Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Analysis
2.3. Data Analysis
3. Results
3.1. Environmental Factors
3.2. Phytoplankton Community
3.3. Relationships between Environmental Factors and Phytoplankton Communities
4. Discussion
4.1. Phytoplankton Community Composition
4.2. Response of Phytoplankton Community Characteristics to Environmental Factors
4.3. Response of Dominant Species to Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharathi, M.D.; Sarma, V.V.S.S.; Ramaneswari, K. Intra-Annual Variations in Phytoplankton Biomass and Its Composition in the Tropical Estuary: Influence of River Discharge. Mar. Pollut. Bull. 2018, 129, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, C.; Cartaxana, P.; Cabrita, M.T.; Brotas, V. Variability in Chlorophyll and Phytoplankton Composition in an Estuarine System. Hydrobiologia 2004, 525, 113–124. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. Phytoplankton, Dissolved Oxygen and Nutrient Patterns along a Eutrophic River-Estuary Continuum: Observation and Modeling. J. Environ. Manag. 2020, 261, 110233. [Google Scholar] [CrossRef] [PubMed]
- Koch, R.W.; Guelda, D.L.; Bukaveckas, P.A. Phytoplankton Growth in the Ohio, Cumberland and Tennessee Rivers, USA: Inter-Site Differences in Light and Nutrient Limitation. Aquat. Ecol. 2004, 38, 17–26. [Google Scholar] [CrossRef]
- Paerl, H.W. Assessing and Managing Nutrient-Enhanced Eutrophication in Estuarine and Coastal Waters: Interactive Effects of Human and Climatic Perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Yang, Q.; Liu, Y.; Fan, J.; Guo, H. Disentangling Effects of River Inflow and Marine Diffusion in Shaping the Planktonic Communities in a Heavily Polluted Estuary. Environ. Pollut. 2020, 267, 115414. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, C.; Wang, F.; Li, S.; Patra, S. Distributions of Picophytoplankton and Phytoplankton Pigments along a Salinity Gradient in the Changjiang River Estuary, China. J. Ocean Univ. China 2014, 13, 621–627. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Lv, Q.; Wang, Y.; Yu, J.; Gao, Y.; Ren, Z.; Zhang, X.; Lv, Z. Impact of the Water–Sediment Regulation Scheme on the Phytoplankton Community in the Yellow River Estuary. J. Clean. Prod. 2021, 294, 126291. [Google Scholar] [CrossRef]
- Bolgovics, Á.; Várbíró, G.; Ács, É.; Trábert, Z.; Kiss, K.T.; Pozderka, V.; Görgényi, J.; Boda, P.; Lukács, B.-A.; Nagy-László, Z.; et al. Phytoplankton of Rhithral Rivers: Its Origin, Diversity and Possible Use for Quality-Assessment. Ecol. Indic. 2017, 81, 587–596. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Wang, S.; Lu, Y.; Sun, K.; Jia, J.; Wang, Y. Phytoplankton Community Response to Nutrients along Lake Salinity and Altitude Gradients on the Qinghai-Tibet Plateau. Ecol. Indic. 2021, 128, 107848. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, J.; Wang, X.C.; Zhang, Y.; Liu, H.; Zhou, B.; Pan, P.; Liu, Y.; Ding, F. Relationship between Phytoplankton Community and Environmental Factors in Landscape Water with High Salinity in a Coastal City of China. Env. Sci. Pollut. Res. 2018, 25, 28460–28470. [Google Scholar] [CrossRef]
- Aberle, N.; Malzahn, A.; Lewandowska, A.; Sommer, U. Some like It Hot: The Protozooplankton-Copepod Link in a Warming Ocean. Mar. Ecol. Prog. Ser. 2015, 519, 103–113. [Google Scholar] [CrossRef]
- Barton, A.D.; Dutkiewicz, S.; Flierl, G.; Bragg, J.; Follows, M.J. Patterns of Diversity in Marine Phytoplankton. Science 2010, 327, 1509–1511. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, L.F.; Cutrim, M.V.J.; Lourenço, C.B.; Sá, A.K.D.S.; Oliveira, A.L.L.; de Azevedo-Cutrim, A.C.G. Patterns of Phytoplankton Structure in Response to Environmental Gradients in a Macrotidal Estuary of the Equatorial Margin (Atlantic Coast, Brazil). Estuar. Coast. Shelf Sci. 2020, 245, 106969. [Google Scholar] [CrossRef]
- Zhu, J.; Hong, Y.; Zada, S.; Hu, Z.; Wang, H. Spatial Variability and Co-Acclimation of Phytoplankton and Bacterioplankton Communities in the Pearl River Estuary, China. Front. Microbiol. 2018, 9, 2503. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-R.; Hsieh, H.-Y.; Hong, G.-K.; Ko, F.-C.; Meng, P.-J.; Tew, K.S. Verification of an Environmental Impact Assessment Using a Multivariate Statistical Model. JMSE 2022, 10, 1023. [Google Scholar] [CrossRef]
- Righetti, D.; Vogt, M.; Gruber, N.; Psomas, A.; Zimmermann, N.E. Global Pattern of Phytoplankton Diversity Driven by Temperature and Environmental Variability. Sci. Adv. 2019, 5, eaau6253. [Google Scholar] [CrossRef] [Green Version]
- Burgmer, T.; Hillebrand, H. Temperature Mean and Variance Alter Phytoplankton Biomass and Biodiversity in a Long-Term Microcosm Experiment. Oikos 2011, 120, 922–933. [Google Scholar] [CrossRef]
- Larson, C.A.; Belovsky, G.E. Salinity and Nutrients Influence Species Richness and Evenness of Phytoplankton Communities in Microcosm Experiments from Great Salt Lake, Utah, USA. J. Plankton Res. 2013, 35, 1154–1166. [Google Scholar] [CrossRef]
- Stefanidou, N.; Genitsaris, S.; Lopez-Bautista, J.; Sommer, U.; Moustaka-Gouni, M. Response of a Coastal Baltic Sea Diatom-Dominated Phytoplankton Community to Experimental Heat Shock and Changing Salinity. Oecologia 2019, 191, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Inyang, A.I.; Wang, Y.-S. Phytoplankton Diversity and Community Responses to Physicochemical Variables in Mangrove Zones of Guangzhou Province, China. Ecotoxicology 2020, 29, 650–668. [Google Scholar] [CrossRef] [PubMed]
- Moss, B.; Mckee, D.; Atkinson, D.; Collings, S.E.; Eaton, J.W.; Gill, A.B.; Harvey, I.; Hatton, K.; Heyes, T.; Wilson, D. How Important Is Climate? Effects of Warming, Nutrient Addition and Fish on Phytoplankton in Shallow Lake Microcosms: Climate Change and Phytoplankton. J. Appl. Ecol. 2003, 40, 782–792. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Su, S.; Ghadouani, A.; Wu, J. Spatial Analysis of Phytoplankton Patterns in Relation to Environmental Factors across the Southern Taihu Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1347–1357. [Google Scholar] [CrossRef]
- Hou, Z.; Jiang, Y.; Liu, Q.; Tian, Y.; He, K.; Fu, L. Impacts of Environmental Variables on a Phytoplankton Community: A Case Study of the Tributaries of a Subtropical River, Southern China. Water 2018, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.-P.; Tan, Y.-H.; Huang, L.-M.; Zhang, J.-L.; Yin, J.-Q. Occurrence of Brackish Water Phytoplankton Species at a Closed Coral Reef in Nansha Islands, South China Sea. Mar. Pollut. Bull. 2010, 60, 1718–1725. [Google Scholar] [CrossRef]
- Caruso, G.; Giacobbe, M.G.; Azzaro, F.; Decembrini, F.; Leonardi, M.; Miserocchi, S.; Cao, X.; Song, C.; Zhou, Y. All-In-One: Microbial Response to Natural and Anthropogenic Forcings in a Coastal Mediterranean Ecosystem, the Syracuse Bay (Ionian Sea, Italy). JMSE 2021, 10, 19. [Google Scholar] [CrossRef]
- Flöder, S.; Burns, C.W. Phytoplankton diversity of shallow tidal lakes: Influence of periodic salinity changes on diversity and species number of a natural assemblage1: Salinity changes and phytoplankton diversity. J. Phycol. 2004, 40, 54–61. [Google Scholar] [CrossRef]
- Olli, K.; Ptacnik, R.; Klais, R.; Tamminen, T. Phytoplankton Species Richness along Coastal and Estuarine Salinity Continua. Am. Nat. 2019, 194, E41–E51. [Google Scholar] [CrossRef]
- Redden, A.M.; Rukminasari, N. Effects of Increases in Salinity on Phytoplankton in the Broadwater of the Myall Lakes, NSW, Australia. Hydrobiologia 2008, 608, 87–97. [Google Scholar] [CrossRef]
- Stefanidou, N.; Genitsaris, S.; Lopez-Bautista, J.; Sommer, U.; Moustaka-Gouni, M. Effects of Heat Shock and Salinity Changes on Coastal Mediterranean Phytoplankton in a Mesocosm Experiment. Mar. Biol. 2018, 165, 154. [Google Scholar] [CrossRef]
- Kipriyanova, L.M.; Yermolaeva, N.I.; Bezmaternykh, D.M.; Dvurechenskaya, S.Y.; Mitrofanova, E.Y. Changes in the Biota of Chany Lake along a Salinity Gradient. Hydrobiologia 2007, 576, 83–93. [Google Scholar] [CrossRef]
- Qian, S.S.; Borsuk, M.E.; Stow, C.A. Seasonal and Long-Term Nutrient Trend Decomposition along a Spatial Gradient in the Neuse River Watershed. Environ. Sci. Technol. 2000, 34, 4474–4482. [Google Scholar] [CrossRef]
- Han, Z.; Xiao, M.; Yue, F.; Yi, Y.; Mostofa, K. Seasonal Variations of Dissolved Organic Matter by Fluorescent Analysis in a Typical River Catchment in Northern China. Water 2021, 13, 494. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Zhang, Y.; Liang, N.; Wu, H.; Liu, F. Allometric Releases of Nitrogen and Phosphorus from Sediments Mediated by Bacteria Determines Water Eutrophication in Coastal River Basins of Bohai Bay. Ecotoxicol. Environ. Saf. 2022, 235, 113426. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Zhong, M.; Wang, Z.; Liang, X.; Huang, T.; Huang, H. Analyses on the Temporal and Spatial Characteristics of Water Quality in a Seagoing River Using Multivariate Statistical Techniques: A Case Study in the Duliujian River, China. Int. J. Environ. Res. Public Health 2019, 16, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.-J.; He, W.; Liu, W.-X.; Qin, N.; Ouyang, H.-L.; Wang, Q.-M.; Kong, X.-Z.; He, Q.-S.; Yang, C.; Yang, B.; et al. The Seasonal and Spatial Variations of Phytoplankton Community and Their Correlation with Environmental Factors in a Large Eutrophic Chinese Lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication. Bell Syst. Tech. J. 1949, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Pielou, E.C. Species-Diversity and Pattern-Diversity in the Study of Ecological Succession. J. Theor. Biol. 1966, 10, 370–383. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Zhang, J.; Zhao, L.; Miao, M.; Huang, H. Biodiversity Effects on Resource Use Efficiency and Community Turnover of Plankton in Lake Nansihu, China. Environ. Sci. Pollut. Res. 2017, 24, 11279–11288. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, C.F.; Vázquez, G.; Aké-Castillo, J.A.; Band-Schmidt, C.J.; Moreno-Casasola, P. Physicochemical Factors Related to Peridinium Quadridentatum (F. Stein) Hansen (Dinophyceae) Blooms and Their Effect on Phytoplankton in Veracruz, Mexico. Estuar. Coast. Shelf Sci. 2019, 230, 106412. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Deng, D.; Zhao, X.; Zhou, Z. Temporal and Spatial Variations in Phytoplankton: Correlations with Environmental Factors in Shengjin Lake, China. Environ. Sci. Pollut. Res. 2015, 22, 14144–14156. [Google Scholar] [CrossRef] [PubMed]
- Obolewski, K.; Glińska-Lewczuk, K.; Bąkowska, M.; Szymańska, M.; Mrozińska, N. Patterns of Phytoplankton Composition in Coastal Lakes Differed by Connectivity with the Baltic Sea. Sci. Total Environ. 2018, 631–632, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Gasiūnaitė, Z.R.; Cardoso, A.C.; Heiskanen, A.-S.; Henriksen, P.; Kauppila, P.; Olenina, I.; Pilkaitytė, R.; Purina, I.; Razinkovas, A.; Sagert, S.; et al. Seasonality of Coastal Phytoplankton in the Baltic Sea: Influence of Salinity and Eutrophication. Estuar. Coast. Shelf Sci. 2005, 65, 239–252. [Google Scholar] [CrossRef]
- Zhong, Q.; Xue, B.; Noman, M.A.; Wei, Y.; Liu, H.; Liu, H.; Zheng, L.; Jing, H.; Sun, J. Effect of River Plume on Phytoplankton Community Structure in Zhujiang River Estuary. J. Ocean. Limnol. 2021, 39, 550–565. [Google Scholar] [CrossRef]
- Rolland, A.; Bertrand, F.; Maumy, M.; Jacquet, S. Assessing Phytoplankton Structure and Spatio-Temporal Dynamics in a Freshwater Ecosystem Using a Powerful Multiway Statistical Analysis. Water Res. 2009, 43, 3155–3168. [Google Scholar] [CrossRef]
- Flöder, S.; Jaschinski, S.; Wells, G.; Burns, C.W. Dominance and Compensatory Growth in Phytoplankton Communities under Salinity Stress. J. Exp. Mar. Biol. Ecol. 2010, 395, 223–231. [Google Scholar] [CrossRef]
- Gross, K.; Cardinale, B.J. Does Species Richness Drive Community Production or Vice Versa? Reconciling Historical and Contemporary Paradigms in Competitive Communities. Am. Nat. 2007, 170, 207–220. [Google Scholar] [CrossRef]
- Korhonen, J.J.; Wang, J.; Soininen, J. Productivity-Diversity Relationships in Lake Plankton Communities. PLoS ONE 2011, 6, e22041. [Google Scholar] [CrossRef]
- Mitra, A.; Zaman, S.; Ray, S.K.; Sinha, S.; Banerjee, K. Inter-Relationship Between Phytoplankton Cell Volume and Aquatic Salinity in Indian Sundarbans. Natl. Acad. Sci. Lett. 2012, 35, 485–491. [Google Scholar] [CrossRef]
- Hildebrand, M.; York, E.; Kelz, J.I.; Davis, A.K.; Frigeri, L.G.; Allison, D.P.; Doktycz, M.J. Nanoscale Control of Silica Morphology and Three-Dimensional Structure during Diatom Cell Wall Formation. J. Mater. Res. 2006, 21, 2689–2698. [Google Scholar] [CrossRef]
- Gruner, D.S.; Bracken, M.E.S.; Berger, S.A.; Eriksson, B.K.; Gamfeldt, L.; Matthiessen, B.; Moorthi, S.; Sommer, U.; Hillebrand, H. Effects of Experimental Warming on Biodiversity Depend on Ecosystem Type and Local Species Composition. Oikos 2017, 126, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Dursun, F.; Tas, S. Variations in Abundance and Diversity of Phytoplankton in the Surface Waters of the Golden Horn Estuary (Sea of Marmara). J. Mar. Biol. Ass. 2019, 99, 279–290. [Google Scholar] [CrossRef]
- Vajravelu, M.; Martin, Y.; Ayyappan, S.; Mayakrishnan, M. Seasonal Influence of Physico-Chemical Parameters on Phytoplankton Diversity, Community Structure and Abundance at Parangipettai Coastal Waters, Bay of Bengal, South East Coast of India. Oceanologia 2018, 60, 114–127. [Google Scholar] [CrossRef]
- Chen, F.-Z.; Song, X.-L.; Hu, Y.-H.; Liu, Z.-W.; Qin, B.-Q. Water Quality Improvement and Phytoplankton Response in the Drinking Water Source in Meiliang Bay of Lake Taihu, China. Ecol. Eng. 2009, 35, 1637–1645. [Google Scholar] [CrossRef]
- Coelho, S.; Gamito, S.; Pérez-Ruzafa, A. Trophic State of Foz de Almargem Coastal Lagoon (Algarve, South Portugal) Based on the Water Quality and the Phytoplankton Community. Estuar. Coast. Shelf Sci. 2007, 71, 218–231. [Google Scholar] [CrossRef]
- Nasrollahzadeh, H.S.; Din, Z.B.; Foong, S.Y.; Makhlough, A. Trophic Status of the Iranian Caspian Sea Based on Water Quality Parameters and Phytoplankton Diversity. Cont. Shelf Res. 2008, 28, 1153–1165. [Google Scholar] [CrossRef]
- Egerton, T.; Morse, R.; Marshall, H.; Mulholland, M. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary. Microorganisms 2014, 2, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Sfriso, A.A.; Marchetto, D.; Gallo, M.; Baldi, F. Biochemical Characterization of Some Cyanobacterial Strains from Salt Marshes of the Venice Lagoon. J. Appl. Phycol. 2014, 26, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Klawonn, I.; Nahar, N.; Walve, J.; Andersson, B.; Olofsson, M.; Svedén, J.B.; Littmann, S.; Whitehouse, M.J.; Kuypers, M.M.M.; Ploug, H. Cell-Specific Nitrogen- and Carbon-Fixation of Cyanobacteria in a Temperate Marine System (Baltic Sea): Cell-Specific N 2− and C-Fixation in the Baltic Sea. Environ. Microbiol. 2016, 18, 4596–4609. [Google Scholar] [CrossRef]
- Ma, J.; Qin, B.; Paerl, H.W.; Brookes, J.D.; Hall, N.S.; Shi, K.; Zhou, Y.; Guo, J.; Li, Z.; Xu, H.; et al. The Persistence of Cyanobacterial (M. Icrocystis Spp.) Blooms throughout Winter in Lake Taihu, China: Cyanobacterial Blooms throughout Winter. Limnol. Oceanogr. 2016, 61, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Huang, Z.; Chen, X.-P.; Zhang, D.; Zhou, J.; Wang, X.; Gao, N. The Predominant Phytoplankton of Pseudoanabaena Holding Specific Biosynthesis Gene-Derived Occurrence of 2-MIB in a Drinking Water Reservoir. Environ. Sci. Pollut. Res. 2018, 25, 19134–19142. [Google Scholar] [CrossRef] [PubMed]
- Farnelid, H.; Öberg, T.; Riemann, L. Identity and Dynamics of Putative N 2 -Fixing Picoplankton in the Baltic Sea Proper Suggest Complex Patterns of Regulation. Environ. Microbiol. Rep. 2009, 1, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, S.; Suikkanen, S.; Hällfors, H.; Tuimala, J.; Kuosa, H. Phytoplankton Morpho-Functional Trait Variability along Coastal Environmental Gradients. Microorganisms 2021, 9, 2477. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, W.; Chen, H.; Li, X.; Song, F.; Guo, W.; Giesy, J.P.; Sun, F. Temporal Variation in Zooplankton and Phytoplankton Community Species Composition and the Affecting Factors in Lake Taihu—A Large Freshwater Lake in China. Environ. Pollut. 2019, 245, 1050–1057. [Google Scholar] [CrossRef]
- Wen, Z.; Mian-ping, Z.; Xian-zhong, X.; Xi-Fang, L.; Gan-lin, G.; Zhi-hui, H. Biological and Ecological Features of Saline Lakes in Northern Tibet, China. Hydrobiologia 2005, 541, 189–203. [Google Scholar] [CrossRef]
- Srichandan, S.; Baliarsingh, S.K.; Prakash, S.; Lotliker, A.A.; Parida, C.; Sahu, K.C. Seasonal Dynamics of Phytoplankton in Response to Environmental Variables in Contrasting Coastal Ecosystems. Environ. Sci. Pollut. Res. 2019, 26, 12025–12041. [Google Scholar] [CrossRef]
- Kwon, Y.; Hwang, S.; Park, K.; Kim, H.; Kim, B.; Shin, K.; An, K.; Song, Y.; Park, Y. Temporal Changes of Phytoplankton Community at Different Depths of a Shallow Hypertrophic Reservoir in Relation to Environmental Variables. Ann. Limnol. Int. J. Lim. 2009, 45, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dong, J.; Gao, Y.; Liu, Y.; Zhou, C.; Meng, X.; Li, X.; Li, M.; Wang, Y.; Dai, D.; et al. Patterns of Phytoplankton Community Structure and Diversity in Aquaculture Ponds, Henan, China. Aquaculture 2021, 544, 737078. [Google Scholar] [CrossRef]
- Sun, F.; Wang, C.; Wang, Y.; Tu, K.; Zheng, Z.; Lin, X. Diatom Red Tide Significantly Drive the Changes of Microbiome in Mariculture Ecosystem. Aquaculture 2020, 520, 734742. [Google Scholar] [CrossRef]
Environmental Factors | Abbreviation | Chi-Squared | df | p-Value |
---|---|---|---|---|
pH | pH | 23.75 | 3 | <0.0001 |
Salinity (ppt) | SAL | 17.58 | 3 | <0.001 |
Total nitrogen (mg/L) | TN | 37.92 | 3 | <0.0001 |
Total phosphorus (mg/L) | TP | 16.72 | 3 | <0.001 |
Total dissolved nitrogen (mg/L) | TDN | 33.44 | 3 | <0.0001 |
Total dissolved phosphorus (mg/L) | TDP | 25.79 | 3 | <0.0001 |
Orthophosphate (mg/L) | PO43− | 30.16 | 3 | <0.0001 |
Dissolved inorganic nitrogen (mg/L) | DIN | 43.85 | 3 | <0.0001 |
Water temperature (℃) | WT | 50.26 | 3 | <0.0001 |
Dissolved oxygen (mg/L) | DO | 27.78 | 3 | <0.0001 |
Oxidation-reduction potential (mv) | ORP | 22.87 | 3 | <0.0001 |
Turbidity (NTU) | TUR | 13.48 | 3 | <0.005 |
Water transparency (cm) | SD | 26.28 | 3 | <0.0001 |
Water depth (m) | WD | 8.71 | 3 | <0.05 |
Chemical oxygen demand (mg/L) | COD | 30.52 | 3 | <0.0001 |
Nitrate (mg/L) | NO3− | 44.79 | 3 | <0.0001 |
Nitrite (mg/L) | NO2− | 50.54 | 3 | <0.0001 |
Ammonium nitrogen (mg/L) | NH4+ | 14.20 | 3 | <0.005 |
Number of species | 8.34 | 3 | <0.05 | |
Shannon–Wiener index | H | 27.29 | 3 | <0.0001 |
Pielou’s evenness | J | 28.64 | 3 | <0.0001 |
Phyla | Dominant Species | Autumn | Winter | Spring | Summer |
---|---|---|---|---|---|
Cyanophyta | Pseudoanabaena sp. | 0.015 | 0 | 0.313 | 0.246 |
Oscillatoria limosa | 0.002 | 0.009 | 0.199 | 0.165 | |
Microcystis sp. | 0.443 | 0 | 0 | 0 | |
Microcystis marginata | 0.024 | 0.314 | 0 | 0 | |
Microcystis incerta | 0.076 | 0.006 | 0 | 0 | |
Microcystis flos-aquae | 0 | 0.006 | 0.013 | 0.043 | |
Chroococcus sp. | 0.067 | 0.008 | 0 | 0 | |
Oscillatoria agardhii | 0 | 0 | 0.020 | 0.022 | |
Chlorophyta | Chlorella vulgaris | 0.049 | 0.373 | 0.001 | 0.131 |
Westella sp. | 0 | 0 | 0.005 | 0.050 | |
Bacillariophyta | Cyclotella sp. | 0.005 | 0.011 | 0.105 | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhang, H.; Wang, Z.; Huang, T.; Huang, H. Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China. Microorganisms 2023, 11, 75. https://doi.org/10.3390/microorganisms11010075
Sun X, Zhang H, Wang Z, Huang T, Huang H. Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China. Microorganisms. 2023; 11(1):75. https://doi.org/10.3390/microorganisms11010075
Chicago/Turabian StyleSun, Xuewei, Huayong Zhang, Zhongyu Wang, Tousheng Huang, and Hai Huang. 2023. "Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China" Microorganisms 11, no. 1: 75. https://doi.org/10.3390/microorganisms11010075
APA StyleSun, X., Zhang, H., Wang, Z., Huang, T., & Huang, H. (2023). Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China. Microorganisms, 11(1), 75. https://doi.org/10.3390/microorganisms11010075