Diversity Patterns of Protists Are Highly Affected by Methods Disentangling Biological Variants: A Case Study in Oligotrich (s.l.) Ciliates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Sequences of Oligotrich (s.l.) Ciliates
2.2. Sequence Alignment and Phylogenetic Analyses
3. Results
3.1. Diversity Patterns of Oligotrich (s.l.) Ciliates
3.2. Phylogeny and Transition Patterns of Oligotrich (s.l.) Ciliates
4. Discussion
4.1. Methods Disentangling Biological Variants Highly Affect Diversity Patterns of Oligotrich (s.l.) Ciliates
4.2. Community Distribution and Ecological Transitions of Oligotrich (s.l.) Ciliates in Environments with Various Salinity Gradients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, R.W.; Turner, J.T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 1992, 6, 139–181. [Google Scholar]
- Fenchel, T. The microbial loop-25 years later. J. Exp. Mar. Biol. Ecol. 2008, 366, 99–103. [Google Scholar] [CrossRef]
- Worden, A.Z.; Follows, M.J.; Giovannoni, S.J.; Wilken, S.; Zimmerman, A.E.; Keeling, P.J. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015, 347, 1257594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I. Eukaryotic plankton diversity in the sunlit ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynn, D. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, 3rd ed.; Springer: Dordecht, The Netherlands, 2008. [Google Scholar]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Eland, L.E.; Davenport, R.; Mota, C.R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 2012, 46, 5355–5364. [Google Scholar] [CrossRef]
- Foissner, W. Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta Protozool. 2006, 45, 111–136. [Google Scholar] [CrossRef]
- Doherty, M.; Tamura, M.; Vriezen, J.A.; McManus, G.B.; Katz, L.A. Diversity of Oligotrichia and Choreotrichia ciliates in coastal marine sediments and in overlying plankton. Appl. Environ. Microbiol. 2010, 76, 3924–3935. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Su, L.; Zhang, Q.; Zhang, X.; Gong, J. Molecular diversity and biogeography of benthic ciliates in the Bohai Sea and Yellow Sea. Acta Oceanol. Sin. 2019, 38, 78–86. [Google Scholar] [CrossRef]
- Massana, R.; Gobet, A.; Audic, S.; Bass, D.; Bittner, L.; Boutte, C.; Chambouvet, A.; Christen, R.; Claverie, J.M.; Decelle, J. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 2015, 17, 4035–4049. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Bass, D.; Wang, Y.; Shen, Z.; Song, W.; Yi, Z. Environmental parameters and substrate type drive microeukaryotic community structure during short-term experimental colonization in subtropical eutrophic freshwaters. Front. Microbiol. 2020, 11, 2252. [Google Scholar] [CrossRef] [PubMed]
- Zinger, L.; Boetius, A.; Ramette, A. Bacterial taxa–area and distance–decay relationships in marine environments. Mol. Ecol. 2014, 23, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Forster, D.; Dunthorn, M.; Stoeck, T.; Mahé, F. Comparison of three clustering approaches for detecting novel environmental microbial diversity. PeerJ 2016, 4, e1692. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 081257. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Mahé, F.; Czech, L.; Stamatakis, A.; Quince, C.; de Vargas, C.; Dunthorn, M.; Rognes, T. Swarm v3: Towards tera-scale amplicon clustering. Bioinformatics 2022, 38, 267–269. [Google Scholar] [CrossRef]
- Countway, P.D.; Gast, R.J.; Dennett, M.R.; Savai, P.; Rose, J.M.; Caron, D.A. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 2007, 9, 1219–1232. [Google Scholar] [CrossRef]
- Wu, W.; Liu, H. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River–South China Sea Continuum during the wet and dry seasons. Mol. Ecol. 2018, 27, 4627–4640. [Google Scholar] [CrossRef] [PubMed]
- Nebel, M.; Pfabel, C.; Stock, A.; Dunthorn, M.; Stoeck, T. Delimiting operational taxonomic units for assessing ciliate environmental diversity using small-subunit rRNA gene sequences. Environ. Microbiol. Rep. 2011, 3, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Costas, B.A.; McManus, G.B.; Katz, L.A. Culture-independent assessment of planktonic ciliate diversity in coastal northwest Atlantic waters. Aquat. Microb. Ecol. 2007, 48, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Boscaro, V.; Rossi, A.; Vannini, C.; Verni, F.; Fokin, S.I.; Petroni, G. Strengths and biases of high-throughput sequencing data in the characterization of freshwater ciliate microbiomes. Microb. Ecol. 2017, 73, 865–875. [Google Scholar] [CrossRef]
- Forster, D.; Lentendu, G.; Filker, S.; Dubois, E.; Wilding, T.A.; Stoeck, T. Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants. Environ. Microbiol. 2019, 21, 4109–4124. [Google Scholar] [CrossRef]
- Logares, R.; Mangot, J.F.; Massana, R. Rarity in aquatic microbes: Placing protists on the map. Res. Microbiol. 2015, 166, 831–841. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, R.; Song, W.; Suzuki, T.; Hu, X. Redescription of five tintinnine ciliates (Alveolata: Ciliophora: Oligotrichea) from coastal waters of Qingdao, China. Mar. Life Sci. Technol. 2020, 2, 209–221. [Google Scholar] [CrossRef]
- Dale, T.; Dahl, E. Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J. Plankton Res. 1987, 9, 871–879. [Google Scholar] [CrossRef]
- Edwards, E.; Burkill, P. Abundance, biomass and distribution of microzooplankton in the Irish Sea. J. Plankton Res. 1995, 17, 771–782. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J.; Huang, S.; Gu, B.; Wang, Y.; Wang, L.; Jiao, N.; Xu, D. Spatial distribution of planktonic ciliates in the western Pacific Ocean: Along the transect from Shenzhen (China) to Pohnpei (Micronesia). Mar. Life Sci. Technol. 2021, 3, 103–115. [Google Scholar] [CrossRef]
- Liu, W.; Shin, M.K.; Yi, Z.; Tan, Y. Progress in studies on the diversity and distribution of planktonic ciliates (Protista, Ciliophora) in the South China Sea. Mar. Life Sci. Technol. 2021, 3, 28–43. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, W.; Li, X.; Xu, Y.; El-Serehy, H.A.; Al-Farraj, S.A.; Ma, H.; Stoeck, T.; Yi, Z. High salinity gradients and intermediate spatial scales shaped similar biogeographical and co-occurrence patterns of microeukaryotes in a tropical freshwater-saltwater ecosystem. Environ. Microbiol. 2021, 23, 4778–4796. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wilkinson, M.; Chen, M.; Zhang, Q.; Yang, R.; Yi, Z. Concatenated data and dense taxon sampling clarify phylogeny and ecological transitions within Hypotricha. Zool. Scr. 2021, 50, 125–139. [Google Scholar] [CrossRef]
- Gao, F.; Warren, A.; Zhang, Q.; Gong, J.; Miao, M.; Sun, P.; Xu, D.; Huang, J.; Yi, Z.; Song, W. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 2016, 6, 24874. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 22 August 2021).
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Clarke, K.R.; Somerfield, P.J.; Gorley, R.N. Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 2008, 366, 56–69. [Google Scholar] [CrossRef]
- Penn, O.; Privman, E.; Ashkenazy, H.; Landan, G.; Graur, D.; Pupko, T. GUIDANCE: A web server for assessing alignment confidence scores. Nucleic Acids Res. 2010, 38 (Suppl. S2), W23–W28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.4.2, 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 27 August 2021).
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.6. 2018. Available online: http://www.mesquiteproject.org/ (accessed on 30 August 2021).
- Kopylova, E.; Navas-Molina, J.A.; Mercier, C.; Xu, Z.; Mahé, F.; He, Y.; Zhou, H.; Rognes, T.; Caporaso, J.G.; Knight, R. Open-source sequence clustering methods improve the state of the art. mSystems 2016, 1, e00003-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nearing, J.T.; Douglas, G.M.; Comeau, A.M.; Langille, M.G. Denoising the Denoisers: An independent evaluation of microbiome sequence error-correction approaches. PeerJ 2018, 6, e5364. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Kable, M.E.; Marco, M.L. Impact of DNA sequencing and analysis methods on 16S rRNA gene bacterial community analysis of dairy products. mSphere 2018, 3, e00410-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; McManus, G.B.; Lin, X.; Huang, H.; Zhang, W.; Tan, Y. Distribution patterns of ciliate diversity in the South China Sea. Front. Microbiol. 2021, 12, 689688. [Google Scholar] [CrossRef]
- Zhao, F.; Filker, S.; Xu, K.; Li, J.; Zhou, T.; Huang, P. Effects of intragenomic polymorphism in the SSU rRNA gene on estimating marine microeukaryotic diversity: A test for ciliates using single-cell high-throughput DNA sequencing. Limnol. Oceanogr. Methods 2019, 17, 533–543. [Google Scholar] [CrossRef]
- Huang, S.; Li, K.; Jiang, G.; Lu, J. Influence of salinity fronts on nutrition substance and biology in Pearl River estuary. Water Resour. Prot. 2011, 27, 18–25. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Z.; Huang, X.; Ye, F.; Liu, Q. Phytoplankton abundance and size-fractionated structure in three contrasting periods in the Pear River Estuary. J. Mar. Res. 2013, 71, 187–210. [Google Scholar] [CrossRef]
- Zhu, J.; Hong, Y.; Zada, S.; Hu, Z.; Wang, H. Spatial variability and co-acclimation of phytoplankton and bacterioplankton communities in the Pearl River Estuary, China. Front. Microbiol. 2018, 9, 2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Fu, B.; Yang, H.; Zhao, M.; He, B.; Zhang, X. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: The potential impact of hypoxia and nutrients. Front. Microbiol. 2015, 6, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, D.; Huang, L.; Zhang, J.; Lin, S. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Cont. Shelf. Res. 2010, 30, 177–186. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, K.; Yi, Z. Molecular diversities of plankotic microbial eukaryotes in the pearl river and their relationship with water environment (in Chinese). Acta Hydrobiol. Sin. 2020, 44, 187–196. [Google Scholar] [CrossRef]
- Hu, J.; Chivas, A.R. Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea. Appl. Geochem. 2009, 24, 1666–1676. [Google Scholar] [CrossRef]
- Webster, G.; O’Sullivan, L.A.; Meng, Y.; Williams, A.S.; Sass, A.M.; Watkins, A.J.; Parkes, R.J.; Weightman, A.J. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol. Ecol. 2015, 91, 1–18. [Google Scholar] [CrossRef]
- Logares, R.; Bråte, J.; Bertilsson, S.; Clasen, J.L.; Shalchian-Tabrizi, K.; Rengefors, K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009, 17, 414–422. [Google Scholar] [CrossRef]
- Mai, Y.; Lai, Z.; Li, X.; Peng, S.; Wang, C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. Mar. Pollut. Bull. 2018, 136, 309–321. [Google Scholar] [CrossRef]
- Dunthorn, M.; Otto, J.; Berger, S.A.; Stamatakis, A.; Mahé, F.; Romac, S.; de Vargas, C.; Audic, S.; Consortium, B.; Stock, A. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol. Biol. Evol. 2014, 31, 993–1009. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Clamp, J.; Xu, D.; Huang, B.; Shin, M.K. An integrative approach to phylogeny reveals patterns of environmental distribution and novel evolutionary relationships in a major group of ciliates. Sci. Rep. 2016, 6, 21695. [Google Scholar] [CrossRef]
- Bachy, C.; Gómez, F.; López-García, P.; Dolan, J.R.; Moreira, D. Molecular phylogeny of tintinnid ciliates (Tintinnida, Ciliophora). Protist 2012, 163, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yi, Z.; Warren, A.; Song, W. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc. R. Soc. B 2018, 285, 20172159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K.; Liu, W.; Warren, A.; Xu, Y.; Zhu, C.; Zhao, Y.; Yi, Z. Diversity of oligotrich ciliates (Ciliophora, Spirotrichea) in the northern coast of South China Sea as revealed in LSU rDNA sequences. J. Oceanol. Limnol. 2020, 38, 156–167. [Google Scholar] [CrossRef]
- Agatha, S. New observations on the tontoniid ciliate Spirotontonia grandis (Suzuki and Han, 2000) Agatha, 2004 (Ciliophora, Oligotrichida, Tontoniidae); comparison with the similar Laboea strobila. Eur. J. Protistol. 2004, 40, 295–301. [Google Scholar] [CrossRef]
- Agatha, S. Redescription of the tintinnid ciliate Tintinnopsis fimbriata Meunier, 1919 (Spirotricha, Choreotrichida) from coastal waters of northern Germany. Denisia 2008, 23, 261–272. [Google Scholar] [PubMed]
- Agatha, S.; Riedel-Lorjé, J.C. Morphology, infraciliature, and ecology of Halteriids and Strombidiids (Ciliophora, Oligotrichea) from coastal brackish water basins. Arch. Protistenkd. 1997, 148, 445–459. [Google Scholar] [CrossRef]
- Agatha, S.; Strüder-Kypke, M.C.; Beran, A.; Lynn, D.H. Pelagostrobilidium neptuni (Montagnes and Taylor, 1994) and Strombidium biarmatum nov. spec. (Ciliophora, Oligotrichea): Phylogenetic position inferred from morphology, ontogenesis, and gene sequence data. Eur. J. Protistol. 2005, 41, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Agatha, S.; Tsai, S.F. Redescription of the tintinnid Stenosemella pacifica Kofoid and Campbell, 1929 (Ciliophora, Spirotricha) based on live observation, protargol impregnation, and scanning electron microscopy. J. Eukaryot. Microbiol. 2008, 55, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wang, R.; Liu, W.; Warren, A.; Zhao, Y.; Hu, X. Redescriptions of three tintinnine ciliates (Ciliophora: Tintinnina) from coastal waters in China based on lorica features, cell morphology, and rDNA sequence data. Eur. J. Protistol. 2020, 72, 125659. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, R.; Song, W.; Li, L.; Santoferrara, L.F.; Hu, X. Three redescriptions in Tintinnopsis (Protista: Ciliophora: Tintinnina) from coastal waters of China, with cytology and phylogenetic analyses based on ribosomal RNA genes. BMC Microbiol. 2020, 20, 374. [Google Scholar] [CrossRef]
- Bardele, C.F.; Stockmann, N.; Agatha, S. Some ultrastructural features of the planktonic freshwater ciliate Limnostrombidium viride (Alveolata, Ciliophora, Oligotrichida) and improved diagnoses of oligotrich taxa. Acta Protozool. 2019, 57, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Bernard, C.; Fenchel, T. Chemosensory behaviour of Strombidium purpureum, an anaerobic oligotrich with endosymbiotic purple non-sulphur bacteria. J. Eukaryot. Microbiol. 1994, 41, 391–396. [Google Scholar] [CrossRef]
- Cariou, J.B.; Dolan, J.; Dallot, S. A preliminary study of tintinnid diversity in the NW Mediterranean Sea. J. Plankton Res. 1999, 21, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Cedrola, F.; Senra, M.V.X.; D’Agosto, M.; Dias, R.J.P. Phylogenetic analyses support validity of genus Eodinium (Ciliophora, Entodiniomorphida, Ophryoscolecidae). J. Eukaryot. Microbiol. 2017, 64, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Chiang, K.P.; Tsai, S.F. Pelagostrobilidium liui n. sp. (Ciliophora, Choreotrichida) from the coastal waters of northeastern Taiwan and an improved description of Pelagostrobilidium minutum Liu et al., 2012. J. Eukaryot. Microbiol. 2017, 64, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Coats, D.W. Duboscquella cachoni n. sp. a parasitic dinoflagellate lethal to its tintinnine host Eutintinnus pectinis. J. Eukaryot. Microbiol. 1988, 35, 607–617. [Google Scholar] [CrossRef]
- Coats, D.W.; Heinbokel, J.A. Study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Mar. Biol. 1982, 67, 71–79. [Google Scholar] [CrossRef]
- de Cao, M.B.; Beigt, D.; Piccolo, C. Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperate estuary. J. Plankton Res. 2005, 27, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- de Cao, M.B. Abundance and species composition of Tintinnina (Ciliophora) in Bahía Blanca estuary, Argentina. Estuar. Coast. Shelf Sci. 1992, 34, 295–303. [Google Scholar] [CrossRef]
- Santoferrara, L.F.; Grattepanche, J.D.; Katz, L.A.; McManus, G.B. Patterns and processes in microbial biogeography: Do molecules and morphologies give the same answers? ISME J. 2016, 10, 1779–1790. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, W.; Wang, W.; Zhang, G.; Xiao, T.; Xu, H. Can tintinnids be used for discriminating water quality status in marine ecosystems? Mar. Pollut. Bull. 2015, 101, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Zhang, W.; Yu, Y.; Xiao, T.; Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007 (in Chinese). Trop. Oceanogr. 2013, 32, 86–92. [Google Scholar] [CrossRef]
- Gao, S.; Gong, J.; Lynn, D.; Lin, X.; Song, W. An updated phylogeny of oligotrich and choreotrich ciliates (Protozoa, Ciliophora, Spirotrichea) with representative taxa collected from Chinese coastal waters. Syst. Biodivers. 2009, 7, 235–242. [Google Scholar] [CrossRef]
- Graziano, C. On the ecology of tintinnids (Ciliophora: Oligotrichida) in the North Irish Sea. Estuar. Coast. Shelf Sci. 1989, 29, 233–245. [Google Scholar] [CrossRef]
- Gruber, M.S.; Strüder-Kypke, M.; Agatha, S. Redescription of Tintinnopsis everta Kofoid and Campbell 1929 (Alveolata, Ciliophora, Tintinnina) based on taxonomic and genetic analyses—Discovery of a new complex ciliary pattern. J. Eukaryot. Microbiol. 2018, 65, 484–504. [Google Scholar] [CrossRef] [Green Version]
- Urrutxurtu, I. Seasonal succession of tintinnids in the Nervión River estuary, Basque Country, Spain. J. Plankton Res. 2004, 26, 307–314. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, J.S.; Kim, S.; Song, J.; Lee, I.; Lee, G.H. Strombidinopsis jeokjo n. sp. (Ciliophora: Choreotrichida) from the coastal waters off western Korea: Morphology and small subunit ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 2004, 51, 451–455. [Google Scholar] [CrossRef]
- Jiang, J.; Xing, Y.; Miao, M.; Shao, C.; Warren, A.; Song, W. Two new marine ciliates, Caryotricha rariseta n. sp. and Discocephalus pararotatorius n. sp. (Ciliophora, Spirotrichea), with phylogenetic analyses inferred from the small subunit rRNA gene sequences. J. Eukaryot. Microbiol. 2013, 60, 388–398. [Google Scholar] [CrossRef]
- Jung, J.H.; Moon, J.H.; Park, K.M.; Kim, S.; Dolan, J.R.; Yang, E.J. Novel insights into the genetic diversity of Parafavella based on mitochondrial CO1 sequences. Zool. Scr. 2018, 47, 743–755. [Google Scholar] [CrossRef]
- Jung, J.H.; Choi, J.M.; Coats, D.W.; Kim, Y.O. Euduboscquella costata n. sp.(Dinoflagellata, Syndinea), an intracellular parasite of the ciliate Schmidingerella arcuata: Morphology, molecular phylogeny, life cycle, prevalence, and infection intensity. J. Eukaryot. Microbiol. 2016, 63, 3–15. [Google Scholar] [CrossRef]
- Jyothibabu, R.; Madhu, N.; Jayalakshmi, K.; Balachandran, K.; Shiyas, C.; Martin, G.; Nair, K. Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters–India). Estuar. Coast. Shelf Sci. 2006, 69, 505–518. [Google Scholar] [CrossRef]
- Kamiyama, T. Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsacircularisquama. Mar. Biol. 1997, 128, 509–515. [Google Scholar] [CrossRef]
- Kazama, T.; Ishida, S.; Shimano, S.; Urabe, J. Discrepancy between conventional morphological systematics and nuclear phylogeny of tintinnids (Ciliophora: Choreotrichia). Plankton Benthos Res. 2012, 7, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Omar, A.; Jung, J.H. Morphology and phylogeny of the soil ciliate Parabistichella multilineae sp. nov. (Protozoa: Ciliophora: Hypotricha). Zool. Sci. 2019, 36, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jeong, H.J.; Strüder-Kypke, M.C.; Lynn, D.H.; Kim, S.; Kim, J.H.; Lee, S.H. Parastrombidinopsis shimi n. gen., n. sp. (Ciliophora: Choreotrichia) from the coastal waters of Korea: Morphology and small subunit ribosomal DNA sequence. J. Eukaryot. Microbiol. 2005, 52, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Choi, J.K.; Dolan, J.R.; Shin, H.C.; Lee, S.; Yang, E.J. Morphological and ribosomal DNA-based characterization of six antarctic ciliate morphospecies from the Amundsen Sea with phylogenetic analyses. J. Eukaryot. Microbiol. 2013, 60, 497–513. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yang, E.J.; Gong, J.; Choi, J.K. Redescription of Favella ehrenbergii (Claparède and Lachmann, 1858) Jörgensen, 1924 (Ciliophora: Choreotrichia), with phylogenetic analyses based on small subunit rRNA gene sequences. J. Eukaryot. Microbiol. 2010, 57, 460–467. [Google Scholar] [CrossRef]
- Kim, Y.O.; Kim, S.Y.; Lee, W.J.; Choi, J.K. New observations on the choreotrich ciliate Strombidinopsis acuminata Fauré-Fremiet 1924, and comparison with Strombidinopsis jeokjo Jeong et al., 2004. J. Eukaryot. Microbiol. 2010, 57, 48–55. [Google Scholar] [CrossRef]
- Kim, Y.O.; Shin, K.; Jang, P.G.; Choi, H.W.; Noh, J.H.; Yang, E.J.; Kim, E.; Jeon, D. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 2012, 47, 161–172. [Google Scholar] [CrossRef]
- Kršinić, F. On vertical distribution of tintinnines (Ciliata, Oligotrichida, Tintinnina) in the open waters of the South Adriatic. Deep-Sea Res. Part B Oceanogr. Lit. Rev. 1982, 29, 83–90. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, Y.O.; Agatha, S.; Jung, J.H.; Xu, D.; Shin, M.K. Revision of Strombidium paracalkinsi (Ciliophora: Oligotrichea: Oligotrichia), with comparison of Strombidiids bearing thigmotactic membranelles. J. Eukaryot. Microbiol. 2015, 62, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Shin, M.K.; Kim, Y.O. Morphological descriptions of four oligotrich ciliates (Ciliophora: Oligotrichia) from southern coast of Korea. Korean J. Syst. Zool. 2011, 27, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Choi, Y.U. Population growth of a tropical tintinnid, Metacylis tropica on different temperature, salinity and diet. J. Korea Acad. Industr. Coop. Soc. 2016, 17, 322–328. [Google Scholar] [CrossRef]
- Li, F.; Huang, Y.; Yu, Y.; Liu, W.; Lin, X. Taxonomy and phylogeny of a new marine planktonic ciliate, Strombidium pseudorapulum sp. n. (Protozoa, Ciliophora, Oligotrichia) (in Chinese). J. Ocean Univ. 2020, 19, 954–960. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Zhang, W.; Wang, S.; Zhang, G.; Xiao, T. Boreal tintinnid assemblage in the Northwest Pacific and its connection with the Japan Sea in summer 2014. PLoS ONE 2016, 11, e0153379. [Google Scholar] [CrossRef]
- Li, L.; Shao, C.; Song, W.; Lynn, D.H.; Chen, Z.; Shin, M.K. Does Kiitricha (Protista, Ciliophora, Spirotrichea) belong to Euplotida or represent a primordial spirotrichous taxon? With suggestion to establish a new subclass Protohypotrichia. Int. J. Syst. Evol. Microbiol. 2009, 59, 439–446. [Google Scholar] [CrossRef]
- Liu, W.; Xu, D.; Lin, X.; Li, J.; Gong, J.; Al-Rasheid, K.A.; Song, W. Novistrombidium sinicum n. sp. and Novistrombidium orientale n. sp.(Protozoa: Ciliophora): Two new oligotrich ciliates from a mangrove wetland, South China. J. Eukaryot. Microbiol. 2009, 56, 459–465. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Li, J.; Warren, A.; Al-Farraj, S.A.; Lin, X. Taxonomy, morphology and phylogeny of three new oligotrich ciliates (Protozoa, Ciliophora, Oligotrichia) from southern China. Int. J. Syst. Evol. Microbiol. 2013, 63, 4805–4817. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Lin, X.; Al-Rasheid, K.A. Morphologic and molecular data suggest that Lynnella semiglobulosa ng, n. sp. represents a new family within the subclass Choreotrichia (Ciliophora, Spirotrichea). J. Eukaryot. Microbiol. 2011, 58, 43–49. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Lin, X.; Warren, A.; Song, W. Phylogeny of three choreotrich genera (Protozoa, Ciliophora, Spirotrichea), with morphological, morphogenetic and molecular investigations on three strobilidiid species. Zool. Scr. 2012, 41, 417–434. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Lin, X.; Li, J.; Al-Farraj, S.A.; Al-Rasheid, K.A.; Song, W. Morphology and molecular phylogeny of three new oligotrich ciliates (Protozoa, Ciliophora) from the South China Sea. Zool. J. Linn. Soc. 2015, 174, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yi, Z.; Warren, A.; Al-Rasheid, K.A.; Al-Farraj, S.A.; Lin, X.; Song, W. Taxonomy, morphology and molecular systematics of a new oligotrich ciliate, Williophrya maedai gen. nov., sp. nov., with redescriptions of Strombidium basimorphum and Pseudotontonia simplicidens (Protozoa, Ciliophora, Oligotrichia). Syst. Biodivers. 2011, 9, 247–258. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Xu, D.; Clamp, J.C.; Li, J.; Lin, X.; Song, W. Two new genera of planktonic ciliates and insights into the evolution of the family Strombidiidae (Protista, Ciliophora, Oligotrichia). PLoS ONE 2015, 10, e0131726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynn, D.; Montagnes, D.; Dale, T.; Gilron, G.; Strom, S. A reassessment of the genus Strombidinopsis (Ciliophora, Choreotrichida) with descriptions of four new planktonic species and remarks in its taxonomy and phylogeny. J. Mar. Biol. Assoc. UK 1991, 71, 597–612. [Google Scholar] [CrossRef]
- Miao, M.; Shao, C.; Jiang, J.; Li, L.; Stoeck, T.; Song, W. Caryotricha minuta (Xu et al., 2008) nov. comb., a unique marine ciliate (Protista, Ciliophora, Spirotrichea), with phylogenetic analysis of the ambiguous genus Caryotricha inferred from the small-subunit rRNA gene sequence. Int. J. Syst. Evol. Microbiol. 2009, 59, 430–438. [Google Scholar] [CrossRef]
- Modeo, L.; Petroni, G.; Rosati, G.; Montagnes, D.J. A multidisciplinary approach to describe protists: Redescriptions of Novistrombidium testaceum Anigstein 1914 and Strombidium inclinatum Montagnes, Taylor, and Lynn 1990 (Ciliophora, Oligotrichia). J. Eukaryot. Microbiol. 2003, 50, 175–189. [Google Scholar] [CrossRef]
- Modigh, M.; Castaldo, S.; Saggiomo, M.; Santarpia, I. Distribution of tintinnid species from 42° N to 43° S through the Indian Ocean. Hydrobiologia 2003, 503, 251–262. [Google Scholar] [CrossRef]
- Park, T.; Yu, Z. Do ruminal ciliates select their preys and prokaryotic symbionts? Front. Microbiol. 2018, 9, 1710. [Google Scholar] [CrossRef] [Green Version]
- Pierce, R.W.; Turner, J.T. Plankton studies in buzzards Bay, Massachusetts, USA. IV. Tintinnids, 1987 to 1988. Mar. Ecol-Prog. Ser. 1994, 112, 235–240. [Google Scholar] [CrossRef]
- Putt, M. Metabolism of photosynthate in the chloroplast-retaining ciliate Laboea strobila. Mar. Ecol.-Prog. Ser. 1990, 60, 271–282. [Google Scholar] [CrossRef]
- Sitran, R.; Bergamasco, A.; Decembrini, F.; Guglielmo, L. Temporal succession of tintinnids in the northern Ionian Sea, Central Mediterranean. J. Plankton Res. 2007, 29, 495–508. [Google Scholar] [CrossRef]
- Santoferrara, L.F.; Alder, V.V.; McManus, G.B. Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol. Phylogenet. Evol. 2017, 112, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Santoferrara, L.F.; McManus, G.B.; Alder, V.A. Phylogeny of the order Tintinnida (Ciliophora, Spirotrichea) inferred from small-and large-subunit rRNA genes. J. Eukaryot. Microbiol. 2012, 59, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Santoferrara, L.F.; McManus, G.B.; Alder, V.A. Utility of genetic markers and morphology for species discrimination within the order Tintinnida (Ciliophora, Spirotrichea). Protist 2013, 164, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Santoferrara, L.F.; Tian, M.; Alder, V.A.; McManus, G.B. Discrimination of closely related species in tintinnid ciliates: New insights on crypticity and polymorphism in the genus Helicostomella. Protist 2015, 166, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Song, W.; Gavrilova, N.A.; Kurilov, A.V.; Liu, W.; McManus, G.B.; Santoferrara, L.F. Dartintinnus alderae n. g., n. sp., a brackish water tintinnid (Ciliophora, Spirotrichea) with dual-ended lorica collapsibility. J. Eukaryot. Microbiol. 2018, 65, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, J.; Liu, W.; Al-Rasheid, K.A.; Hu, X.; Lin, X. Taxonomy and molecular phylogeny of four Strombidium species, including description of S. pseudostylifer sp. nov. (Ciliophora, Oligotrichia). Syst. Biodivers. 2015, 13, 76–92. [Google Scholar] [CrossRef]
- Song, W.; Li, J.; Liu, W.; Jiang, J.; Al-Rasheid, K.A.; Hu, X. Taxonomy, morphology and molecular systematics of three oligotrich ciliates, including a description of Apostrombidium parakielum spec. nov.(Ciliophora, Oligotrichia). Int. J. Syst. Evol. Microbiol. 2013, 63, 1179–1191. [Google Scholar] [CrossRef]
- Song, W.; Pan, B.; El-Serehy, H.A.; Al-Farraj, S.A.; Liu, W.; Li, L. Morphology and molecular phylogeny of two freshwater oligotrich ciliates (Protozoa, Ciliophora, Oligotrichia), Pelagostrombidium fallax (Zacharias, 1895) Krainer, 1991 and Limnostrombidium viride (Stein, 1867) Krainer, 1995, with brief notes on stomatogenesis. J. Eukaryot. Microbiol. 2020, 67, 232–244. [Google Scholar] [CrossRef]
- Song, W.; Xu, D.; Zhang, Q.; Liu, W.; Warren, A.; Song, W. Taxonomy and phylogeny of two poorly studied genera of marine oligotrich ciliates including descriptions of two new species: Cyrtostrombidium paraboreale sp. n. and Apostrombidium orientale sp. n.(Ciliophora: Spirotrichea). Eur. J. Protistol. 2019, 70, 1–16. [Google Scholar] [CrossRef]
- Song, W.; Wang, L.; Li, L.; Al-Farraj, S.A.; Aleidan, A.; Smith, S.; Hu, X. Morphological characterizations of four species of Parallelostrombidium (Ciliophora, Oligotrichia), with a note on the phylogeny of the genus. J. Eukaryot. Microbiol. 2018, 65, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, M.; Warren, A. Redescriptions of three marine ciliates, Strombidium elegans Florentin, 1901, Strombidium sulcatum Claparede & Lachmann, 1859 and Heterostrombidium paracalkinsi Lei, Xu & Song, 1999 (Ciliophora, Oligotrichida). Eur. J. Protistol. 2000, 36, 327–342. [Google Scholar] [CrossRef]
- Song, W.; Zhao, X.; Liu, W.; Hu, X.; Al-Farraj, S.A.; Al-Rasheid, K.A.; Song, W.; Warren, A. Biodiversity of oligotrich ciliates in the South China Sea: Description of three new Strombidium species (Protozoa, Ciliophora, Oligotrichia) with phylogenetic analyses. Syst. Biodivers. 2015, 13, 608–623. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Pan, B.; Luo, X.; Song, W.; Warren, A. Morphological studies on four brackish water ciliates of the class Spirotrichea (Protista, Ciliophora). J. Ocean Univ. 2019, 18, 663–674. [Google Scholar] [CrossRef]
- Strüder-Kypke, M.C.; Lynn, D.H. Sequence analyses of the small subunit rRNA gene confirm the paraphyly of oligotrich ciliates sensu lato and support the monophyly of the subclasses Oligotrichia and Choreotrichia (Ciliophora, Spirotrichea). J. Zool. 2003, 260, 87–97. [Google Scholar] [CrossRef]
- Tsai, S.F.; Chen, J.Y.; Chiang, K.P. Spirotontonia taiwanica n. sp.(Ciliophora: Oligotrichida) from the coastal waters of Northeastern Taiwan: Morphology and nuclear small subunit rDNA sequence. J. Eukaryot. Microbiol. 2010, 57, 429–434. [Google Scholar] [CrossRef]
- Tsai, S.F.; Chen, W.T.; Chiang, K.P. Phylogenetic position of the genus Cyrtostrombidium, with a description of Cyrtostrombidium paralongisomum nov. spec. and a redescription of Cyrtostrombidium longisomum Lynn & Gilron, 1993 (Protozoa, Ciliophora) based on live observation, protargol impregnation, and 18S rDNA sequences. J. Eukaryot. Microbiol. 2015, 62, 239–248. [Google Scholar] [CrossRef]
- Tsai, S.F.; Xu, D.; Chung, C.C.; Chiang, K.P. Parastrombidinopsis minima n. sp. (Ciliophora: Oligotrichia) from the coastal waters of northeastern Taiwan: Morphology and small subunit ribosomal DNA sequence. J. Eukaryot. Microbiol. 2008, 55, 567–573. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Y.; Hu, T.; Xu, D.; Suzuki, T.; Hu, X. Integrative taxonomy and molecular phylogeny of three poorly known tintinnine ciliates, with the establishment of a new genus (Protista; Ciliophora; Oligotrichea). BMC Ecol. Evol. 2021, 21, 115. [Google Scholar] [CrossRef]
- Weisse, T.; Rammer, S. Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. J. Plankton Res. 2006, 28, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Song, W.; Lin, X.; Warren, A. On two marine oligotrich ciliates, Spirostrombidium agathae n. sp. and S. schizostomum (Kahl, 1932) n. comb. from China, with a key to the identification of seven well-characterized Spirostrombidium spp. (Ciliophora: Oligotrichida). Acta Protozool. 2006, 45, 433–442. [Google Scholar]
- Xu, D.; Song, W.; Warren, A. Morphology and infraciliature of two new species of marine oligotrich ciliates (Ciliophora: Oligotrichida) from China. J. Nat. Hist. 2006, 40, 1287–1299. [Google Scholar] [CrossRef]
- Xu, D.; Sun, P.; Clamp, J.C.; Ma, H.; Song, W. The establishment of a new oligotrich genus Varistrombidium gen. nov. and the morphology and phylogeny of a marine ciliate, Varistrombidium kielum (Maeda and Carey, 1985) nov. comb. (Protista, Ciliophora). Acta. Zootaxa. Sin. 2011, 36, 502–510. [Google Scholar]
- Xu, D.; Sun, P.; Warren, A.; Hoon Noh, J.; Lim Choi, D.; Kyoon Shin, M.; Ok Kim, Y. Phylogenetic investigations on ten genera of tintinnid ciliates (Ciliophora: Spirotrichea: Tintinnida), based on small subunit ribosomal RNA gene sequences. J. Eukaryot. Microbiol. 2013, 60, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Agatha, S.; Zhang, W.; Dong, J.; Yu, Y.; Jiao, N.; Gong, J. Three rDNA loci-based phylogenies of tintinnid ciliates (Ciliophora, Spirotrichea, Choreotrichida). J. Eukaryot. Microbiol. 2017, 64, 226–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Sun, J.; Sun, S. Spatial distribution of tintinnidous ciliate CodoneHopsis mobilis (Protozoa, Ciliophora) in April, 1999 in Bohai Sea, China. Mar. Sci. 2004, 28, 67–69. [Google Scholar]
- Zhang, W.; Wang, R. Summertime ciliate and copepod nauplii distributions and micro-zooplankton herbivorous activity in the Laizhou Bay, Bohai Sea, China. Estuar. Coast. Shelf Sci. 2000, 51, 103–114. [Google Scholar] [CrossRef]
DADA2–100 | SWARM–100 | UNOISE–100 | UPARSE–97 | UCLUST–97 | UCLUST–99 | |
---|---|---|---|---|---|---|
Number of total OTUs/ASVs | 3890 | 6656 | 2915 | 3095 | 7613 | 19,993 |
Number of oligotrich (s.l.) OTUs/ASVs | 103 | 137 | 89 | 63 | 104 | 248 |
Sampling Areas | DADA2–100 | SWARM–100 | UNOISE–100 | UPARSE–97 | UCLUST–97 | UCLUST–99 |
---|---|---|---|---|---|---|
DY | 6 (5.83%) | 17 (12.41%) | 14 (15.73%) | 15 (23.81%) | 14 (13.46%) | 17 (6.85%) |
GZ | 31 (30.10%) | 54 (39.42%) | 49 (55.06%) | 31 (49.21%) | 39 (37.50%) | 88 (35.48%) |
PRE | 47 (45.63%) | 76 (55.47%) | 58 (65.17%) | 45 (71.43%) | 67 (64.42%) | 137 (55.24%) |
SZ | 8 (7.77%) | 15 (10.95%) | 12 (13.48%) | 10 (15.87%) | 16 (15.38%) | 30 (12.10%) |
ZH | 23 (22.33%) | 40 (29.20%) | 40 (44.94%) | 28 (44.44%) | 27 (25.96%) | 51 (20.56%) |
ZJ | 32 (31.07%) | 63 (45.99%) | 46 (51.69%) | 32 (50.79%) | 45 (43.27%) | 110 (44.35%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Han, J.; Su, H.; Zhu, C.; Quan, Z.; Wu, L.; Yi, Z. Diversity Patterns of Protists Are Highly Affected by Methods Disentangling Biological Variants: A Case Study in Oligotrich (s.l.) Ciliates. Microorganisms 2022, 10, 913. https://doi.org/10.3390/microorganisms10050913
Xu J, Han J, Su H, Zhu C, Quan Z, Wu L, Yi Z. Diversity Patterns of Protists Are Highly Affected by Methods Disentangling Biological Variants: A Case Study in Oligotrich (s.l.) Ciliates. Microorganisms. 2022; 10(5):913. https://doi.org/10.3390/microorganisms10050913
Chicago/Turabian StyleXu, Jiahui, Jianlin Han, Hua Su, Changyu Zhu, Zijing Quan, Lei Wu, and Zhenzhen Yi. 2022. "Diversity Patterns of Protists Are Highly Affected by Methods Disentangling Biological Variants: A Case Study in Oligotrich (s.l.) Ciliates" Microorganisms 10, no. 5: 913. https://doi.org/10.3390/microorganisms10050913
APA StyleXu, J., Han, J., Su, H., Zhu, C., Quan, Z., Wu, L., & Yi, Z. (2022). Diversity Patterns of Protists Are Highly Affected by Methods Disentangling Biological Variants: A Case Study in Oligotrich (s.l.) Ciliates. Microorganisms, 10(5), 913. https://doi.org/10.3390/microorganisms10050913