Establishment of Epstein–Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture
2.2. Plasmid Construction
2.3. Transfection and Selection of Transfectants
2.4. RNA Extraction and Real-Time Reverse Transcriptase–Polymerase Chain Reaction (RT-PCR)
3. Results
3.1. Establishment of Transformants
3.2. Expression of EBER1 and EBER2
3.3. Expression of LMP1 mRNA
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kimura, H.; Hoshino, Y.; Kanegane, H.; Tsuge, I.; Okamura, T.; Kawa, K.; Morishima, T. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood 2001, 98, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Hoshino, Y.; Hara, S.; Sugaya, N.; Kawada, J.; Shibata, Y.; Kojima, S.; Nagasaka, T.; Kuzushima, K.; Morishima, T. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J. Infect. Dis. 2005, 191, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Kimura, H.; Yoshino, T.; Kim, C.W.; Ko, Y.H.; Lee, S.S.; Peh, S.; Chan, J.C.; CAEBV Study Group. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: Overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol. Int. 2008, 58, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Ohga, S.; Nomura, A.; Takada, H.; Ihara, K.; Kawakami, K.; Yanai, F.; Takahata, Y.; Tanaka, T.; Kasuga, N.; Hara, T. Epstein-Barr Virus (EBV) load and cytokine gene expression in activated T cells of chronic active EBV infection. J. Infect. Dis. 2001, 183, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Ito, M.; Iwaki, T.; Yatabe, Y.; Asai, J.; Hayashi, K. Chronic active Epstein-Barr virus infection with giant coronary aneurysms. Am. J. Clin. Pathol. 1996, 105, 733–736. [Google Scholar] [CrossRef]
- Murakami, K.; Ohsawa, M.; HU, S.; Kanno, H.; Aozasa, K.; Nose, M. Large-vessel arteritis associated with chronic active Epstein-Barr virus infection. Arthristis Rheum. 1998, 41, 369–373. [Google Scholar] [CrossRef]
- Kanno, H.; Onodera, H.; Endo, M.; Maeda, F.; Chida, S.; Akasaka, T.; Sawai, T. Vascular lesion in a patient of chronic active Epstein-Barr virus infection with hypersensitivity to mosquito bites: Vasculitis induced by mosquito bite with the infiltration of nonneoplastic Epstein-Barr virus-positive cells and subsequent development of natural killer/T-cell lymphoma with angiodestruction. Hum. Pathol. 2005, 36, 212–218. [Google Scholar]
- Lay, J.-D.; Tsao, C.-J.; Chen, J.-Y.; Kadin, M.E.; Su, I.-J. Upregulation of tumor necrosis factor-α gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J. Clin. Investig. 1997, 100, 1969–1979. [Google Scholar] [CrossRef]
- Yoshiyama, H.; Shimizu, N.; Takada, K. Persistent Epstein-Barr virus infection in a human T-cell line: Unique program of latent virus expression. EMBO J. 1995, 14, 3706–3711. [Google Scholar] [CrossRef]
- Yang, L.; Aozasa, K.; Oshimi, K.; Takada, K. Epstein-Barr virus (EBV)-encoded RNA promotes growth of EBV-infected T cells through interleukin-9 induction. Cancer Res. 2004, 64, 5332–5337. [Google Scholar] [CrossRef]
- Mogensen, T.H.; Paludan, S.R. Molecular pathways in virus-induced cytokine production. Microbiol. Mol. Biol. Rev. 2001, 65, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, M.; Ishiguro, N.; Ishiko, H.; Ma, X.; Kikuta, H.; Kobayashi, K. Heterogeneous, restricted patterns of Epstein-Barr virus (EBV) latent gene expression in patients with chronic active EBV infection. J. Gen. Virol. 2001, 82, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- Iwata, S.; Wada, K.; Tobita, S.; Gotoh, K.; Ito, Y.; Demachi-Okamura, A.; Shimizu, N.; Nishiyama, Y.; Kimura, H. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection. J. Gen. Virol. 2010, 91, 42–50. [Google Scholar] [CrossRef]
- Leight, E.R.; Sugden, B. EBNA-1: A protein pivotal to latent infection by Epstein-Barr virus. Rev. Med. Virol. 2000, 10, 83–100. [Google Scholar] [CrossRef]
- Kang, M.-S.; Hung, S.C.; Kieff, E. Epstein-Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc. Natl. Acad. Sci. USA 2001, 98, 15233–15238. [Google Scholar] [CrossRef] [PubMed]
- Carrel, S.; Mach, J.P.; Miescher, G.; Salvi, S.; Giuffre, L.; Schreyer, M.; Isler, P. Phorbol 12-myristate 13-acetate induces surface expression of T3 on human immature T cell lines with and without concomitant expression of the T cell antigen receptor complex. Eur. J. Immunol. 1987, 17, 1079–1087. [Google Scholar] [CrossRef]
- Roth, M.S.; Collins, F.S.; Ginsburg, D. Sizing of the human T cell receptor α locus and detection of a large deletion in the Molt-4 cell line. Blood 1988, 71, 1744–1747. [Google Scholar] [CrossRef]
- Nagata, H.; Numata, T.; Konno, A.; Mikata, I.; Kurasawa, K.; Hara, S.; Nishimura, M.; Yamamoto, K.; Shimizu, N. Presence of natural killer-cell clones with variable proliferative capacity in chronic active Epstein-Barr virus infection. Pathol. Int. 2001, 51, 778–785. [Google Scholar] [CrossRef]
- Nagata, H.; Konno, A.; Kimura, N.; Zhang, Y.; Kimura, M.; Demachi, A.; Sekine, T.; Yamamoto, K.; Shimizu, N. Characterization of novel natural killer (NK)-cell and γδT-cell lines established from primary lesions of nasal T/NK-cell lymphomas. Blood 2001, 97, 708–713. [Google Scholar] [CrossRef]
- Zhang, Y.; Nagata, H.; Ikeuchi, T.; Mukai, H.; Oyoshi, M.; Demachi, A.; Morio, T.; Wakiguchi, H.; Kimura, N.; Shimizu, N.; et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas. Br. J. Haematol. 2003, 121, 805–814. [Google Scholar] [CrossRef]
- Komano, J.; Maruo, S.; Kurozumi, K.; Oda, T.; Takada, K. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. Virology 1999, 73, 9827–9831. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liebowitz, D.; Kieff, E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985, 43, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Komano, J.; Sugiura, M.; Takada, K. Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata. J. Virol. 1998, 72, 9150–9156. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Kanno, H.; Shimamura, T.; Sawai, T. Epstein-Barr virus infection of synovial tissue of rheumatoid arthritis patients. J. Iwate Med. Assoc. 2005, 57, 349–356. (In Japanese) [Google Scholar]
- Canitano, A.; Venturi, G.; Borghi, M.; Ammendolia, M.G.; Fais, S. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett. 2013, 337, 193–199. [Google Scholar] [CrossRef]
- Junaidi; Tateishi, A.; Kanno, H. Induction of interleukin-10 in the stable transformants of human T-cell line expressing Epstein-Barr virus-encoded small RNAs. Shinshu Med. J. 2018, 66, 195–204. [Google Scholar]
- Wu, Y.; Maruo, S.; Yajima, M.; Kanda, T.; Takada, K. Epstein-Barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J. Virol. 2007, 81, 11236–11245. [Google Scholar] [CrossRef]
- Lee, N.; Yario, T.A.; Gao, J.S.; Steitz, J.A. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proc. Natl. Acad. Sci. USA 2016, 113, 3221–3226. [Google Scholar] [CrossRef]
- Lee, N.; Moss, W.N.; Yario, T.A.; Steitz, J.A. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015, 160, 607–618. [Google Scholar] [CrossRef]
Primers and Probes | Sequences 5′-3′ | Amplified Products |
---|---|---|
EBER1 forward | 5′-GTGAGGACGGTGTCTGTGGTT-3′ | 58 bp |
EBER1 reverse | 5′-TTGACCGAAGACGGCAGAA-3′ | |
EBER1 probe | 5′-TCTTCCCAGACTCTGC-3′ | |
EBER2 forward | 5′-GCTACCGACCCGAGGTCAA-3′ | 77 bp |
EBER2 reverse | 5′-GAGAATCCTGACTTGCAAATGCT-3′ | |
EBER2 probe | 5′-AAGAGAGGCTTCCCGCC-3′ | |
LMP1 forward | 5′-CCACTTGGAGCCCTTTGTATACTC-3′ | 78 bp |
LMP1 reverse | 5′-TGCCTGTCCGTGCAAATTC-3′ | |
LMP1 probe | 5′-ACTGATGATCACCCTCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanno, H.; Osada, T.; Tateishi, A. Establishment of Epstein–Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1. Microorganisms 2023, 11, 2624. https://doi.org/10.3390/microorganisms11112624
Kanno H, Osada T, Tateishi A. Establishment of Epstein–Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1. Microorganisms. 2023; 11(11):2624. https://doi.org/10.3390/microorganisms11112624
Chicago/Turabian StyleKanno, Hiroyuki, Tomohiro Osada, and Ayako Tateishi. 2023. "Establishment of Epstein–Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1" Microorganisms 11, no. 11: 2624. https://doi.org/10.3390/microorganisms11112624
APA StyleKanno, H., Osada, T., & Tateishi, A. (2023). Establishment of Epstein–Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1. Microorganisms, 11(11), 2624. https://doi.org/10.3390/microorganisms11112624