The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Construction of the ompR Knockout Strain of A. caldus
2.3. RNA Extraction and Transcriptional Analysis
2.4. Expression and Purification of the OmpR Protein
2.5. Isothermal Titration Calorimetry (ITC)
2.6. Electrophoretic Mobility Shift (EMSA) Assays
3. Results
3.1. Sequence Analysis and Comparison of OmpRs in Acidithiobacillus spp.
3.2. Construction of the A. caldus ompR-Knockout Strain
3.3. The Influence of Ion Concentration on the Growth of A. caldus and its ompR Mutant
3.4. The Influence of OmpR Absence on the Transcriptome Profile of A. caldus under Osmotic Stress
3.5. OmpR Binding Sequences in A. caldus
3.6. The Binding Ability of OmpR to the tetH Promoter Fragment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunez, H.; Moya-Beltran, A.; Covarrubias, P.C.; Issotta, F.; Cardenas, J.P.; Gonzalez, M.; Atavales, J.; Acuna, L.G.; Johnson, D.B.; Quatrini, R. Molecular Systematics of the genus Acidithiobacillus: Insights into the phylogenetic structure and diversification of the taxon. Front. Microbiol. 2017, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Lin, J.; Liu, X.; Pang, X.; Zhang, C.; Yang, C.; Gao, X.; Lin, C.; Li, Y.; Li, Y.; et al. Sulfur Oxidation in the acidophilic autotrophic Acidithiobacillus spp. Front. Microbiol. 2018, 9, 3290. [Google Scholar] [CrossRef]
- Rawlings, D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Factories 2005, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temple, K.L.; Colmer, A.R. The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J. Bacteriol. 1951, 62, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrich, S.; Johnson, D.B. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. Int. J. Syst. Evol. Microbiol. 2013, 63, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Falagan, C.; Johnson, D.B. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile. Int. J. Syst. Evol. Microbiol. 2016, 66, 206–211. [Google Scholar]
- Hallberg, K.B.; Lindström, E.B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 1994, 140, 3451. [Google Scholar]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Eisen, J.A.; Holmes, D.S. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genom. 2008, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, X.; Liu, S.; Yu, Y.; Lin, J.; Lin, J.; Pang, X.; Zhao, J. Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant. Appl. Environ. Microbiol. 2012, 78, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Liu, X.; Wang, H.; Lin, J. A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: Application for characterizing a copper tolerance related multicopper oxidase gene. Environ. Microbiol. 2014, 16, 3499–3514. [Google Scholar] [CrossRef]
- Robbins, E.I.; Rodgers, T.M.; Alpers, C.N.; Nordstrom, D.K. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 2000, 433, 15–23. [Google Scholar]
- Suzuki, I.; Lee, D.; Mackay, B.; Harahuc, L.; Oh, J.K. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol. 1999, 65, 5163–5168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiers, D.W.; Blight, K.R.; Ralph, D.E. Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria. Hydrometallurgy 2005, 80, 75–82. [Google Scholar] [CrossRef]
- Gahan, C.S.; Sundkvist, J.E.; Dopson, M.; Sandstrom, A. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture. Biotechnol. Bioeng. 2010, 106, 422–431. [Google Scholar]
- Zammit, C.M.; Mangold, S.; Jonna, V.; Mutch, L.A.; Watling, H.R.; Dopson, M.; Watkin, E. Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species. Appl. Microbiol. Biotechnol. 2012, 93, 319–329. [Google Scholar] [CrossRef]
- Blight, K.; Ralph, D. Effect of ionic strength on iron oxidation with batch cultures of chemolithotrophic bacteria. Hydrometallurgy 2004, 73, 325–334. [Google Scholar] [CrossRef]
- Boxall, N.J.; Rea, S.M.; Li, J.; Morris, C.; Kaksonen, A.H. Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community. Hydrometallurgy 2017, 168, 32–39. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, C.; Luo, Y.; Zhang, M.; Poetsch, A.; Liu, S. Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress. Chin. Sci. Bull. 2014, 59, 301–309. [Google Scholar] [CrossRef]
- Cai, S.J.; Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 2002, 277, 24155–24161. [Google Scholar] [CrossRef] [Green Version]
- Nieckarz, M.; Raczkowska, A.; Dębski, J.; Kistowski, M.; Dadlez, M.; Heesemann, J.; Rossier, O.; Brzostek, K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: Repression of major adhesin YadA and heme receptor HemR. Environ. Microbiol. 2016, 18, 997–1021. [Google Scholar] [CrossRef]
- Roberts, D.L.; Bennett, D.W.; Forst, S.A. Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J. Biol. Chem. 1994, 269, 8728–8733. [Google Scholar] [CrossRef]
- Forst, S.; Delgado, J.; Ramakrishnan, G.; Inouye, M. Regulation of ompC and ompF expression in Escherichia coli in the absence of envZ. J. Bacteriol. 1988, 170, 5080–5085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Qin, L.; Egger, L.A.; Inouye, M. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J. Biol. Chem. 2006, 281, 17114–17123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forst, S.; Delgado, J.; Inouye, M. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 1989, 86, 6052–6056. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.J.; Bauer, M.D.; Silhavy, T.J. Phosphorylation-dependent conformational changes in OmpR, an osmoregulatory DNA-binding protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 1995, 92, 8866–8870. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.J.; Lan, C.Y.; Igo, M.M. Phosphorylation stimulates the cooperative DNA-binding properties of the transcription factor OmpR. Proc. Natl. Acad. Sci. USA 1997, 94, 2828–2832. [Google Scholar] [CrossRef] [Green Version]
- Chatfield, S.N.; Dorman, C.J.; Hayward, C.; Dougan, G. Role of ompR-dependent genes in Salmonella typhimurium virulence: Mutants deficient in both ompC and ompF are attenuated in vivo. Infect. Immun. 1991, 59, 449. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Park, C. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 1995, 177, 4696–4702. [Google Scholar] [CrossRef] [Green Version]
- Bang, I.S.; Kim, B.H.; Foster, J.W.; Park, Y.K. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar typhimurium. J. Bacteriol. 2000, 182, 2245–2252. [Google Scholar] [CrossRef] [Green Version]
- Guillier, M.; Gottesman, S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol. Microbiol. 2006, 59, 231–247. [Google Scholar] [CrossRef]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Holmes, D.S. Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology. Hydrometallurgy 2008, 94, 180–184. [Google Scholar] [CrossRef]
- You, X.Y.; Guo, X.; Zheng, H.J.; Zhang, M.J.; Liu, L.J.; Zhu, Y.Q.; Liu, S.J. Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation. J. Genet. Genom. 2011, 38, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Valdes, J.; Ossandon, F.; Quatrini, R.; Dopson, M.; Holmes, D.S. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J. Bacteriol. 2011, 193, 7003–7004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.M.; Yan, W.M.; Wang, Z.N. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 1992, 58, 429–430. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Lin, J.; Pang, X.; Liu, X.; Liu, B.; Wang, R.; Zhang, C.; Wu, Y.; Lin, J.; et al. The two-component system RsrS-RsrR regulates the tetrathionate intermediate pathway for thiosulfate oxidation in Acidithiobacillus caldus. Front. Microbiol. 2016, 7, 1755. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qi, F.; Lin, J.; Tian, K.; Yan, W. Isolation and phylogenetic analysis of a moderately thermophilic acidophilic sulfur oxidizing bacterium. Acta Microbiol. Sin. 2004, 44, 382–385. [Google Scholar]
- Simon, R.; Priefer, U.; Pühler, A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Liu, X.; Lin, J.; Zhang, Z.; Bian, J.; Zhao, Q.; Liu, Y.; Yan, W. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04. J. Microbiol. Biotechnol. 2007, 17, 162–167. [Google Scholar]
- Yang, C.; Chen, X.; Wang, R.; Lin, J.; Liu, X.; Pang, X.; Zhang, C.; Lin, J.; Chen, L. Essential role of sigma factor RpoF in flagellar biosynthesis and flagella-mediated motility of Acidithiobacillus caldus. Front. Microbiol. 2019, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Rzhepishevska, O.I.; Valdés, J.; Marcinkeviciene, L.; Gallardo, C.A.; Meskys, R.; Bonnefoy, V.; Holmes, D.S.; Dopson, M. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds. Appl. Environ. Microbiol. 2007, 73, 7367–7372. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Cai, S.; Inouye, M. Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator. Mol. Microbiol. 2002, 46, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Macalady, J.L.; Vestling, M.M.; Baumler, D.; Boekelheide, N.; Kaspar, C.W.; Banfield, J.F. Tetraether-linked membrane monolayers in Ferroplasma spp.: A key to survival in acid. Extremophiles 2004, 8, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Zammit, C.M.; Watkin, E.L. Adaptation to extreme acidity and osmotic stress. In Acidophiles: Life in Extremely Acidic Environments; Quatrini, R., Johnson, D.B., Eds.; Caister Academic Press: Poole, UK, 2016; pp. 49–62. [Google Scholar]
- Empadinhas, N.; da Costa, M.S. Osmoadaptation mechanisms in prokaryotes: Distribution of compatible solutes. Int. Microbiol. 2008, 11, 151–161. [Google Scholar] [PubMed]
- Chen, L.; Ren, Y.; Lin, J.; Liu, X.; Pang, X.; Lin, J. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS ONE 2012, 7, e39470. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Stockdreher, Y.; Koch, T.; Sun, S.T.; Fan, Z.; Josten, M.; Sahl, H.; Wang, Q.; Luo, Y.; Liu, S.; et al. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J. Biol. Chem. 2014, 289, 26949–26959. [Google Scholar] [CrossRef] [Green Version]
- Johnston, F.; Mcamish, L. A study of the rates of sulfur production in acid thiosulfate solutions using S-35. J. Colloid Interface Sci. 1973, 42, 112–119. [Google Scholar] [CrossRef]
Strains or Plasmids | Genotype or Description | Source or Reference |
---|---|---|
Strains | ||
A. caldus | ||
MTH-04 | Isolated from Tengchong area, Yunnan province, China | [36] |
ΔompR | ΔompR | This study |
E. coli | ||
DH5α | F−Φ80d lacZΔM15Δ(lacZYA-argF) U169 end A1 recA1 hsdR17(rk−,mk+) supE44λ-thi-1 gyr96 relA1 phoA | TransGen Biotech Corp., Beijing, China |
SM10 | Thr leu hsd recA KmrRP4-2-Tc::Mu | [37] |
BL21 (DE3) | F−ompT hdsSB(Rb−mB−) gal dgmmet(DE3) | TransGen Biotech Corp., Beijing, China |
Plasmids | ||
pSDUDI | suicide plasmid; Apr; Kmr; oriTRP4; multi-cloning sites | [35] |
pSDUDI::ompR(UHA + DHA) | suicide plasmid for ompR deletion | This study |
pSDU1-I-SceI | Cmr; mob+; Ptac; containing I-SceI gene | [35] |
pET-28a | Ampr | Novagen Cor. |
pET-28a-ompR | Ampr, ompR | This study |
Primer Name | Primer Sequence (5′→3′) |
---|---|
P1-F | ACGCGTCGACATGGGCAAGATGGCAGGACAACG |
P1-R | CGGGATCCGATGCGCCCGCGTTTCTGGACGGAC |
P2-F | CGGGATCCTCAGGGGCGCTTCCAACCCGGATGA |
P2-R | CCCAAGCTTCGGCCTGAATACTCTGGTTCTGGGTG |
oriT-F | TACTAGACTAGTGCTCGTCCTGCTTCTCTTCG |
oriT-R | ACCGGAATTCCGGGATTCAACCCACTCG |
LHA-F | CAAGATGGCAGGACAACGC |
LHA-R | GGCGGAGGTGTTCATGGTTA |
IHA-F | GGTGCGGGAAGTTTAGGGC |
IHA-R | CAAAGGAGAATGCAATGAAAATGTT |
ompR-F | GCAGGATTTCAGCGTCTGTG |
ompR-R | GACAGGGTCTGCCAGGGAT |
ompR02628-F | CGCGGATCCATGGCCAAGGCCCGCATC |
ompR02628-R | CCCAAGCTTTCAGGTGGCCGTGGAGCC |
G360-F | CGCAATATTCTGCGGGCGGTC |
G360-R | TACGGTAAGGTCCACCGGAT |
T360-F | AGCGCCGATTGTGTACAGAATGAAC |
T360-R | GATATATAATCTCCGAATCGCTAAT |
Gene ID (F0726_) | Gene | Annotation | Regulation | RNA-Seq | RT-qPCR | Computational Marching of the OmpR Consensus | ||
---|---|---|---|---|---|---|---|---|
Position | Sequence | Score | ||||||
1027 | tetH | tetrathionate hydrolase | - | 2.26 | 3.78 | R-122…-103 | TTTAGCTTATGTAACAAGTT | 13.1 |
D-127…-108 | GTTACAACTTGTTACATAAG | 12.8 | ||||||
R-132…-113 | GTAACAAGTTGTAACAGGTG | 8.6 | ||||||
48 | dsbD | thiol:disulfide interchange protein | - | 16.25 | 24.92 | R-128…-109 | CCTAACTCAAGAAACATTTT | 7.8 |
1023 | nodT | RND efflux system, outer membrane lipoprotein, NodT family | - | 3.45 | 2.96 | D-405…-386 | TTTACGATTTGTTACAAAAA | 11.9 |
R-410…-391 | GTAACAAATCGTAAAATATG | 10.7 | ||||||
R-419…-400 | CGTAAAATATGTAACATCCT | 9.4 | ||||||
D-374…-355 | TTGACAGATTGTTACACAAC | 8.3 | ||||||
D-424…-405 | CTACCAGGATGTTACATATT | 7 | ||||||
2394 | DEAD/DEAH box helicase domain protein | - | 4.35 | 5.06 | R-23…-4 | GTTACCGTTGTTTATATTTT | 8.4 | |
D-107…-88 | ATAAGTTCTGGAAATAAATA | 7.2 | ||||||
3003 | TonB-dependent receptor | + | 0.29 | 0.12 | R-54…-35 | TGTAAGTTTGAATGCAATTT | 7.7 | |
D-387…-368 | GTCTAATATTGAAGTATCTC | 7.2 | ||||||
2726 | mscS | mechanosensitive ion channel | + | 0.64 | 0.61 | R-54…-35 | TTTTAGTCTAGAAACATCGT | 10.5 |
1798 | membrane protein | + | 0.09 | 0.07 | R-341…-322 | TAAAAAGCGAGAAACATCAT | 7.5 | |
1192 | translation initiation factor IF-2 | + | 0.56 | 0.41 | D-104…-85 | ATAAAAAAATATAACAAGAA | 8.8 | |
R-116…-97 | TTTTTTATATAAAACAATTA | 8.6 | ||||||
D-121…-102 | CTATATAATTGTTTTATATA | 8.4 | ||||||
2316 | motA | flagellar motor protein | + | 0.28 | 0.32 | R-202…-183 | TTCACAAATAGTTGCACCAA | 7.5 |
R-404…-385 | CTAAAAAATCGGAACAACTG | 7.1 | ||||||
2322 | ade | adenine deaminase | + | 0.32 | 0.37 | D-395…-376 | GTCACAGCATGTTACATGTA | 10.2 |
R-381…-362 | AAAAATCTTTGTAGTACATG | 8.9 | ||||||
1900 | transposase, IS4 | + | 0.59 | 0.52 | R-407…-388 | ATTTGTCTTTGATACTAATT | 10.1 | |
R-466…-447 | ATTAATATTGGTTTTATAAG | 8.4 | ||||||
D-492…-473 | TAAATATATAGAGATAAATT | 7.9 | ||||||
D-412…-393 | TCTACAATTAGTATCAAAGA | 7.9 | ||||||
R-598…-579 | AATACAATAACTAGTATTGT | 7.7 | ||||||
R-504…-485 | TATATTTATTATTCTATCTT | 7.7 | ||||||
1551 | ISPsy4, transposition helper protein | + | 0.01 | 0.02 | D-73…-54 | AAAACTTTAACATACCTTTT | 10.3 | |
R-377…-358 | ATAACACTTTATATCCATTC | 8.4 | ||||||
2814 | xerC | Integrase | + | 0 | 0.01 | R-470…-451 | GTAACTATTTGATTCTTAGA | 8.5 |
D-155…-136 | GAATATTAAGGAAATAGTTT | 7.6 | ||||||
D-465…-446 | GAATCAAATAGTTACTGTTC | 7.6 | ||||||
1869 | transposase | - | 3.54 | 4.21 | D-267…-248 | AATAAATTTTATGTCATTGC | 7.6 | |
D-576…-557 | GATTATGTTCGAATCTTATG | 7.2 | ||||||
426 | diguanylate cyclase | + | 0.3 | 0.26 | D-181…-162 | GGAGATCTTTGATACCTTTA | 7 | |
2335 | ahpD | alkylhydroperoxidase like protein | + | 0 | 0 | D-493…-474 | AAAAAATATTGAAAAATCTC | 11 |
222 | AmmeMemoRadiSam system protein B | - | 17.11 | 18.38 | R-328…-309 | ATTTCATTTAGATGCTTTTG | 9.9 | |
R-453…-434 | TTTAAGCTTCGTAATAAAGG | 7.7 | ||||||
D-526…-507 | AATAGACTCCGTAACAAAAT | 7.5 | ||||||
2436 | type II DNA modification enzyme | - | 1.82 | 1.41 | D-671…-652 | TGTACACTTTGATGTACATA | 7.4 | |
2272 | hypothetical protein | + | 0 | 0 | R-31…-12 | TTTATTTTTTATTAGATATA | 9.5 | |
2500 | hypothetical protein | - | 2.56 | 2.55 | R-109…-90 | AATACAGATAGTTAGGATTT | 7.6 | |
D-309…-290 | TTTACATTCATATACATCAT | 7.2 | ||||||
650 | hypothetical protein | + | 0.63 | 0.6 | D-57…-38 | TAAAGACATCGATACAAAAG | 8.6 | |
1813 | hypothetical protein | - | 2.37 | 3.53 | R-628…-609 | AGAAATGATGGTTGCAATGT | 8.4 | |
1814 | hypothetical protein | - | 7.31 | 9.11 | R-236…-217 | AGAAATGATGGTTGCAATGT | 8.4 | |
2504 | hypothetical protein | + | 0.41 | 0.33 | R-35…-16 | ATAAATATTAGAAATATTTC | 12 | |
D-36…-17 | CGAAATATTTCTAATATTTA | 7.8 | ||||||
1734 | hypothetical protein | + | 0.07 | 0.18 | D-490…-471 | TTTAAATAATGAACCAATGA | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, X.; Gao, C.; Guan, Y.; Lin, J.; Liu, X.; Pang, X. The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2023, 11, 35. https://doi.org/10.3390/microorganisms11010035
Chen L, Liu X, Gao C, Guan Y, Lin J, Liu X, Pang X. The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms. 2023; 11(1):35. https://doi.org/10.3390/microorganisms11010035
Chicago/Turabian StyleChen, Linxu, Xiao Liu, Chang Gao, Yanan Guan, Jianqiang Lin, Xiangmei Liu, and Xin Pang. 2023. "The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway" Microorganisms 11, no. 1: 35. https://doi.org/10.3390/microorganisms11010035
APA StyleChen, L., Liu, X., Gao, C., Guan, Y., Lin, J., Liu, X., & Pang, X. (2023). The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms, 11(1), 35. https://doi.org/10.3390/microorganisms11010035