Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Freeze-Drying Temperature Optimization
2.3. Response Surface Methodology (RSM) Optimization
2.4. Survival Rate Measurements
2.5. Water Content and Water Activity (aw) Analysis
2.6. Preparation of Cell-Free Extracts and Extracellular Supernatants
2.7. β-Galactosidase, Lactate Dehydrogenase, Na+-K+-ATP and Ca2+-Mg2+-ATP Activity Analysis
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Survival Rates of BB68S under Different Temperatures during Freeze-Drying Process
3.2. Response Surface Methodology Optimization of Pre-Freezing Temperatures and Sublimation Temperatures
3.3. Water Content, aw Activities of β-Galactosidase, Lactate Dehydrogenase, Na+-K+-ATP and Ca2+-Mg2+-ATP, and Scanning Electron Microscope of BB68S under Different Sublimation Temperatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanders, M.E.; Merenstein, D.; Merrifield, C.A.; Hutkins, R. Probiotics for human use. Nutr. Bull. 2018, 43, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.W.; Zheng, X.F.; Zhao, Q.; Fu, N.; Xiong, H.; Wu, W.D.; Chen, X.D. Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. Powder Technol. 2019, 358, 87–94. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Tafti, A.G.; Hesari, J. Application of spray drying for preservation of lactic acid starter cultures: A review. Trends Food Sci. Technol. 2011, 22, 215–224. [Google Scholar] [CrossRef]
- Rama, G.R.; Kuhn, D.; Beux, S.; Maciel, M.J.; de Souza, C. Cheese Whey and ricotta whey for the growth and encapsulation of endogenous lactic acid bacteria. Food Bioprocess Technol. 2020, 13, 308–322. [Google Scholar] [CrossRef]
- Conde-Islas, A.A.; Jimenez-Fernandez, M.; Cantu-Lozano, D.; Urrea-Garcia, G.R.; Luna-Solano, G. Effect of the freeze-drying process on the physicochemical and microbiological properties of mexican kefir grains. Processes 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.D.; Zhang, X.J.; Fu, Z.Z.; Pi, A.R.; Shi, F.Y.; Fan, Y.A.; Zhang, J.H.; Xiao, T.T.; Shang, D.; Lin, M.; et al. (+/-)-5-bromo-2-(5-fluoro-1-hydroxyamyl) benzoate protects against oxidative stress injury in PC12 cells exposed to H2O2 through activation of Nrf2 pathway. Front. Pharmacol. 2022, 13, 943111. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Virkajarvi, I.; Alakomi, H.L.; Mattila-Sandholm, T.; Vaari, A.; Suomalainen, T.; Matto, J. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp lactis cells produced without milk-based ingredients. J. Appl. Microbiol. 2005, 99, 1330–1339. [Google Scholar] [CrossRef]
- de Vries, A.; Gomez, Y.L.; Jansen, B.; van der Linden, E.; Scholten, E. Controlling agglomeration of protein aggregates for structure formation in liquid oil: A sticky business. ACS Appl. Mater. Interfaces 2017, 9, 10136–10147. [Google Scholar] [CrossRef] [Green Version]
- Kasper, J.C.; Friess, W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011, 78, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Effect of cooling rate, freeze-drying, and storage on survival of free and immobilized Lactobacillus casei ATCC 393. LWT Food Sci. Technol. 2016, 69, 468–473. [Google Scholar] [CrossRef]
- Liu, J.S.; Viverette, T.; Virgin, M.; Anderson, M.; Dalal, P. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. Pharm. Dev. Technol. 2005, 10, 261–272. [Google Scholar] [CrossRef]
- Wang, G.Q.; Pu, J.; Yu, X.Q.; Xia, Y.J.; Ai, L.Z. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains. J. Dairy Sci. 2020, 103, 3066–3075. [Google Scholar] [CrossRef]
- Aragon-Rojas, S.; Ruiz-Pardo, R.Y.; Hernandez-Alvarez, A.J.; Quintanilla-Carvajal, M.X. Sublimation conditions as critical factors during freeze-dried probiotic powder production. Dry Technol. 2020, 38, 333–349. [Google Scholar] [CrossRef]
- Arboleya, S.; Stanton, C.; Ryan, C.A.; Dempsey, E.; Ross, P.R. Bosom buddies: The symbiotic relationship between infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and probiotic features. Annu. Rev. Food Sci. Technol. 2016, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.W.; Tao, Z.; Gao, P.; Chen, G.H. Ice crystal sizes and their impact on microwave assisted freeze drying. Chin. J. Chem. Eng. 2004, 12, 831–835. [Google Scholar]
- Seki, S.; Kleinhans, F.W.; Mazur, P. Intracellular ice formation in yeast cells vs. cooling rate: Predictions from modeling vs. experimental observations by differential scanning calorimetry. Cryobiology 2009, 58, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Zayed, G.; Roos, Y.H. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process. Biochem. 2004, 39, 1081–1086. [Google Scholar] [CrossRef]
- Daoussi, R.; Vessot, S.; Andrieu, J.; Monnier, O. Sublimation kinetics and sublimation end-point times during freeze-drying of pharmaceutical active principle with organic co-solvent formulations. Chem. Eng. Res. Des. 2009, 87, 899–907. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Schoug, A.; Olsson, J.; Carlfors, J.; Schnurer, J.; Hakansson, S. Freeze-drying of Lactobacillus coryniformis Si3—Effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 2006, 53, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Aschenbrenner, M.; Kulozik, U.; Foerst, P. Role of glassy state on stabilities of freeze-dried probiotics. J. Food Sci. 2011, 76, R152–R156. [Google Scholar] [CrossRef] [PubMed]
- Poddar, D.; Das, S.; Jones, G.; Palmer, J.; Jameson, G.B.; Haverkamp, R.G.; Singh, H. Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. Int. Dairy J. 2014, 39, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yu, R.C.; Chou, C.C. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int. J. Food Microbiol. 2004, 93, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Burca-Busaga, C.G.; Betoret, N.; Segui, L.; Betoret, E.; Barrera, C. Survival of Lactobacillus salivarius CECT 4063 and stability of antioxidant compounds in dried apple snacks as affected by the water activity, the addition of trehalose and high pressure homogenization. Microorganisms 2020, 8, 1095. [Google Scholar] [CrossRef] [PubMed]
- Mikajiri, S.; Sogabe, T.; Cao, R.D.; Kikawada, T.; Suzuki, T.; Kawai, K. Glass transition behavior of carnosine and its impact as a protectant on freeze-dried lactic acid bacteria. Food Biophys. 2022, 17, 1–9. [Google Scholar] [CrossRef]
- Ji, L.N.; Chauhan, A.; Brown, W.T.; Chauhan, V. Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci. 2009, 85, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Delmas, F.; Pierre, F.; Coucheney, F.; Divies, C.; Guzzo, J. Biochemical and physiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenococcus oeni. J. Mol. Microbiol. Biotechnol. 2001, 3, 601–610. [Google Scholar]
- Deane, E.E.; Woo, N.Y. Evidence for disruption of Na(+)-K(+)-ATPase and hsp70 during vibriosis of sea bream, Sparus (=Rhabdosargus) sarba Forsskal. J. Fish Dis. 2005, 28, 239–251. [Google Scholar] [CrossRef]
- Occhino, L.A.; Morris, H.A.; Savaiano, D.A. A comparison of beta-galactosidase specific activities in strains of Streptococcus-Thermophilus. J. Dairy Sci. 1986, 69, 2583–2588. [Google Scholar] [CrossRef]
- Jiang, S.; Nail, S.L. Effect of process conditions on recovery of protein activity after freezing and freeze-drying. Eur. J. Pharm. Biopharm. 1998, 45, 249–257. [Google Scholar] [CrossRef]
- Cui, S.M.; Hang, F.; Liu, X.M.; Xu, Z.Y.; Liu, Z.M.; Zhao, J.X.; Zhang, H.; Chen, W. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried Lactobacillus and prediction of optimal initial cell concentration. J. Biosci. Bioeng. 2018, 125, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Turov, V.V.; Gun Ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zięba, J.; Leboda, R.; Ryczkowski, J. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica. Appl. Surf. Sci. 2004, 229, 197–213. [Google Scholar] [CrossRef]
Factors | Response Variables | |||
---|---|---|---|---|
Run | X1 (°C) | X2 (°C) | Survival Rate (%) | Predicted Survival Rate (%) |
1 | −20 | −20 | 20.4 ± 2.4Op | 19.98 |
2 | −20 | −10 | 36.5 ± 1.2 | 37.03 |
3 | −20 | 0 | 29.5 ± 1.2 | 29.40 |
4 | −40 | −20 | 35.4 ± 1.8 | 35.32 |
5 | −40 | −10 | 55.1 ± 2.2 | 55.28 |
6 | −40 | −10 | 57.7 ± 3.8 | 55.28 |
7 | −40 | −10 | 53.8 ± 3.8 | 55.28 |
8 | −40 | −10 | 52.6 ± 4.4 | 55.28 |
9 | −40 | −10 | 56.4 ± 2.2 | 55.28 |
10 | −40 | 0 | 51.3 ± 2.2 | 50.57 |
11 | −60 | −20 | 25.4 ± 1.9 | 25.86 |
12 | −60 | −10 | 50.0 ± 3.8 | 48.74 |
13 | −60 | 0 | 46.2 ± 3.8 | 46.95 |
Survival Rate | Intercept | R2 | Adj R2 | p-Value (Model) | p-Value (Lack of Fit) | Pure Error (Mean Square) | ||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X1* X2 | X12 | X22 | ||||||
Rc | −5.85 | 7.63 | −2.92 | −12.40 | −12.34 | 0.9899 | 0.9827 | <0.0001 | 0.837 | 4.11 |
F-value | 72.29 | 122.72 | 11.96 | 149.28 | 147.74 | - | - | - | - | - |
p-value | <0.0001 | <0.0001 | 0.011 | <0.0001 | <0.0001 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Y.; Wang, J.; Zhang, Y.; Gao, H.; Ge, S.; Feng, H.; Zhang, Y.; Ren, F.; Wen, P.; Wang, R. Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S. Microorganisms 2023, 11, 181. https://doi.org/10.3390/microorganisms11010181
Sang Y, Wang J, Zhang Y, Gao H, Ge S, Feng H, Zhang Y, Ren F, Wen P, Wang R. Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S. Microorganisms. 2023; 11(1):181. https://doi.org/10.3390/microorganisms11010181
Chicago/Turabian StyleSang, Yue, Jian Wang, Yongxiang Zhang, Haina Gao, Shaoyang Ge, Haihong Feng, Yan Zhang, Fazheng Ren, Pengcheng Wen, and Ran Wang. 2023. "Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S" Microorganisms 11, no. 1: 181. https://doi.org/10.3390/microorganisms11010181
APA StyleSang, Y., Wang, J., Zhang, Y., Gao, H., Ge, S., Feng, H., Zhang, Y., Ren, F., Wen, P., & Wang, R. (2023). Influence of Temperature during Freeze-Drying Process on the Viability of Bifidobacterium longum BB68S. Microorganisms, 11(1), 181. https://doi.org/10.3390/microorganisms11010181