Integrated Macrogenomics and Metabolomics Explore Alterations and Correlation between Gut Microbiota and Serum Metabolites in Adult Epileptic Patients: A Pilot Study
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Participants and Sample Collection
2.2. Metagenomic Analysis
2.3. High-Throughput Targeted Metabolomics
2.4. Metagenomics Data Analysis
2.5. Metabolomics Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Characteristics of GM between Patients with Adult Epilepsy and Normal Controls
3.3. Characteristics of Serum Metabolites in Patients Suffering from Epilepsy and Normal Controls
3.4. Microbiome–Metabolome Joint Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juvale, I.I.A.; Che Has, A.T. Possible interplay between the theories of pharmacoresistant epilepsy. Eur. J. Neurosci. 2021, 53, 1998–2026. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Melamed, J.; LeBlanc, G.; Constantinides, M.G. Gut microbiota gestalt. Cell Host Microbe 2022, 30, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bi, J.J.; Guo, G.J.; Yang, L.; Zhu, B.; Zhan, G.F.; Li, S.; Huang, N.N.; Hashimoto, K.; Yang, C.; et al. Abnormal composition of gut microbiota contributes to delirium-like behaviors after abdominal surgery in mice. CNS Neurosci. Ther. 2019, 25, 685–696. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Front. Cell Infect. Microbiol. 2021, 17, 625913. [Google Scholar] [CrossRef]
- Ling, Z.; Liu, X.; Cheng, Y.; Yan, X.; Wu, S. Gut microbiota and aging. Crit. Rev. Food Sci. Nutr. 2022, 62, 3509–3534. [Google Scholar] [CrossRef]
- Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine 2019, 44, 691–707. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci. 2016, 59, 1006–1023. [Google Scholar] [CrossRef]
- Thirion, F.; Sellebjerg, F.; Fan, Y.; Lyu, L.; Hansen, T.H.; Pons, N.; Levenez, F.; Quinquis, B.; Stankevic, E.; Søndergaard, H.B.; et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.C.C.; Lima, M.P.P.; Brito, G.A.C.; Viana, G.S.B. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res. Rev. 2023, 84, 101812. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine 2019, 44, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liu, X.; Chen, C.; Lin, J.; Li, A.; Guo, K.; An, D.; Zhou, D.; Hong, Z. Alteration of Gut Microbiota in Patients with Epilepsy and the Potential Index as a Biomarker. Front. Microbiol. 2020, 18, 517797. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Cao, S.; Yang, H. Roles of gut microbiome in epilepsy risk: A Mendelian randomization study. Front. Microbiol. 2023, 14, 1115014. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018, 21, 175–192. [Google Scholar] [CrossRef]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, C.; Jin, L.; Liu, F.; Xiao, Y.; Gu, H.; Liu, M.; Chen, Y. Gut Microbiota Metabolites Mediate Bax to Reduce Neuronal Apoptosis via cGAS/STING Axis in Epilepsy. Mol. Neurobiol. 2023, 22, 175–192. [Google Scholar] [CrossRef]
- Zubareva, O.E.; Dyomina, A.V.; Kovalenko, A.A.; Roginskaya, A.I.; Melik-Kasumov, T.B.; Korneeva, M.A.; Chuprina, A.V.; Zhabinskaya, A.A.; Kolyhan, S.A.; Zakharova, M.V.; et al. Beneficial Effects of Probiotic Bifidobacterium longum in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int. J. Mol. Sci. 2023, 24, 8451. [Google Scholar] [CrossRef]
- Ciltas, A.C.; Toy, C.E.; Güneş, H.; Yaprak, M. Effects of probiotics on GABA/glutamate and oxidative stress in PTZ- induced acute seizure model in rats. Epilepsy Res. 2023, 195, 107190. [Google Scholar] [CrossRef]
- Bagheri, S.; Heydari, A.; Alinaghipour, A.; Salami, M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav. 2019, 95, 43–50. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Cui, B.T.; Zhang, T.; Li, P.; Long, C.Y.; Ji, G.Z.; Zhang, F.M. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: The first report. World J. Gastroenterol. 2017, 23, 3565–3568. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhao, S.; Yin, Y.; Zhang, H.; Needham, D.M.; Evans, E.D.; Dai, C.L.; Lu, P.J.; Alm, E.J.; Weitz, D.A. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 2022, 376, eabm1483. [Google Scholar] [CrossRef] [PubMed]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; An, R.; Wang, L.; Shan, J.; Wang, X. Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients. Front. Cell. Infect. Microbiol. 2021, 11, 725284. [Google Scholar] [CrossRef]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv. Nutr. 2017, 8, 980–991. [Google Scholar] [CrossRef]
- Rowland, M.K.; Adamson, A.J.; Poliakov, I.; Bradley, J.; Simpson, E.; Olivier, P.; Foster, E. Field Testing of the Use of Intake24-An Online 24-Hour Dietary Recall System. Nutrients 2018, 10, 1690. [Google Scholar] [CrossRef]
- Culligan, E.P.; Sleator, R.D.; Marchesi, J.R.; Hill, C. Metagenomics and novel gene discovery: Promise and potential for novel therapeutics. Virulence 2014, 5, 399–412. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, S.Y.; Kuo, C.H.; Tsai, I.L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc. 2019, 1, S10–S22. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, B.; Yang, Y.; Yi, X.; Wei, M.; Ecklu-Mensah, G.; Buschmann, M.M.; Liu, H.; Gao, J.; Liang, W.; et al. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat. Microbiol. 2022, 7, 1361–1375. [Google Scholar] [CrossRef]
- Mills, R.H.; Dulai, P.S.; Vázquez-Baeza, Y.; Sauceda, C.; Daniel, N.; Gerner, R.R.; Batachari, L.E.; Malfavon, M.; Zhu, Q.; Weldon, K.; et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat. Microbiol. 2022, 7, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Liu, S.; Liu, Z.; Chen, Y.; Wu, T.; Lou, J.; Wang, H.; Zou, Y.; Sun, Y.; Rao, B.; et al. Gut Microbiome Distinguishes Patients with Epilepsy From Healthy Individuals. Front. Microbiol. 2022, 7, 696632. [Google Scholar] [CrossRef]
- Mao, L.Y.; Ding, J.; Peng, W.F.; Ma, Y.; Zhang, Y.H.; Fan, W.; Wang, X. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 2013, 54, e142–e145. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 12, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Rho, J.M. Basic science behind the catastrophic epilepsies. Epilepsia 2004, 5, 5–11. [Google Scholar] [CrossRef]
- Muneer, A. Kynurenine Pathway of Tryptophan Metabolism in Neuropsychiatric Disorders: Pathophysiologic and Therapeutic Considerations. Clin. Psychopharmacol. Neurosci. 2020, 18, 507–526. [Google Scholar] [CrossRef]
- Celli, R.; Fornai, F. Targeting Ionotropic Glutamate Receptors in the Treatment of Epilepsy. Curr. Neuropharmacol. 2021, 19, 747–765. [Google Scholar]
- Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv. Mater. 2019, 31, e1904197. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.Y.; Zhou, H.H.; Jin, W.L. Ferroptosis Induction in Pentylenetetrazole Kindling and Pilocarpine-Induced Epileptic Seizures in Mice. Front. Neurosci. 2019, 17, 721. [Google Scholar] [CrossRef] [PubMed]
EP | N | p-Value | |
---|---|---|---|
Number of patients | 22 | 10 | |
Mean age, years (SD) | 30.4 ± 8.8 | 28.9 ± 7.6 | 0.62 |
Female, n (%) | 11 (50%) | 5 (50%) | |
BMI | 21.04 ± 2.12 | 21.43 ± 2.01 | 0.65 |
Therapeutic of a drug | |||
Yes | 10 | 0 | |
No | 12 | 0 | |
Frequency (seizures per 3 months) | 0 | ||
0–4 | 10 | 0 | |
5–15 | 2 | 0 | |
16–50 | 5 | 0 | |
>50 | 5 | 0 | |
Epileptic discharges in the EEG | |||
Yes | 18 | 0 | |
No | 4 | 0 | |
Aura | |||
Yes | 13 | 0 | |
No | 9 | 0 | |
Seizure type | |||
Partial seizures | 10 | 0 | |
Simple partial | 4 | 0 | |
Complex partial | 3 | 0 | |
Partial secondary to comprehensive | 3 | 0 | |
Generalized seizures | 12 | 0 | |
Absence | 3 | 0 | |
Tonic | 4 | 0 | |
Tonic–clonic | 5 | 0 | |
Nutrients | |||
Energy (kcal) | 2431.55 ± 450.32 | 2309.70 ± 321.41 | 0.46 |
Carbohydrate (g) | 362.32 ± 35.38 | 347.30 ± 22.07 | 0.24 |
Protein (g) | 116.22 ± 19.95 | 109.80 ± 13.33 | 0.38 |
Fat (g) | 55.90 ± 3.38 | 56.82 ± 3.27 | 0.49 |
Fiber (g) | 22.77 ± 4.29 | 21.85 ± 3.18 | 0.56 |
Cholesterol (mg) | 43.42 ± 24.57 | 459.26 ± 24.99 | 0.55 |
Folvite (ug) | 528.19 ± 44.79 | 496.70 ± 37.27 | 0.07 |
Vitamin A (ug) | 488.00 ± 38.32 | 513.30 ± 39.05 | 0.11 |
Vitamin B1 (mg) | 1.48 ± 0.24 | 1.63 ± 0.19 | 0.10 |
Vitamin B2 (mg) | 1.26 ± 0.23 | 1.41 ± 0.22 | 0.11 |
Vitamin B6 (mg) | 0.41 ± 0.06 | 0.42 ± 0.05 | 0.52 |
Vitamin B12 (ug) | 0.53 ± 0.19 | 0.51 ± 0.18 | 0.79 |
Vitamin C (mg) | 220.88 ± 22.61 | 218.65 ± 23.40 | 0.81 |
Vitamin D (ug) | 2.59 ± 0.44 | 2.56 ± 0.37 | 0.80 |
Vitamin E (mg) | 33.56 ± 4.22 | 33.45 ± 3.57 | 0.95 |
Na (mg) | 1507.21 ± 125.35 | 1500.27 ± 99.04 | 0.88 |
K (mg) | 2307.19 ± 146.52 | 2327.17 ± 204.62 | 0.76 |
Ca (mg) | 880.51 ± 81.40 | 887.69 ± 67.79 | 0.82 |
P (mg) | 1795.04 ± 92.83 | 1839.36 ± 61.06 | 0.19 |
Mg (mg) | 384.92 ± 25.92 | 365.17 ± 34.61 | 0.09 |
Fe (mg) | 28.92 ± 2.71 | 29.33 ± 3.29 | 0.72 |
Zn (mg) | 17.77 ± 0.77 | 18.20 ± 0.79 | 0.17 |
Cu (mg) | 2.32 ± 0.57 | 2.60 ± 0.38 | 0.18 |
Mn (mg) | 398.25 ± 38.84 | 380.17 ± 58.25 | 0.32 |
I (mg) | 139.09 ± 6.14 | 136.09 ± 6.11 | 0.22 |
Se (mg) | 74.29 ± 6.19 | 75.86 ± 4.86 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Jia, L.; Mao, Z.; Si, P.; Sun, C.; Qu, Z.; Wang, W. Integrated Macrogenomics and Metabolomics Explore Alterations and Correlation between Gut Microbiota and Serum Metabolites in Adult Epileptic Patients: A Pilot Study. Microorganisms 2023, 11, 2628. https://doi.org/10.3390/microorganisms11112628
Zhou K, Jia L, Mao Z, Si P, Sun C, Qu Z, Wang W. Integrated Macrogenomics and Metabolomics Explore Alterations and Correlation between Gut Microbiota and Serum Metabolites in Adult Epileptic Patients: A Pilot Study. Microorganisms. 2023; 11(11):2628. https://doi.org/10.3390/microorganisms11112628
Chicago/Turabian StyleZhou, Kaiping, Lijing Jia, Zhuofeng Mao, Peipei Si, Can Sun, Zhenzhen Qu, and Weiping Wang. 2023. "Integrated Macrogenomics and Metabolomics Explore Alterations and Correlation between Gut Microbiota and Serum Metabolites in Adult Epileptic Patients: A Pilot Study" Microorganisms 11, no. 11: 2628. https://doi.org/10.3390/microorganisms11112628
APA StyleZhou, K., Jia, L., Mao, Z., Si, P., Sun, C., Qu, Z., & Wang, W. (2023). Integrated Macrogenomics and Metabolomics Explore Alterations and Correlation between Gut Microbiota and Serum Metabolites in Adult Epileptic Patients: A Pilot Study. Microorganisms, 11(11), 2628. https://doi.org/10.3390/microorganisms11112628