Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture
Abstract
:1. Introduction
2. Genus Peribacillus
Peribacillus Species [25,26] | Original Isolation Source | Ref. |
---|---|---|
Peribacillus acanthi | Rhizosphere soil of a mangrove plant Acanthus ilicifolius | [29] |
Peribacillus alkalitolerans | Marine sediment near a hydrothermal vent | [30] |
Peribacillus asahii | Soil | [31] |
Peribacillus butanolivorans | Soil | [32] |
Peribacillus castrilensis | River otter | [33] |
Peribacillus cavernae | Cave soil | [34] |
Peribacillus deserti | Desert soil | [35] |
Peribacillus endoradicis | Soybean root | [36] |
Peribacillus faecalis | Cow feces | [37] |
Peribacillus frigoritolerans | Arid soil | [38,39] |
Peribacillus glennii | Vehicle assembly building at Kennedy Space Center | [27] |
Peribacillus gossypii | Stem of Gossypium hirsutum | [40] |
Peribacillus huizhouensis | Paddy field soil | [41] |
Peribacillus kribbensis | Soil | [42] |
Peribacillus loiseleuriae | Soil from a loiseleuria plant | [43] |
“Peribacillus massiliglaciei”1 | Siberian permafrost | [44] |
Peribacillus muralis | Deteriorated mural paintings | [45] |
Peribacillus psychrosaccharolyticus | Soil or lowland marsh. | [46] |
Peribacillus saganii | Vehicle assembly building at Kennedy Space Center | [27] |
Peribacillus simplex | Soil | [46] |
Peribacillus tepidiphilus | Tepid spring | [47] |
3. Plant-Growth-Promoting Properties
3.1. Plant Growth Promotion through Compound Secretion
3.2. Improved Nutrient Availability
3.3. Root Colonization
4. Biocontrol Activity
4.1. Antimicrobial Activity
4.2. Systemic Resistance
5. Biosorption and Bioremediation
6. EU Regulatory Aspects on the Use of Microorganisms in Sustainable Agriculture
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European, the Council, the European Economic and Social and the Committee of the Regions—A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Nazir, A.; Asghar, H.N.; Zahir, Z.A. Interactive Effect of Siderophore-Producing Bacteria and l-Tryptophan on Physiology, Tuber Characteristics, Yield, and Iron Concentration of Potato. Potato Res. 2022, 65, 1015–1027. [Google Scholar] [CrossRef]
- de Souza, R.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Bacteria as Inoculants in Agricultural Soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus Species in Soil as a Natural Resource for Plant Health and Nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef]
- Glick, B.R. The Enhancement of Plant Growth by Free-Living Bacteria. Can. J. Microbiol. 1995, 41, 109–117. [Google Scholar] [CrossRef]
- Manetsberger, J.; Caballero Gómez, N.; Benomar, N.; Christie, G.; Abriouel, H. Characterization of the Culturable Sporobiota of Spanish Olive Groves and Its Tolerance toward Environmental Challenges. Microbiol. Spectr. 2023, 11, e04013-22. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust Demarcation of 17 Distinct Bacillus Species Clades, Proposed as Novel Bacillaceae Genera, by Phylogenomics and Comparative Genomic Analyses: Description of Robertmurraya kyonggiensis Sp. Nov. and Proposal for an Emended Genus Bacillus Limiting It Only to the Members of the Subtilis and Cereus Clades of Species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P. Spores of Bacillus Subtilis: Their Resistance to and Killing by Radiation, Heat and Chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L. Roles of Bacillus Endospores in the Environment. Cell. Mol. Life Sci. 2002, 59, 410–416. [Google Scholar] [CrossRef]
- Driks, A. Bacillus Subtilis Spore Coat. Microbiol. Mol. Biol. Rev. 1999, 63, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Franz, C.M.A.P.; Ben Omar, N.; Galvez, A. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [PubMed]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus Subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Vlajkov, V.; Pajčin, I.; Loc, M.; Budakov, D.; Dodić, J.; Grahovac, M.; Grahovac, J. The Effect of Cultivation Conditions on Antifungal and Maize Seed Germination Activity of Bacillus-Based Biocontrol Agent. Bioengineering 2022, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Martínez-Hidalgo, P.; Ice, T.A.; Maymon, M.; Humm, E.A.; Nejat, N.; Sanders, E.R.; Kaplan, D.; Hirsch, A.M. Antifungal Activity of Bacillus Species against Fusarium and Analysis of the Potential Mechanisms Used in Biocontrol. Front. Microbiol. 2018, 9, 2363. [Google Scholar] [CrossRef] [PubMed]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The Significance of Bacillus Spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Kumar, P.; Kamle, M.; Borah, R.; Mahato, D.K.; Sharma, B. Bacillus thuringiensis as Microbial Biopesticide: Uses and Application for Sustainable Agriculture. Egypt. J. Biol. Pest Control 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; De los Santos-Villalobos, S. The Genus Bacillus as a Biological Control Agent and Its Implications in the Agricultural Biosecurity. Rev. Mex. De Fitopatol. Mex. J. Phytopathol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Santoyo, G.; del Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of Biocontrol and Plant Growth-Promoting Activity in Soil Bacterial Species of Bacillus and Pseudomonas: A Review. Biocontrol. Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Akinrinlola, R.J.; Yuen, G.Y.; Drijber, R.A.; Adesemoye, A.O. Evaluation of Bacillus Strains for Plant Growth Promotion and Predictability of Efficacy by In Vitro Physiological Traits. Int. J. Microbiol. 2018, 2018, 5686874. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.P.; Han, J.; Wang, C.R.; Zhang, K.G.; Wang, S. Chang Growth Inhibition and Induction of Systemic Resistance against Pythium aphanidermatum by Bacillus simplex Strain HS-2. Biocontrol. Sci. Technol. 2018, 28, 1114–1127. [Google Scholar] [CrossRef]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.L.; Thonart, P. Surfactin and Fengycin Lipopeptides of Bacillus Subtilis as Elicitors of Induced Systemic Resistance in Plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Gupta, R.S. A Phylogenomic and Comparative Genomic Framework for Resolving the Polyphyly of the Genus Bacillus: Proposal for Six New Genera of Bacillus Species, Peribacillus Gen. Nov., Cytobacillus Gen. Nov., Mesobacillus Gen. Nov., Neobacillus Gen. Nov., Metabacillus Gen. Nov. and Alkalihalobacillus Gen. Nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.C.; Carbasse, J.S.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) Moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Seuylemezian, A.; Ott, L.; Wolf, S.; Fragante, J.; Yip, O.; Pukall, R.; Schumann, P.; Vaishampayan, P. Bacillus glennii Sp. Nov. and Bacillus saganii Sp. Nov., Isolated from the Vehicle Assembly Building at Kennedy Space Center Where the Viking Spacecraft Were Assembled. Int. J. Syst. Evol. Microbiol. 2020, 70, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; Wickramasinghe, N.C.; Narlikar, J.V.; Rajaratnam, P. Microorganisms Cultured from Stratospheric Air Samples Obtained at 41 Km. FEMS Microbiol. Lett. 2003, 218, 161–165. [Google Scholar] [CrossRef]
- Ma, K.; Yin, Q.; Chen, L.; Lai, Q.; Xu, Y. Bacillus Acanthi Sp. Nov., Isolated from the Rhizosphere Soil of a Mangrove Plant Acanthus Ilicifolius. Int. J. Syst. Evol. Microbiol. 2018, 68, 3047–3051. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Zhang, X.H. Bacillus alkalitolerans Sp. Nov., Isolated from Marine Sediment near a Hydrothermal Vent. Int. J. Syst. Evol. Microbiol. 2018, 68, 1184–1189. [Google Scholar] [CrossRef]
- Yumoto, I.; Hirota, K.; Yamaga, S.; Nodasaka, Y.; Kawasaki, T.; Matsuyama, H.; Nakajima, K. Bacillus asahii Sp. Nov., a Novel Bacterium Isolated from Soil with the Ability to Deodorize the Bad Smell Generated from Short-Chain Fatty Acids. Int. J. Syst. Evol. Microbiol. 2004, 54, 1997–2001. [Google Scholar] [CrossRef]
- Kuisiene, N.; Raugalas, J.; Spröer, C.; Kroppenstedt, R.M.; Chitavichius, D. Bacillus butanolivorans Sp. Nov., a Species with Industrial Application for the Remediation of n-Butanol. Int. J. Syst. Evol. Microbiol. 2008, 58, 505–509. [Google Scholar] [CrossRef]
- Rodríguez, M.; Reina, J.C.; Sampedro, I.; Llamas, I.; Martínez-Checa, F. Peribacillus castrilensis Sp. Nov.: A Plant-Growth-Promoting and Biocontrol Species Isolated From a River Otter in Castril, Granada, Southern Spain. Front. Plant Sci. 2022, 13, 896728. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Liu, D.; Sun, X.; Wang, G.; Li, M. Bacillus Cavernae Sp. Nov. Isolated from Cave Soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, G.L.; Wang, Y.; Dai, J.; Fang, C.X. Bacillus deserti Sp. Nov., a Novel Bacterium Isolated from the Desert of Xinjiang, China. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2011, 99, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Chen, W.F.; Li, M.; Sui, X.H.; Liu, H.C.; Zhang, X.X.; Chen, W.X. Bacillus endoradicis Sp. Nov., an Endophytic Bacterium Isolated from Soybean Root. Int. J. Syst. Evol. Microbiol. 2012, 62, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jung, W.Y.; Li, Z.; Lee, M.-K.; Kang, S.W.; Lee, J.-S.; Jung, H.; Hur, T.-Y.; Kim, H.B.; Kim, J.-K.; et al. Peribacillus faecalis Sp. Nov., a Moderately Halophilic Bacterium Isolated from the Faeces of a Cow. Int. J. Syst. Evol. Microbiol. 2019, 71, 004721. [Google Scholar] [CrossRef] [PubMed]
- Delaporte, B.; Sasson, A. Étude de Bactéries Des Sols Arides Du Maroc: Brevibacterium halotolerans n. Sp. et Brevibacterium Frigoritolerans n. Sp. Compte Rendu L’académie Sci. 1967, 264, 2257–2260. [Google Scholar]
- Montecillo, J.A.V.; Bae, H. Reclassification of Brevibacterium frigoritolerans as Peribacillus frigoritolerans Comb. Nov. Based on Phylogenomics and Multiple Molecular Synapomorphies. Int. J. Syst. Evol. Microbiol. 2022, 72, 005389. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Busse, H.J.; McInroy, J.A.; Glaeser, S.P. Bacillus gossypii Sp. Nov., Isolated from the Stem of Gossypium Hirsutum. Int. J. Syst. Evol. Microbiol. 2015, 65, 4163–4168. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, G.; Wu, M.; Zhao, Y.; Zhou, S. Bacillus huizhouensis Sp. Nov., Isolated from a Paddy Field Soil. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2014, 106, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Jeon, C.O.; Lee, J.R.; Park, D.J.; Kim, C.J. Bacillus kribbensis Sp. Nov., Isolated from a Soil Sample in Jeju, Korea. Int. J. Syst. Evol. Microbiol. 2007, 57, 2912–2916. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, G.H.; Zhu, Y.J.; Wang, J.P.; Che, J.M.; Chen, Q.Q.; Chen, Z. Bacillus loiseleuriae Sp. Nov., Isolated from Rhizosphere Soil from a Loiseleuria Plant. Int. J. Syst. Evol. Microbiol. 2016, 66, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Afouda, P.; Dubourg, G.; Cadoret, F.; Fournier, P.E.; Raoult, D. ‘Bacillus massiliglaciei’, a New Bacterial Species Isolated from Siberian Permafrost. New Microbes New Infect. 2017, 15, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Heyrman, J.; Logan, N.A.; Rodríguez-Díaz, M.; Scheldeman, P.; Lebbe, L.; Swings, J.; Heyndrickx, M.; De Vos, P. Study of Mural Painting Isolates, Leading to the Transfer of “Bacillus maroccanus” and “Bacillus carotarum” to Bacillus Simplex, Emended Description of Bacillus Simplex, Re-Examination of the Strains Previously Attributed to “Bacillus macroides” and Description of Bacillus muralis Sp. Nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 119–131. [Google Scholar] [CrossRef]
- Priest, F.G.; Goodfellow, M.; Todd, C. A Numerical Classification of the Genus Bacillus. J. Gen. Microbiol. 1988, 134, 1847–1882. [Google Scholar] [CrossRef] [PubMed]
- Narsing Rao, M.P.; Dhulappa, A.; Banerjee, A.; Thamchaipenet, A. Transfer of Bacillus tepidiphilus Narsing Rao et al. 2021 to the Genus Peribacillus as Peribacillus tepidiphilus Comb. Nov. Arch. Microbiol. 2022, 204, 545. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hidalgo, P.; Flores-Félix, J.D.; Sánchez-Juanes, F.; Rivas, R.; Mateos, P.F.; Regina, I.S.; Peix, Á.; Martínez-Molina, E.; Igual, J.M.; Velázquez, E. Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy 2021, 11, 1796. [Google Scholar] [CrossRef]
- Chandra, P.; Khobra, R.; Sundha, P.; Sharma, R.K.; Jasrotia, P.; Chandra, A.; Singh, D.P.; Singh, G.P. Plant Growth Promoting Bacillus-Based Bio Formulations Improve Wheat Rhizosphere Biological Activity, Nutrient Uptake and Growth of the Plant. Acta Physiol. Plant 2021, 43, 1–12. [Google Scholar] [CrossRef]
- Cochard, B.; Giroud, B.; Crovadore, J.; Chablais, R.; Arminjon, L.; Lefort, F. Endophytic PGPR from Tomato Roots: Isolation, In Vitro Characterization and In vivo Evaluation of Treated Tomatoes (Solanum lycopersicum L.). Microorganisms 2022, 10, 765. [Google Scholar] [CrossRef]
- Hassen, A.I.; Labuschagne, N. Root Colonization and Growth Enhancement in Wheat and Tomato by Rhizobacteria Isolated from the Rhizoplane of Grasses. World J. Microbiol. Biotechnol. 2010, 26, 1837–1846. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, F.M.; López-Bucio, J.; Altamirano-Hernández, J.; Valencia-Cantero, E.; De La Cruz, H.R.; Macías-Rodríguez, L. Plant Growth-Promoting Rhizobacteria Modulate Root-System Architecture in Arabidopsis Thaliana through Volatile Organic Compound Emission. Symbiosis 2010, 51, 75–83. [Google Scholar] [CrossRef]
- Schwartz, A.R.; Ortiz, I.; Maymon, M.; Herbold, C.W.; Fujishige, N.A.; Vijanderan, J.A.; Villella, W.; Hanamoto, K.; Diener, A.; Sanders, E.R.; et al. Bacillus Simplex—A Little Known Pgpb with Anti-Fungal Activity—Alters Pea Legume Root Architecture and Nodule Morphology When Coinoculated with Rhizobium Leguminosarum Bv. Viciae. Agronomy 2013, 3, 595–620. [Google Scholar] [CrossRef]
- Al-Sman, K.M.; Abo-Elyousr, K.; Eraky, A.; El-Zawahry, A. Potential Activities of Bacillus simplex as a Biocontrol Agent against Root Rot of Nigella sativa Caused by Fusarium camptoceras. Egypt. J. Biol. Pest Control 2019, 29, 79. [Google Scholar] [CrossRef]
- Hansen, V.; Bonnichsen, L.; Nunes, I.; Sexlinger, K.; Lopez, S.R.; van der Bom, F.J.T.; Nybroe, O.; Nicolaisen, M.H.; Jensen, L.S. Seed Inoculation with Penicillium bilaiae and Bacillus simplex Affects the Nutrient Status of Winter Wheat. Biol. Fertil. Soils 2020, 56, 97–109. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, S.; Haznedar, A.; Cakmakci, R. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Rooting and Root Growth of Kiwifruit (Actinidia deliciosa) Stem Cuttings. Biol. Res. 2010, 43, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Senger, M.; Moresco, E.; Dalbosco, M.; Santin, R.; Inderbitzin, P.; Barrocas, E.N. Methods to Quantify Bacillus Simplex-Based Inoculant and Its Effect as a Seed Treatment on Field-Grown Corn and Soybean in Brazil. J. Seed Sci. 2022, 44, e202244040. [Google Scholar] [CrossRef]
- Rezakhani, L.; Motesharezadeh, B.; Tehrani, M.M.; Etesami, H.; Mirseyed Hosseini, H. Phosphate–Solubilizing Bacteria and Silicon Synergistically Augment Phosphorus (P) Uptake by Wheat (Triticum aestivum L.) Plant Fertilized with Soluble or Insoluble P Source. Ecotoxicol. Environ. Saf. 2019, 173, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Sözer Bahadir, P.; Liaqat, F.; Eltem, R. Plant Growth Promoting Properties of Phosphate Solubilizing Bacillus Species Isolated from the Aegean Region of Turkey. Turk. J. Botany 2018, 42, 183–196. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, Y.; Luo, S.; Wang, J.; Zhang, J.; Zhang, J.; Tian, C.; Tian, L. Culturable Screening of Plant Growth-Promoting and Biocontrol Bacteria in the Rhizosphere and Phyllosphere of Wild Rice. Microorganisms 2022, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Liza, S.E.; Sanchez, L.L.; Davila, D.E.Z. Agronomical Performance of Potato (Solanum tuberosum L.) Cv. “Unica” under Inoculation with Native Rhizobacteria and Application of Acetyl Salicylic Acid. Rev. Cienc. Agrovet. 2017, 16, 456–462. [Google Scholar] [CrossRef]
- Mesanza, N.; Crawford, B.D.; Coulson, T.J.D.; Iturritxa, E.; Patten, C.L. Colonization of Pinus radiata D. Don Seedling Roots by Biocontrol Bacteria Erwinia billingiae and Bacillus simplex. Forests 2019, 10, 552. [Google Scholar] [CrossRef]
- Parikh, L.; Eskelson, M.J.; Adesemoye, A.O. Relationship of in Vitro and in Planta Screening: Improving the Selection Process for Biological Control Agents against Fusarium Root Rot in Row Crops. Arch. Phytopathol. Plant Prot. 2018, 51, 156–169. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Mo, M.H.; Zhou, J.P.; Zou, C.S.; Zhang, K.Q. Evaluation and Identification of Potential Organic Nematicidal Volatiles from Soil Bacteria. Soil Biol. Biochem. 2007, 39, 2567–2575. [Google Scholar] [CrossRef]
- Allioui, N.; Driss, F.; Dhouib, H.; Jlail, L.; Tounsi, S.; Frikha-Gargouri, O. Two Novel Bacillus Strains (Subtilis and Simplex Species) with Promising Potential for the Biocontrol of Zymoseptoria Tritici, the Causal Agent of Septoria Tritici Blotch of Wheat. Biomed Res. Int. 2021, 2021, 6611657. [Google Scholar] [CrossRef] [PubMed]
- Adiyaman, T.; Schisler, D.A.; Slininger, P.J.; Sloan, J.M.; Jackson, M.A.; Rooney, A.P. Selection of Biocontrol Agents of Pink Rot Based on Efficacy and Growth Kinetics Index Rankings. Plant Dis. 2011, 95, 24–30. [Google Scholar] [CrossRef] [PubMed]
- des Essarts, Y.R.; Cigna, J.; Quêtu-Laurent, A.; Caron, A.; Munier, E.; Beury-Cirou, A.; Hélias, V.; Faure, D. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya Dianthicola. Appl. Environ. Microbiol. 2016, 82, 268–278. [Google Scholar] [CrossRef]
- Manetsberger, J.; Caballero Gómez, N.; Benomar, N.; Christie, G.; Abriouel, H. Antimicrobial profile of the culturable olive sporobiota and its potential as a source of biocontrol agents for major phytopathogens in olive agriculture. Pest Manag. Sci. 2023; preprint. [Google Scholar] [CrossRef]
- Mesanza, N.; Iturritxa, E.; Patten, C.L. Native Rhizobacteria as Biocontrol Agents of Heterobasidion Annosum s.s. and Armillaria Mellea Infection of Pinus Radiata. Biol. Control 2016, 101, 8–16. [Google Scholar] [CrossRef]
- Iturritxa, E.; Trask, T.; Mesanza, N.; Raposo, R.; Elvira-Recuenco, M.; Patten, C.L. Biocontrol of Fusarium Circinatum Infection of Young Pinus Radiata Trees. Forests 2017, 8, 32. [Google Scholar] [CrossRef]
- Xing, Z.; Wu, X.; Zhao, J.; Zhao, X.; Zhu, X.; Wang, Y.; Fan, H.; Chen, L.; Liu, X.; Duan, Y. Isolation and Identification of Induced Systemic Resistance Determinants from Bacillus Simplex Sneb545 against Heterodera glycines. Sci. Rep. 2020, 10, 11586. [Google Scholar] [CrossRef]
- Kang, W.; Zhu, X.; Wang, Y.; Chen, L.; Duan, Y. Transcriptomic and Metabolomic Analyses Reveal That Bacteria Promote Plant Defense during Infection of Soybean Cyst Nematode in Soybean. BMC Plant. Biol. 2018, 18, 86. [Google Scholar] [CrossRef]
- Kang, W.S.; Chen, L.J.L.J.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.; Duan, Y.X. Bacillus Simplex Treatment Promotes Soybean Defence against Soybean Cyst Nematodes: A Metabolomics Study Using GC-MS. PLoS ONE 2020, 15, e0237194. [Google Scholar] [CrossRef]
- Khayi, S.; des Essarts, Y.R.; Mondy, S.; Moumni, M.; Hélias, V.; Beury-Cirou, A.; Faure, D. Draft Genome Sequences of the Three Pectobacterium-Antagonistic Bacteria Pseudomonas Brassicacearum PP1-210F and PA1G7 and Bacillus Simplex BA2H3. Genome. Announc. 2015, 3, e01497-14. [Google Scholar] [CrossRef]
- Valentine, N.; Bolton Jr, H.; Kingsley, M.; Drake, G.; BalkwilF, D.; Plymale, A. Biosorption of Cadmium, Cobalt, Nickel, and Strontium by a Bacillus simplex Strain Isolated from the Vadose Zone. J. Ind. Microbiol. Biotechnol. 1996, 16, 189–196. [Google Scholar] [CrossRef]
- Chamekh, A.; Kharbech, O.; Driss-Limam, R.; Fersi, C.; Khouatmeya, M.; Chouari, R. Evidences for Antioxidant Response and Biosorption Potential of Bacillus simplex Strain 115 against Lead. World J. Microbiol. Biotechnol. 2021, 37, 44. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Shao, W.; Zhang, K.; Huo, Y.; Li, M. Characterization of Phosphate Solubilizing Bacteria Isolated from Heavy Metal Contaminated Soils and Their Potential for Lead Immobilization. J. Environ. Manag. 2019, 231, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Arce-Inga, M.; González-Pérez, A.R.; Hernandez-Diaz, E.; Chuquibala-Checan, B.; Chavez-Jalk, A.; Llanos-Gomez, K.J.; Leiva-Espinoza, S.T.; Oliva-Cruz, S.M.; Cumpa-Velasquez, L.M. Bioremediation Potential of Native Bacillus Sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma Cacao in Amazonas Region. Microorganisms 2022, 10, 2108. [Google Scholar] [CrossRef]
- Seo, J.S.; Keum, Y.S.; Li, Q.X. Bacterial Degradation of Aromatic Compounds. Int. J. Environ. Res. Public Health 2009, 6, 278–309. [Google Scholar] [CrossRef] [PubMed]
- Mandree, P.; Masika, W.; Naicker, J.; Moonsamy, G.; Ramchuran, S.; Lalloo, R. Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous bacillus spp. Processes 2021, 9, 1606. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, T.; Shi, Y.; Xin, Y.; Zhang, L.; Gu, Z.; Li, Y.; Ding, Z.; Shi, G. The Nitrogen Removal Characterization of a Cold-Adapted Bacterium: Bacillus simplex H-b. Bioresour. Technol. 2021, 323, 124554. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Erguven, G.O.; Yildirim, N. Efficiency of Some Soil Bacteria for Chemical Oxygen Demand Reduction of Synthetic Chlorsulfuron Solutions under Agiated Culture Conditions. Cell Mol. Biol. 2016, 62, 92–96. [Google Scholar] [CrossRef]
- Kansour, M.K.; Al-Mailem, D.M. Bioremediation of Two Oil-Contaminated Kuwaiti Hyper-Saline Soils by Cross Bioaugmentation and the Role of Indigenous Halophilic/Halotolerant Hydrocarbonoclastic Bacteria. Environ. Technol. Innov. 2023, 32, 103259. [Google Scholar] [CrossRef]
- Mani, P.; Sivakumar, P.; Balan, S.S. Economic Production and Oil Recovery Efficiency of a Lipopeptide Biosurfactant from a Novel Marine Bacterium Bacillus simplex. Achiev. Life Sci. 2016, 10, 102–110. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union Regulation. (EC) No 1107/2009 of the European Parliament and the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 309, 1–50. [Google Scholar]
- European Commission. Commission Regulation (EU) 2022/1438 of 31 August 2022 Annex II to Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards Specific Criteria for the Approval of Active Substances That Are Micro-Organisms. Off. J. Eur. Union 2022, 227, 2–7. [Google Scholar]
- European Commission. Commission Regulation (EU) 2022/1439 of 31 August 2022 Amending Regulation (EU) No 283/2013 as Regards the Information to Be Submitted for Active and the Specific Data Requirements for Micro-Organisms. Off. J. Eur. Union 2022, 227, 8–37. [Google Scholar]
- European Commission. Commission Regulation (EU) No 283/2013 of 1 March 2013 Setting out the Data Requirements for Active Substances, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market. Off. J. Eur. Union 2013, 93, 1–84. [Google Scholar]
- European Commission. Commission Regulation (EU) 2022/1440 of 31 August 2022 Regulation (EU) No 284/2013 as Regards the Information to Be Submitted for Plant Protection Products and the Specific Data Requirements for Plant Protection Products Containing Micro-Organisms. Off. J. Eur. Union 2022, 227, 38–69. [Google Scholar]
- European Commission. Commission Regulation (EU) No 284/2013 of 1 March 2013 Setting out the Data Requirements for Plant Protection Products, in Accordance with Regulation (EC) of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market. Off. J. Eur. Union 2013, 93, 85–152. [Google Scholar]
- European Commission. Commission Regulation (EU) No 546/2011 of 10 June 2011 Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards Uniform Principles for Evaluation and Authorisation of Plant Protection Products. Off. J. Eur. Union 2011, 155, 127–175. [Google Scholar]
- European Commission. Commission Regulation (EU) 2022/1441 of 31 August 2022 Regulation (EU) No 546/2011 as Regards Specific Uniform Principles for Evaluation and Authorisation of Plant Protection Products Containing Micro-Organisms. Off. J. Eur. Union 2022, 227, 70–116. [Google Scholar]
P. simplex Isolate | Effect | Tested Plant | Ref. |
---|---|---|---|
MRBN26 | Increased shoot and root weight | Canola plant | [48] |
KY604953 | Enhanced germination, root growth, and nutrient uptake | Wheat | [49] |
K10 | Improved plant height, tuber weight, photosynthesis yield, transpiration rate, water use efficiency, and overall yield | Potato | [4] |
MH671854.1, MH671861.1 | Increased shoot and root weight, IAA production, and high phosphate solubilization | Tomato | [50] |
KBS1F-3 | Increased shoot and root weight, IAA production, and high phosphate solubilization | Tomato and wheat | [51] |
KY515398 | Stimulation of root and shoot growth | Corn, wheat, and soybean | [22] |
L266 | Stimulation of primary root growth and lateral root development | Arabidopsis thaliana | [52] |
30N-5 | Increases number of lateral roots | Pea legume | [53] |
PHYB1; PHYB9 | Increased root and foliar dry weight | Black cumin | [54] |
313, 371 | Increased phosphate uptake and increased soil nutrient concentrations (co-cultured with P. biliaiae) | Winter wheat | [55] |
RC19 | Root induction | Kiwi | [56] |
SYM00260 | Increased yield and root and shoot dry weight | Corn and soybean | [57] |
UT1 | Improved phosphate, potassium, and silica uptake, and increased root and shoot biomass | Wheat | [58] |
EGE-B-1.2.k | High phosphate solubilization | Tomato, pepper, and eggplant | [59] |
499G2 | Increased nitrogen, phosphorus, And IAA in plant leaves | Wild rice | [60] |
P. simplex Isolate | Effect | Target | Class | Test Conditions (Plant) * | Ref. |
---|---|---|---|---|---|
Antimicrobial activity | |||||
30N-5; 11; 237 | Presence of biocontrol genes/cellulase, xylanase, pectinase, and chitinase production | Fusarium spp. | Fungus | In vitro/In silico | [17] |
30N-5 | Pathogenetic growth inhibition | In vitro | [53] | ||
R180 | Pathogenetic growth inhibition and reduction in disease severity | In vitro and in planta (corn, wheat, and soybean) | [63] | ||
PHYB1 and PHYB9 | Reduction in disease severity, and hyphal tissue maceration | In vitro and in planta (black cumin) | [54] | ||
Isolate 1–6 | VOC production | Panagrellus redivivus and Bursaphelenchus xylophilus | Nematode | In vitro | [64] |
Alg.24B2 | Production of lytic enzymes and lipopetides | Zymoseptoria tritici | Fungus | In vitro | [65] |
03WN13; 03WN23;03WN25 | Reduced lesion size and disease (pink rot) | Phytophthora erythroseptica | Fungus | In planta (potato) | [66] |
BA2H3 | Pathogenetic growth inhibition and reduction in soft rot symptoms | Pectobacterium sp. | Bacterium | In vitro and in planta (potato) | [67] |
UJA_MA_369 | Pathogenetic growth inhibition | Xylella fastidiosa | Bacterium | In vitro | [68] |
Induced Systemic Resistance | |||||
HS-2 | Antifungal/ increased ROS and callose production | Pythium aphanidermatum | Phytium | In vitro and in planta (tobacco) | [23] |
499G2 | Increased antioxidant enzyme production | Magnaporthe grisea | Fungus | In vitro and in planta (wild rice) | [60] |
S11R41 | Reduced lesions and plant mortality | Heterobasidion annosum and Armillaria mellea | Fungus | In vitro and in planta (Pinus radiata) | [69] |
Reduced fungus growth and density and reduced lesion length | Fusarium circinatum | [70] | |||
Sneb545 | Increased plant resistance, reduced infection/nematode penetration, and reduced nematode growth | Heterodera glycines | Nematode | In vitro and in planta (soybean seeds) | [71,72,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manetsberger, J.; Caballero Gómez, N.; Soria-Rodríguez, C.; Benomar, N.; Abriouel, H. Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture. Microorganisms 2023, 11, 2540. https://doi.org/10.3390/microorganisms11102540
Manetsberger J, Caballero Gómez N, Soria-Rodríguez C, Benomar N, Abriouel H. Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture. Microorganisms. 2023; 11(10):2540. https://doi.org/10.3390/microorganisms11102540
Chicago/Turabian StyleManetsberger, Julia, Natacha Caballero Gómez, Carlos Soria-Rodríguez, Nabil Benomar, and Hikmate Abriouel. 2023. "Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture" Microorganisms 11, no. 10: 2540. https://doi.org/10.3390/microorganisms11102540
APA StyleManetsberger, J., Caballero Gómez, N., Soria-Rodríguez, C., Benomar, N., & Abriouel, H. (2023). Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture. Microorganisms, 11(10), 2540. https://doi.org/10.3390/microorganisms11102540