculosis in patients with systemic lupus erythematosus from Southern China: A retrospective study. Clin. Rheumatol. 2019, 38, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, A.V.; Nikitina, I.Y.; Burmistrova, I.A.; Kosmiadi, G.A.; Radaeva, T.V.; Amansahedov, R.B.; Sadikov, P.V.; Serdyuk, Y.V.; Larionova, E.E.; Bagdasarian, T.R.; et al. Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front. Immunol. 2017, 8, 963. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Oo, M.M.; Taikwel, E.K.; Qian, D.; Kumar, A.; Maslow, E.R.; Barnes, P.F. CD4 cell counts in human immunodeficiency virus-negative patients with tuberculosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1997, 24, 988–991. [Google Scholar] [CrossRef]
- Chedid, C.; Kokhreidze, E.; Tukvadze, N.; Banu, S.; Uddin, M.K.M.; Biswas, S.; Russomando, G.; Acosta, C.C.D.; Arenas, R.; Ranaivomanana, P.P.; et al. Association of baseline white blood cell counts with tuberculosis treatment outcome: A prospective multicentered cohort study. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 100, 199–206. [Google Scholar] [CrossRef]
- Shanmuganathan, G.; Orujyan, D.; Narinyan, W.; Poladian, N.; Dhama, S.; Parthasarathy, A.; Ha, A.; Tran, D.; Velpuri, P.; Nguyen, K.H.; et al. Role of interferons in Mycobacterium tuberculosis infection. Clin. Pract. 2022, 12, 788–796. [Google Scholar] [CrossRef]
- Huber, S.; Hoffmann, R.; Muskens, F.; Voehringer, D. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 2010, 116, 3311–3320. [Google Scholar] [CrossRef]
- Upham, J.W.; Strickland, D.H.; Robinson, B.W.; Holt, P.G. Selective inhibition of T cell proliferation but not expression of effector function by human alveolar macrophages. Thorax 1997, 52, 786–795. [Google Scholar] [CrossRef]
- Upham, J.W.; Strickland, D.H.; Bilyk, N.; Robinson, B.W.; Holt, P.G. Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology 1995, 84, 142–147. [Google Scholar]
- Grange, J.M. Inhibition of T cell proliferation by human alveolar macrophages. Thorax 1998, 53, 437. [Google Scholar] [CrossRef]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M. Tumour necrosis factor signalling in health and disease. F1000Research 2019, 8, 111. [Google Scholar] [CrossRef]
- Zganiacz, A.; Santosuosso, M.; Wang, J.; Yang, T.; Chen, L.; Anzulovic, M.; Alexander, S.; Gicquel, B.; Wan, Y.; Bramson, J.; et al. TNF-α is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J. Clin. Investig. 2004, 113, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.E.; Skon-Hegg, C.; Badovinac, V.P.; Griffith, T.S. The calm after the storm: Implications of sepsis immunoparalysis on host immunity. J. Immunol. 2023, 211, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Seah, G.T.; Rook, G.A. Il-4 influences apoptosis of mycobacterium-reactive lymphocytes in the presence of TNF-alpha. J. Immunol. 2001, 167, 1230–1237. [Google Scholar] [CrossRef]
- Ríos-Barrera, V.A.; Campos-Peña, V.; Aguilar-León, D.; Lascurain, L.R.; Meraz-Ríos, M.A.; Moreno, J.; Figueroa-Granados, V.; Hernández-Pando, R. Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: Their relationship to mycobacterial virulence. Eur. J. Immunol. 2006, 36, 345–353. [Google Scholar] [CrossRef]
- Hirsch, C.S.; Toossi, Z.; Vanham, G.; Johnson, J.L.; Peters, P.; Okwera, A.; Mugerwa, R.; Mugyenyi, P.; Ellner, J.J. Apoptosis and T cell hyporesponsiveness in pulmonary tuberculosis. J. Infect. Dis. 1999, 179, 945–953. [Google Scholar] [CrossRef]
- Khomenko, A.G.; Koval’chuk, L.V.; Mishin, V.I.; Pavliuk, A.S.; Veselova, A.V. Increased apoptosis of immunocompetent cells as a possible mechanism in the development of immunodeficiency in patients with acutely progressive tuberculosis. Probl. Tuberk. 1996, 6, 6–10. [Google Scholar]
- Flórido, M.; Pearl, J.E.; Solache, A.; Borges, M.; Haynes, L.; Cooper, A.M.; Appelberg, R. Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect. Immun. 2005, 73, 3577–3586. [Google Scholar] [CrossRef]
- Zhong, J.; Gilbertson, B.; Cheers, C. Apoptosis of CD4+ and CD8+ T cells during experimental infection with Mycobacterium avium is controlled by Fas/FasL and Bcl-2-sensitive pathways, respectively. Immunol. Cell Biol. 2003, 81, 480–486. [Google Scholar] [CrossRef]
- Dubaniewicz, A. Mycobacterial heat shock proteins in sarcoidosis and tuberculosis. Int. J. Mol. Sci. 2023, 24, 5084. [Google Scholar] [CrossRef]
- Soruri, A.; Schweyer, S.; Radzun, H.J.; Fayyazi, A. Mycobacterial antigens induce apoptosis in human purified protein derivative-specific alphabeta T lymphocytes in a concentration-dependent manner. Immunology 2002, 105, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tang, Y.; Liu, S. Effect of MPT64 from Mycobacterium tuberculosis on EL4 lymphocytes. Mil. Med. J. S. Chin. 2016, 30, 77–80. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, M.; Bose, M. Mycobacterium tuberculosis infection of human monocyte-derived macrophages leads to apoptosis of T cells. Immunol. Cell Biol. 2009, 87, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.S.; Johnson, J.L.; Okwera, A.; Kanost, R.A.; Wu, M.; Peters, P.; Muhumuza, M.; Mayanja-Kizza, H.; Mugerwa, R.D.; Mugyenyi, P.; et al. Mechanisms of apoptosis of T-cells in human tuberculosis. J. Clin. Immunol. 2005, 25, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Dalton, D.K.; Haynes, L.; Chu, C.Q.; Swain, S.L.; Wittmer, S. Interferon-γ eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 2000, 192, 117–122. [Google Scholar] [CrossRef]
- Stenger, E.O.; Rosborough, B.R.; Mathews, L.R.; Ma, H.; Mapara, M.Y.; Thomson, A.W.; Turnquist, H.R. IL-12hi rapamycin-conditioned dendritic cells mediate IFN-γ-dependent apoptosis of alloreactive CD4+ T cells in vitro and reduce lethal graft-versus-host disease. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2014, 20, 192–201. [Google Scholar] [CrossRef]
- Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Liston, P.; Fong, W.G.; Kelly, N.L.; Toji, S.; Miyazaki, T.; Conte, D.; Tamai, K.; Craig, C.G.; McBurney, M.W.; Korneluk, R.G. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat. Cell Biol. 2001, 3, 128–133. [Google Scholar] [CrossRef]
- Jeong, S.I.; Kim, J.W.; Ko, K.P.; Ryu, B.K.; Lee, M.G.; Kim, H.J.; Chi, S.G. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis. 2018, 9, 806. [Google Scholar] [CrossRef]
- Kang, J.; Wei, Z.F.; Li, M.X.; Wang, J.H. Modulatory effect of Tim-3/Galectin-9 axis on T-cell-mediated immunity in pulmonary tuberculosis. J. Biosci. 2020, 45, 60. [Google Scholar] [CrossRef]
- Schlichtner, S.; Meyer, N.H.; Yasinska, I.M.; Aliu, N.; Berger, S.M.; Gibbs, B.F.; Fasler-Kan, E.; Sumbayev, V.V. Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis. Int. Immunopharmacol. 2021, 100, 108155. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, C.; Jiang, Z.; Deng, X.; Bo, L. Tim-3 blockade decreases the apoptosis of CD8+ T cells and reduces the severity of sepsis in mice. J. Surg. Res. 2022, 279, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, H.; Boettcher, S.; Manz, M.G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 2012, 119, 2991–3002. [Google Scholar] [CrossRef]
- Pal, R.; Mukhopadhyay, S. PPE2 protein of Mycobacterium tuberculosis affects myeloid hematopoiesis in mice. Immunobiology 2021, 226, 152051. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; d’Amati, A. Hematopoiesis and mast cell development. Int. J. Mol. Sci. 2023, 24, 10679. [Google Scholar] [CrossRef]
- Xia, J.; Liu, M.; Zhu, C.; Liu, S.; Ai, L.; Ma, D.; Zhu, P.; Wang, L.; Liu, F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res. 2023, 33, 448–463. [Google Scholar] [CrossRef]
- Khan, N.; Downey, J.; Sanz, J.; Kaufmann, E.; Blankenhaus, B.; Pacis, A.; Pernet, E.; Ahmed, E.; Cardoso, S.; Nijnik, A.; et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 2020, 183, 752–770.e22. [Google Scholar] [CrossRef]
- Matatall, K.A.; Jeong, M.; Chen, S.; Sun, D.; Chen, F.; Mo, Q.; Kimmel, M.; King, K.Y. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 2016, 17, 2584–2595. [Google Scholar] [CrossRef]
- Kaufmann, E.; Sanz, J.; Dunn, J.L.; Khan, N.; Mendonça, L.E.; Pacis, A.; Tzelepis, F.; Pernet, E.; Dumaine, A.; Grenier, J.C.; et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 2018, 172, 176–190.e19. [Google Scholar] [CrossRef]
- Cirovic, B.; de Bree, L.C.J.; Groh, L.; Blok, B.A.; Chan, J.; van der Velden, W.; Bremmers, M.E.J.; van Crevel, R.; Händler, K.; Picelli, S.; et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 2020, 28, 322–334.e5. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Vidyarthi, A.; Amir, M.; Mushtaq, K.; Agrewala, J.N. T-cell exhaustion in tuberculosis: Pitfalls and prospects. Crit. Rev. Microbiol. 2017, 43, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Fang, K.; Lu, N.; Hu, Y.; Tian, Z.; Zhang, C. Interferon gamma inhibits the differentiation of mouse adult liver and bone marrow hematopoietic stem cells by inhibiting the activation of notch signaling. Stem Cell Res. Ther. 2019, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, A.M.; Voermans, C.; Nolte, M.A. Impact of interferon-γ on hematopoiesis. Blood 2014, 124, 2479–2486. [Google Scholar] [CrossRef]
- Yamashita, M.; Passegué, E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 2019, 25, 357–372.e7. [Google Scholar] [CrossRef]
- Fry, T.J.; Connick, E.; Falloon, J.; Lederman, M.M.; Liewehr, D.J.; Spritzler, J.; Steinberg, S.M.; Wood, L.V.; Yarchoan, R.; Zuckerman, J.; et al. A potential role for interleukin-7 in T-cell homeostasis. Blood 2001, 97, 2983–2990. [Google Scholar] [CrossRef]
- Fry, T.J.; Mackall, C.L. The many faces of IL-7: From lymphopoiesis to peripheral T cell maintenance. J. Immunol. 2005, 174, 6571–6576. [Google Scholar] [CrossRef]
- Murray, R.; Suda, T.; Wrighton, N.; Lee, F.; Zlotnik, A. IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int. Immunol. 1989, 1, 526–531. [Google Scholar] [CrossRef]
- Chen, D.; Tang, T.X.; Deng, H.; Yang, X.P.; Tang, Z.H. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front. Immunol. 2021, 12, 747324. [Google Scholar] [CrossRef]
- Blin-Wakkach, C.; Wakkach, A.; Quincey, D.; Carle, G.F. Interleukin-7 partially rescues B-lymphopoiesis in osteopetrotic oc/oc mice through the engagement of B220+ CD11b+ progenitors. Exp. Hematol. 2006, 34, 851–859. [Google Scholar] [CrossRef]
- Kaiser, F.M.P.; Janowska, I.; Menafra, R.; de Gier, M.; Korzhenevich, J.; Pico-Knijnenburg, I.; Khatri, I.; Schulz, A.S.; Kuijpers, T.W.; Lankester, A.C.; et al. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood 2023, 142, 113. [Google Scholar] [CrossRef]
- Arends, T.; Dege, C.; Bortnick, A.; Danhorn, T.; Knapp, J.R.; Jia, H.; Harmacek, L.; Fleenor, C.J.; Straign, D.; Walton, K.; et al. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proc. Natl. Acad. Sci. USA 2019, 116, 10927–10936. [Google Scholar] [CrossRef]
- Franczak, S.; Ulrich, H.; Ratajczak, M.Z. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal. 2023. [Google Scholar] [CrossRef]
- Sarris, A.H.; Broxmeyer, H.E.; Wirthmueller, U.; Karasavvas, N.; Cooper, S.; Lu, L.; Krueger, J.; Ravetch, J.V. Human interferon-inducible protein 10: Expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors. J. Exp. Med. 1993, 178, 1127–1132. [Google Scholar] [CrossRef]
- Irham, L.M.; Adikusuma, W.; Perwitasari, D.A. Genomic variants-driven drug repurposing for tuberculosis by utilizing the established bioinformatic-based approach. Biochem. Biophys. Rep. 2022, 32, 101334. [Google Scholar] [CrossRef]
- Rathinam, C.; Thien, C.B.; Langdon, W.Y.; Gu, H.; Flavell, R.A. The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev. 2008, 22, 992–997. [Google Scholar] [CrossRef]
- Rathinam, C.; Flavell, R.A. c-Cbl deficiency leads to diminished lymphocyte development and functions in an age-dependent manner. Proc. Natl. Acad. Sci. USA 2010, 107, 8316–8321. [Google Scholar] [CrossRef]
- Rathinam, C.; Matesic, L.E.; Flavell, R.A. The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat. Immunol. 2011, 12, 399–407. [Google Scholar] [CrossRef]
- Thompson, B.J.; Jankovic, V.; Gao, J.; Buonamici, S.; Vest, A.; Lee, J.M.; Zavadil, J.; Nimer, S.D.; Aifantis, I. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 2008, 205, 1395–1408. [Google Scholar] [CrossRef]
- Nakagawa, M.M.; Rathinam, C.V. A20 deficiency in hematopoietic stem cells causes lymphopenia and myeloproliferation due to elevated Interferon-γ signals. Sci. Rep. 2019, 9, 12658. [Google Scholar] [CrossRef]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Belk, J.A.; Daniel, B.; Satpathy, A.T. Epigenetic regulation of T cell exhaustion. Nat. Immunol. 2022, 23, 848–860. [Google Scholar] [CrossRef]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 2019, 37, 457–495. [Google Scholar] [CrossRef]
- Tian, W.; Qin, G.; Jia, M.; Li, W.; Cai, W.; Wang, H.; Zhao, Y.; Bao, X.; Wei, W.; Zhang, Y.; et al. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Front. Immunol. 2023, 14, 1198551. [Google Scholar] [CrossRef]
- Scharping, N.E.; Rivadeneira, D.B.; Menk, A.V.; Vignali, P.D.A.; Ford, B.R.; Rittenhouse, N.L.; Peralta, R.; Wang, Y.; Wang, Y.; DePeaux, K.; et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 2021, 22, 205–215. [Google Scholar] [CrossRef]
- Utzschneider, D.T.; Gabriel, S.S.; Chisanga, D.; Gloury, R.; Gubser, P.M.; Vasanthakumar, A.; Shi, W.; Kallies, A. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 2020, 21, 1256–1266. [Google Scholar] [CrossRef]
- Seo, W.; Jerin, C.; Nishikawa, H. Transcriptional regulatory network for the establishment of CD8+ T cell exhaustion. Exp. Mol. Med. 2021, 53, 202–209. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Zhu, Y.; Hong, Y.; Zha, J.; Lin, Z.; Li, Z.; Wang, C.; Fang, Z.; Yu, X.; et al. Loss of CD28 expression associates with severe T-cell exhaustion in acute myeloid leukemia. Front. Immunol. 2023, 14, 1139517. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Gräler, M.H. Sphingosine 1-phosphate and its type 1 G protein-coupled receptor: Trophic support and functional regulation of T lymphocytes. J. Leukoc. Biol. 2004, 76, 30–35. [Google Scholar] [CrossRef]
- Algood, H.M.; Lin, P.L.; Yankura, D.; Jones, A.; Chan, J.; Flynn, J.L. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J. Immunol. 2004, 172, 6846–6857. [Google Scholar] [CrossRef]
- Roach, D.R.; Bean, A.G.; Demangel, C.; France, M.P.; Briscoe, H.; Britton, W.J. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 2002, 168, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.N.; Fletcher, J.M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 2005, 17, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Olmo-Fontánez, A.M.; Turner, J. Tuberculosis in an aging world. Pathogens 2022, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Byng-Maddick, R.; Noursadeghi, M. Does tuberculosis threaten our ageing populations? BMC Infect. Dis. 2016, 16, 119. [Google Scholar] [CrossRef]
- Holland, A.M.; van den Brink, M.R. Rejuvenation of the aging T cell compartment. Curr. Opin. Immunol. 2009, 21, 454–459. [Google Scholar] [CrossRef]
- Green, D.R.; Droin, N.; Pinkoski, M. Activation-induced cell death in T cells. Immunol. Rev. 2003, 193, 70–81. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, M.W.; Cho, K.H.; Nguyen, L.K. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci. Rep. 2019, 9, 10637. [Google Scholar] [CrossRef]
- Masuda, A.; Isobe, Y.; Sugimoto, K.; Yoshimori, M.; Arai, A.; Komatsu, N. Efficient recruitment of c-FLIP(L) to the death-inducing signaling complex leads to Fas resistance in natural killer-cell lymphoma. Cancer Sci. 2020, 111, 807–816. [Google Scholar] [CrossRef]
- Ju, S.T.; Matsui, K.; Ozdemirli, M. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction. Int. Rev. Immunol. 1999, 18, 485–513. [Google Scholar] [CrossRef]
- Roodgar, M.; Ross, C.T.; Tarara, R.; Lowenstine, L.; Dandekar, S.; Smith, D.G. Gene expression and TB pathogenesis in rhesus macaques: TR4, CD40, CD40L, FAS (CD95), and TNF are host genetic markers in peripheral blood mononuclear cells that are associated with severity of TB lesions. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015, 36, 396–409. [Google Scholar] [CrossRef]
- Li, B.; Bassiri, H.; Rossman, M.D.; Kramer, P.; Eyuboglu, A.F.; Torres, M.; Sada, E.; Imir, T.; Carding, S.R. Involvement of the Fas/Fas ligand pathway in activation-induced cell death of mycobacteria-reactive human gamma delta T cells: A mechanism for the loss of gamma delta T cells in patients with pulmonary tuberculosis. J. Immunol. 1998, 161, 1558–1567. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.; Toomey, D.; Condron, C.; Bouchier-Hayes, D. Activation-induced cell death: The controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol. Cell Biol. 2002, 80, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Magcwebeba, T.; Dorhoi, A.; du Plessis, N. The emerging role of myeloid-derived suppressor cells in tuberculosis. Front. Immunol. 2019, 10, 917. [Google Scholar] [CrossRef]
- Martino, A.; Badell, E.; Abadie, V.; Balloy, V.; Chignard, M.; Mistou, M.Y.; Combadière, B.; Combadière, C.; Winter, N. Mycobacterium bovis bacillus Calmette-Guérin vaccination mobilizes innate myeloid-derived suppressor cells restraining in vivo T cell priming via IL-1R-dependent nitric oxide production. J. Immunol. 2010, 184, 2038–2047. [Google Scholar] [CrossRef]
- du Plessis, N.; Loebenberg, L.; Kriel, M.; von Groote-Bidlingmaier, F.; Ribechini, E.; Loxton, A.G.; van Helden, P.D.; Lutz, M.B.; Walzl, G. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am. J. Respir. Crit. Care Med. 2013, 188, 724–732. [Google Scholar] [CrossRef]
- Agrawal, N.; Streata, I.; Pei, G.; Weiner, J.; Kotze, L.; Bandermann, S.; Lozza, L.; Walzl, G.; du Plessis, N.; Ioana, M.; et al. Human monocytic suppressive cells promote replication of Mycobacterium tuberculosis and alter stability of in vitro generated granulomas. Front. Immunol. 2018, 9, 2417. [Google Scholar] [CrossRef]
- Clay, H.; Volkman, H.E.; Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008, 29, 283–294. [Google Scholar] [CrossRef]
- Hao, Z.; Hampel, B.; Yagita, H.; Rajewsky, K. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J. Exp. Med. 2004, 199, 1355–1365. [Google Scholar] [CrossRef]
- Maher, S.G.; Condron, C.E.; Bouchier-Hayes, D.J.; Toomey, D.M. Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clin. Exp. Immunol. 2005, 139, 279–286. [Google Scholar] [CrossRef]
- Mustafa, N.; Mitxelena, J.; Infante, A.; Zenarruzabeitia, O.; Eriz, A.; Iglesias-Ara, A.; Zubiaga, A.M. E2f2 attenuates apoptosis of activated T lymphocytes and protects from immune-mediated injury through repression of Fas and FasL. Int. J. Mol. Sci. 2021, 23, 311. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, I.; Bodo, J.; Hill, B.T.; Hsi, E.D.; Almasan, A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 2020, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, M.S.; Friedman, L.N. Tuberculosis and biologic therapies: Anti-tumor necrosis factor-α and beyond. Clin. Chest Med. 2019, 40, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Basile, J.I.; Kviatcovsky, D.; Romero, M.M.; Balboa, L.; Monteserin, J.; Ritacco, V.; Lopez, B.; Sabio y García, C.; García, A.; Vescovo, M.; et al. Mycobacterium tuberculosis multi-drug-resistant strain M induces IL-17(+) IFNγ(-) CD4(+) T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clin. Exp. Immunol. 2017, 187, 160–173. [Google Scholar] [CrossRef]
- Rajavelu, P.; Pokkali, S.; Umashankar, P.; Bhatt, K.; Narayanan, P.R.; Salgame, P.; Das, S.D. Comparative evaluation of cytokines, T-cell apoptosis, and costimulatory molecule expression in tuberculous and nontuberculous pleurisy. Clin. Transl. Sci. 2008, 1, 209–214. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, J.S.; Yoon, I.H.; Shin, J.S.; Nam, H.Y.; Yang, S.H.; Kim, S.J.; Park, C.G. Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J. Immunol. 2010, 185, 4022–4029. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Li, X.; Chavakis, T. Immunometabolic control of hematopoiesis. Mol. Asp. Med. 2021, 77, 100923. [Google Scholar] [CrossRef]
- Harada, T.; Tsuboi, I.; Hino, H.; Yuda, M.; Hirabayashi, Y.; Hirai, S.; Aizawa, S. Age-related exacerbation of hematopoietic organ damage induced by systemic hyper-inflammation in senescence-accelerated mice. Sci. Rep. 2021, 11, 23250. [Google Scholar] [CrossRef]
- Paul, F.; Arkin, Y.; Giladi, A.; Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Winter, D.; Lara-Astiaso, D.; Gury, M.; Weiner, A.; et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015, 163, 1663–1677. [Google Scholar] [CrossRef]
- Doulatov, S.; Notta, F.; Laurenti, E.; Dick, J.E. Hematopoiesis: A human perspective. Cell Stem Cell 2012, 10, 120–136. [Google Scholar] [CrossRef]
- Ottens, K.; Satterthwaite, A.B. IRF4 has a unique role in early B cell development and acts prior to CD21 expression to control marginal zone B cell numbers. Front. Immunol. 2021, 12, 779085. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, Z.; Li, C.; Zhang, W.; Huang, W.; Xue, J.; Wang, J.; Li, S. PAX5 and circ1857 affected DLBCL progression and B-cell proliferation through regulating GINS1. Cancer Sci. 2023, 114, 3203–3215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, D.; Zeng, Q.; Du, Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms 2023, 11, 2640. https://doi.org/10.3390/microorganisms11112640
Li F, Chen D, Zeng Q, Du Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms. 2023; 11(11):2640. https://doi.org/10.3390/microorganisms11112640
Chicago/Turabian StyleLi, Fei, Dandan Chen, Qingqing Zeng, and Yunjie Du. 2023. "Possible Mechanisms of Lymphopenia in Severe Tuberculosis" Microorganisms 11, no. 11: 2640. https://doi.org/10.3390/microorganisms11112640
APA StyleLi, F., Chen, D., Zeng, Q., & Du, Y. (2023). Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms, 11(11), 2640. https://doi.org/10.3390/microorganisms11112640