Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Used and Resuscitation of Cultures
2.2. Preparation of Cell Cultures for Determination of Pathogenic Characteristics
2.3. Qualitative and Quantitative Enzyme Production
2.4. Antimicrobial Resistance/Susceptibility
2.5. Disinfectant Resistance/Susceptibility
2.6. Statistical Analysis
3. Results
3.1. Qualitative and Quantitative Enzyme Production
3.2. Antimicrobial Resistance/Susceptibility
3.3. Disinfectant Resistance/Susceptibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parte, A.C. LPSN—List of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 2018, 68, 1825–1829. Available online: https://lpsn.dsmz.de/genus/chryseobacterium (accessed on 27 April 2020). [CrossRef] [PubMed]
- Vandamme, P.; Bernardet, J.-F.; Segers, P.; Kersters, K.; Holmes, B. New perspectives in the classification of the flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int. J. Syst. Bacteriol. 1994, 44, 827–831. [Google Scholar] [CrossRef]
- García-López, M.; Meier-Kolthoff, J.P.; Tindall, B.J.; Gronow, S.; Woyke, T.; Kyrpides, N.C.; Hahnke, R.L.; Göker, M. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front. Microbiol. 2019, 10, 2083. [Google Scholar] [CrossRef] [Green Version]
- Hugo, C.; Bernardet, J.-F.; Nicholson, A.; Kämpfer, P. Genus Chryseobacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.B., Trust, B.M., Eds.; John Wiley & Sons, Inc., in association with Bergey’s Manual Trust: Hoboken, NJ, USA, 2019; pp. 1–107. [Google Scholar] [CrossRef]
- Bekker, A.; Steyn, L.; Charimba, G.; Jooste, P.; Hugo, C. Comparison of the growth kinetics and proteolytic activities of Chryseobacterium species and Pseudomonas fluorescens. Can. J. Microbiol. 2015, 61, 977–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekker, A.; Jooste, P.; Steyn, L.; Bothma, C.; Hugo, A.; Hugo, C. Lipid breakdown and sensory analysis of milk inoculated with Chryseobacterium joostei or Pseudomonas fluorescens. Int. Dairy J. 2016, 52, 101–106. [Google Scholar] [CrossRef]
- Tsôeu, I.; Jooste, P.J.; Charimba, G.; Hugo, C.J. Spoilage potential of a novel group of bacteria isolated from dairy products. South Afr. J. Sci. 2016, 112, 140–147. [Google Scholar]
- Mielmann, A.; Hugo, C.J.; Jooste, P.J. The potential of Chryseobacterium species to produce biogenic amines. J. Food Safety 2011, 31, 75–80. [Google Scholar] [CrossRef]
- Kirby, J.T.; Sader, H.S.; Walsh, T.R.; Jones, R.N. Antimicrobial susceptibility of a worldwide collection of Chryseobacterium spp.: Report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Clin. Microb. 2004, 42, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edberg, S.C.; Gallo, P.; Kontnick, C. Analysis of the virulence characteristics of bacteria isolated from bottled, water cooler and tap water. Microbial. Ecol. Health Dis. 1996, 9, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, D.; De Wet, C.M.E.; Grabow, W.O.K.; Ehlers, M.M. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. Int. J. Food Microbiol. 2004, 92, 275–287. [Google Scholar] [CrossRef]
- Olowe, O.A.; Olayemi, B.; Eniola, K.I.T.; Adeyeba, O.A. Antibacterial activity of some selected disinfectants regularly used in hospitals. Afr. J. Clin. Exp. Microbiol. 2004, 5, 126–130. [Google Scholar]
- Bloch, K.C.; Nadarajah, R.; Jacobs, R. Chryseobacterium meningosepticum: An emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine 1997, 76, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Buxton, R. Blood agar plates and hemolysis protocols; American Society for Microbiology: Washington, DC, USA, 2005. [Google Scholar]
- MacFaddin, J.F. Biochemical Tests for Identification of Medical Bacteria, 2nd ed.Williams and Wilkins: Baltimore, MD, USA, 1980. [Google Scholar]
- Park, S.C.; Kim, M.S.; Baik, K.S.; Kim, E.M.; Rhee, M.S.; Seong, C.N. Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int. J. Syst. Evol. Microbiol. 2008, 58, 607–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.K.; Lee, K.C.; Oh, H.M.; Lee, J.S. Chryseobacerium aquaticum sp. nov., isolated from a water reservoir. Int. J. Syst. Evol. Microbiol. 2008, 58, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.K.; Bae, H.S.; Schumann, P.; Lee, S.T. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 2005, 55, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Kang, S.J.; Oh, T.K. Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int. J. Syst. Evol. Microbiol. 2007, 57, 1355–1359. [Google Scholar] [CrossRef] [Green Version]
- Gallego, V.; Garcia, M.T.; Ventosa, A. Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int. J. Syst. Evol. Microbiol. 2006, 56, 1589–1592. [Google Scholar] [CrossRef]
- Kämpfer, P.; Vaneechoutte, M.; Lodders, N.; De Baere, T.; Avesani, V.; Janssens, M.; Busse, H.-J.; Wauters, G. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int. J. Syst. Evol. Microbiol. 2009, 59, 2421–2428. [Google Scholar]
- Vaneechoutte, M.; Kämpfer, P.; de Baere, T.; Avesani, V.; Janssens, M.; Wauters, G. Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int. J. Syst. Evol. Microbiol. 2007, 57, 2623–2628. [Google Scholar] [CrossRef]
- Hantsis-Zacharov, E.; Senderovich, Y.; Halpern, M. Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int. J. Syst. Evol. Microbiol. 2008, 58, 1024–1028. [Google Scholar] [CrossRef]
- Charimba, G.; Jooste, P.; Albertyn, J.; Hugo, C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int. J. Syst. Evol. Microbiol. 2013, 63, 3243–3249. [Google Scholar] [CrossRef]
- Hugo, C.J.; Segers, P.; Hoste, B.; Vancanneyt, M.; Kersters, K. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int. J. Syst. Evol. Microbiol. 2003, 53, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Hantsis-Zacharov, E.; Shaked, T.; Senderovich, Y.; Halpern, M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int. J. Syst. Evol. Microbiol. 2008, 58, 2635–2639. [Google Scholar] [CrossRef] [Green Version]
- de Beer, H.; Hugo, C.J.; Jooste, P.J.; Vancanneyt, M.; Coenye, T.; Vandamme, P. Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int. J. Syst. Evol. Microbiol. 2006, 56, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Mudarris, M.; Austin, B.; Segers, P.; Vancanneyt, M.; Hoste, B.; Bernardet, J.F. Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int. J. Syst. Evol. Microbiol. 1994, 44, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimomura, K.; Kaji, S.; Hiraishi, A. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int. J. Syst. Evol. Microbiol. 2005, 55, 1903–1906. [Google Scholar] [CrossRef] [PubMed]
- de Beer, H.; Hugo, C.J.; Jooste, P.J.; Willems, A.; Vancanneyt, M.; Coenye, T.; Vandamme, P.A.R. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken processing plant. Int. J. Syst. Evol. Microbiol. 2005, 55, 2149–2153. [Google Scholar] [CrossRef] [Green Version]
- Quan, Z.X.; Kim, K.K.; Kim, M.K.; Jin, L.; Lee, S.T. Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int. J. Syst. Evol. Microbiol. 2007, 57, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kämpfer, P.; Dreyer, U.; Neef, A.; Dott, W.; Busse, H.-J. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int. J. Syst. Evol. Microbiol. 2003, 53, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Wang, X.; Huang, X.; Zhang, K.Y.; Zhang, Y.Q.; Guo, Y.F.; Lai, R.; Li, W.J. Chryseobacterium flavum sp. nov., isolated from polluted soil. Int. J. Syst. Evol. Microbiol. 2007, 57, 1765–1769. [Google Scholar] [CrossRef] [Green Version]
- Young, C.C.; Kämpfer, P.; Shen, F.T.; Lai, W.A.; Arun, A.B. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int. J. Syst. Evol. Microbiol. 2005, 55, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Herzog, P.; Winkler, I.; Wolking, D.; Kämpfer, P.; Lipski, A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int. J. Syst. Evol. Microbiol. 2008, 58, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, U.; Ulrich, A.; Schumann, P. Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int. J. Syst. Evol. Microbiol. 2008, 58, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szoboszlay, S.; Atzel, B.; Kukolya, J.; Toth, E.M.; Marialigeti, K.; Schumann, P.; Kriszt, B. Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int. J. Syst. Evol. Microbiol. 2008, 58, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Lodders, N.; Veneechoutte, M.; Wauters, G. Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium ant-arcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 2238–2240. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, U.; Ulrich, A.; Sproër, C.; Schumann, P. Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol. 2007, 57, 1881–1885. [Google Scholar] [CrossRef] [Green Version]
- Park, M.S.; Jung, S.R.; Lee, K.H.; Lee, M.S.; Do, J.O.; Kim, S.B.; Bae, K.S. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int. J. Syst. Evol. Microbiol. 2006, 56, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Weon, H.Y.; Kim, B.Y.; Yoo, S.H.; Kwon, S.W.; Stackebrandt, E.; Go, S.J. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int. J. Syst. Evol. Microbiol. 2008, 58, 470–473. [Google Scholar] [CrossRef]
- Shen, F.-T.; Kämpfer, P.; Young, C.-C.; Lai, W.-A.; Arun, A.B. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int. J. Syst. Evol. Microbiol. 2005, 55, 1301–1304. [Google Scholar] [CrossRef] [Green Version]
- Tai, C.J.; Kuo, H.P.; Lee, F.L.; Chen, H.K.; Yokota, A.; Lo, C.C. Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int. J. Syst. Evol. Microbiol. 2006, 56, 1771–1776. [Google Scholar] [CrossRef]
- Weon, H.Y.; Kim, B.Y.; Yoo, S.H.; Kwon, S.W.; Cho, Y.H.; Go, S.J.; Stackebrandt, E. Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int. J. Syst. Evol. Microbiol. 2006, 56, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Harada, R.M.; Li, Q.X. Chryseobacterium arothri sp. nov., isolated from the kidneys of a puffer fish. Int. J. Syst. Evol. Microbiol. 2008, 58, 290–293. [Google Scholar] [CrossRef]
- Greub, G.; La Scola, B.; Raoult, D. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg. Inf. Dis. 2004, 10, 470–477. [Google Scholar] [CrossRef]
- Kim, K.K.; Kim, M.K.; Lim, J.H.; Park, H.Y.; Lee, S.T. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 17 th Informational Supplement M100-S17. J. Clin. Microbiol. 2007, 27, 1–182. [Google Scholar]
- NCSS. Statistical System for Windows; Number Cruncher Statistical Systems: Kaysville, UT, USA, 2007. [Google Scholar]
- Sharaf, E.F.; El-Sayeda, W.S.; Abosaifa, R.M. Lecithinase-producing bacteria in commercial and home-made foods: Evaluation of toxic properties and identification of potent producers. J. Taibah Univ. Sci. 2014, 8, 207–215. [Google Scholar] [CrossRef]
- Tyner, H.; Patel, R. Hyaluronidase in clinical isolates of Propionibacterium acnes. Int. J. Bacteriol. 2015, 2015, 218918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Gani, M.N.; Laftaah, B.A. Purification and characterization of chondroitinase ABC from Proteus vulgaris, an Iraqi clinically isolate. Curr. Sci. 2017, 113, 2134–2140. [Google Scholar]
- Kitamikado, M.; Lee, Y.-Z. Chondroitinase-producing bacteria in natural habitats. Appl. Microbiol. 1975, 29, 414–421. [Google Scholar] [CrossRef]
- Thokchom, S.; Joshi, S.R. Screening of fibrinolytic enzymes from lactic acid bacterial isolates associated with traditional fermented soybean foods. Food Sci. Biotechnol. 2014, 23, 1601–1604. [Google Scholar] [CrossRef]
- Cascio, A.; Stassi, G.; Costa, G.B.; Crisafulli, G.; Rulli, I.; Ruggeri, C.; Iaria, C. Chryseobacterium indologenes bacteraemia in a diabetic child. J. Med. Microbiol. 2005, 54, 677–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kienzle, N.; Muller, M.; Pegg, S. Chryseobacterium in burn wounds. J. Int. Soc. Burn Inj. 2000, 27, 179–182. [Google Scholar] [CrossRef]
- Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases applications. Front. Bioeng. Biotechnol. 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, L.E.; Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 2004, 186, 5629–5639. [Google Scholar] [CrossRef] [Green Version]
- Al-Wahaibi, A.S.M.; Lapinska, E.; Rajarajan, N.; Dobretsov, S.; Upstill-Goddard, R.; Burgess, J.G. Secretion of DNases by marine bacteria: A culture based and bioinformatics approach. Front. Microbiol. 2019, 10, 969. [Google Scholar] [CrossRef] [Green Version]
- Bieth, J.G. The elastases. J. Soc. Biol. 2001, 195, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bhagawati, G.; Bhardwaj, A.; Sajikumar, R.; Singh, S.P.; Prajapati, S. Bacteremia by Chryseobacterium indologenes in a patient with lung cancer: A clinical and microbiological investigation. Ind. J. Crit. Care Med. 2019, 23, 157–159. [Google Scholar] [CrossRef]
- Chou, D.W.; Wu, S.L.; Lee, C.T.; Tai, F.T.; Yu, W.L. Clinical characteristics, antimicrobial susceptibilities, and outcomes of patients with Chryseobacterium indologenes bacteremia in an Intensive care unit. Japan J. Inf. Dis. 2011, 64, 520–524. [Google Scholar]
- Teke, T.A.; Oz, F.N.; Metin, O.; Bayhan, G.I.; Aydin, Z.G.G.; Oguz, M.; Tanir, G. Chryseobacterium indologenes septicemia in an infant. Case Rep. Infect. Dis. 2014, 270521. [Google Scholar] [CrossRef] [Green Version]
Chryseobacterium Strains Used | Culture Collection Number | Source of Isolation | Reference |
---|---|---|---|
Water | |||
C. aquafrigidense | KCTC 12484 T | Cooled water from an oxygen-producing plant | [16] |
C. aquaticum | KCTC 12483 T | Water reservoir | [17] |
* C. daecheongense | DSM 15235 T | Freshwater lake sediment | [18] |
C. daeguense | KCTC 12841 T | Wastewater of a textile dye works | [19] |
C. hispanicum | KCTC 22104 T | Drinking water distribution system | [20] |
C. koreense | KCTC 12107 T | Natural mineral water | [21] |
Food | |||
* C. balustinum | NCTC 11212 T | Diseased freshwater fish | [22] |
C. bovis | LMG 24227 T | Raw cow milk | [23] |
C. carnipullorum | LMG 26732 T | Raw chicken meat | [24] |
* C. joostei | LMG 18212 T | Raw milk | [25] |
C. oranimense | DSM 19055 T | Raw cow milk | [26] |
* C. piscium | CCUG 51923 T | Marine fish | [27] |
* C. scophthalmum | LMG 13028 T | Diseased turbot fish gills | [28] |
* C. shigense | DSM 17126 T | Lactic acid beverage | [29] |
* C. vrystaatense | LMG 22846 T | Raw chicken meat | [30] |
Environmental | |||
C. caeni | DSM 17710 T | Bioreactor sludge | [31] |
C. defluvii | DSM 14219 T | Activated sludge | [32] |
C. flavum | KCTC 12483 T | Herbicide polluted soil | [33] |
* C. formosense | CCUG 49271 T | Rhizosphere of garden lettuce | [34] |
C. gambrini | DSM 18014 T | Steel surface of a beer bottling plant | [35] |
C. gregarium | LMG 24052 T | Decaying plant material | [36] |
C. hungaricum | DSM 19684 T | Kerosene contaminated soil | [37] |
* C. indoltheticum | ATCC 27950 T | Marine mud | [2] |
C. jeonii | KCTC 12226 T | Moss near penguin habitat | [38] |
C. luteum | LMG 23785 T | Phyllosphere of grasses | [39] |
C. molle | DSM 18016 T | Biofilm of a conveyor of a beer-bottling plants | [35] |
* C. soldanellicola | CCUG 52904 T | Roots of sand-dune plants (Calystegia soldanella) | [40] |
C. soli | DSM 19298 T | Soil | [41] |
* C. taeanense | CCUG 52900 T | Roots of sand-dune plants (Elymus mollis) | [40] |
* C. taichungense | CCUG 50001 T | Soil | [42] |
C. taiwanense | LMG 23355 T | Farmland soil | [43] |
C. ureilyticum | CCUG 18017 T | Steel surface of a beer-bottling plant | [35] |
C. wanjuense | KCTC 22055 T | Greenhouse soil cultured with lettuce | [44] |
Clinical | |||
* C. gleum (Type species) | NCTC 11432 T | Human vaginal swab | [2] |
C. hominis | DSM 19326 T | Clinical blood isolates/Kidneys of a pufferfish | [45] |
“Candidatus C. massiliense” | CCUG 51329 T | Human nasal swab | [46] |
* C. indologenes | LMG 8337 T | Soil/water/clinical origin | [2] |
Elizabethkingia meningoseptica | NCTC 10116 T | Cerebrospinal fluid of premature infant | [47] |
Type Species | Haemolysis | Growth at 37 °C | Lecithinase | Hyaluronidase | Chondroitinase | Fibrinolysin | Protease | Lipase | Gelatinase | DNase | Elastase |
---|---|---|---|---|---|---|---|---|---|---|---|
C. aquafrigidense | β | + | + | + | + | − | 0.939 g | 0.914 cdefgh | 0.942 hij | 0.855 fghij | 0.809 g |
C. aquaticum | α | + | − | + | + | − | 0.909 fg | 0.937 ghij | 0.882 h | 0.886 hijk | 0.589 ef |
C. balustinum | α | − | − | − | − | − | 1.000 g | 1.000 k | 1.000 j | 1.000 k | 0.577 ef |
C. bovis | α | + | − | + | + | − | 0.585 c | 0.903 bcdefg | 0.902 hi | 0.949 jk | 1.000 h |
C. caeni | β | + | (+) | + | + | − | 1.000 g | 0.948 hij | 0.922 hi | 0.901 ijk | 1.000 h |
C. carnipullorum | α | − | (+) | + | (+) | − | 1.000 g | 0.953 ij | 0.937 hi | 0.833 fghij | 0.584 ef |
C. daecheongense | α | + | + | + | + | − | 0.511 bc | 0.888 abcd | 0.912 hi | 0.868 ghijk | 0.419 ab |
C. daeguense | α | + | + | + | + | − | 0.547 bc | 0.870 ab | 0.879 h | 0.713 def | 0.444 abc |
C. defluvii | α | + | + | + | + | − | 0.751 de | 0.860 a | 0.937 hij | 0.505 bc | 0.448 abc |
C. flavum | α | + | + | + | + | − | 0.504 abc | 0.924 efghij | 0.759 fg | 0.819 efghij | 0.506 abcde |
C. formosense | β | − | − | (+) | − | − | 1.000 g | 0.957 j | 0.439 d | 1.000 k | 1.000 h |
C. gambrini | α | + | (+) | + | (+) | − | 0.529 bc | 0.936 ghij | 0.745 f | 0.729 defg | 1.000 h |
C. gleum | α | + | + | + | + | − | 0.378 a | 0.930 fghij | 0.958 ij | 0.268 a | 0.414 a |
C. gregarium | α | − | + | + | + | − | 0.575 bc | 0.892 abcde | 0.911 hi | 0.421 b | 0.513 cde |
C. hispanicum | α | − | (+) | (+) | − | − | 1.000 g | 1.000 k | 1.000 j | 1.000 k | 1.000 h |
C. hominis | β | + | − | + | + | − | 1.000 g | 0.951 ij | 0.934 hi | 0.916 ijk | 1.000 h |
C. hungaricum | β | + | − | + | (+) | − | 1.000 g | 0.947 hij | 0.931 hi | 1.000 k | 1.000 h |
C. indologenes | α | + | (+) | + | (+) | − | 0.632 cd | 0.893 abcde | 0.917 hi | 0.687 de | 0.446 abc |
C. indotheticum | α | − | − | + | + | − | 0.507 abc | 1.000 k | 0.957 ij | 0.746 defgh | 0.659 f |
C. jeonii | α | − | (+) | (+) | − | − | 1.000 g | 1.000 k | 1.000 j | 1.000 k | 1.000 h |
C. joostei | α | − | − | (+) | (+) | − | 1.000 g | 1.000 k | 0.432 cd | 1.000 k | 0.508 bcde |
C. koreense | β | + | − | + | + | − | 1.000 g | 0.882 abc | 0.813 g | 0.475 b | 1.000 h |
C. luteum | α | − | − | (+) | (+) | − | 1.000 g | 1.000 k | 0.375 abc | 1.000 k | 0.456 abc |
“C. massiliense” | β | + | + | + | + | − | 0.555 bc | 0.895 abcdef | 0.907 hi | 0.779 efghi | 0.441 abc |
C. molle | β | + | (+) | + | + | − | 1.000 g | 1.000 k | 0.426 bcd | 1.000 k | 1.000 h |
C. oranimense | α | + | + | + | + | − | 0.941 g | 0.960 j | 0.914 hi | 0.393 ab | 0.475 abcd |
C. piscium | α | − | − | − | − | − | 1.000 g | 1.000 k | 0.581 e | 1.000 k | 1.000 h |
C. scophthalmum | α | − | − | (+) | + | − | 1.000 g | 1.000 k | 0.365 ab | 0.256 a | 0.825 g |
C. shigense | α | − | − | (+) | + | − | 1.000 g | 1.000 k | 1.000 j | 1.000 k | 0.555 de |
C. soldanellicola | α | + | − | + | + | − | 0.449 ab | 0.918 cdefghi | 0.333 a | 0.684 de | 0.423 abc |
C. soli | α | − | − | (+) | (+) | − | 1.000 g | 1.000 k | 1.000 j | 1.000 k | 0.578 ef |
C. taeanense | α | + | + | + | + | − | 0.807 ef | 0.887 abcd | 0.885 h | 0.843 fghij | 0.444 abc |
C. taichungense | α | + | (+) | + | + | − | 0.625 cd | 0.892 abcde | 0.919 hi | 0.820 efghij | 0.502 abcde |
C. taiwanense | α | + | + | + | + | − | 0.589 c | 0.897 bcdef | 0.920 hi | 0.877 hijk | 0.560 de |
C. ureilyticum | α | − | − | + | + | − | 1.000 g | 1.000 k | 1.000 j | 0.773 defghi | 0.514 cde |
C. vrystaatense | α | − | − | (+) | + | − | 1.000 g | 1.000 k | 0.478 d | 1.000 k | 1.000 h |
C. wanjuense | α | + | + | + | + | − | 0.613 c | 0.868 ab | 0.913 hi | 0.894 ijk | 0.478 abcd |
E. meningoseptica | β | + | + | + | + | − | 0.916 fg | 0.919 defghi | 0.910 hi | 0.635 cd | 1.000 h |
Significance level | N/A | N/A | N/A | N/A | N/A | N/A | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Organism | Ampicillin | Amoxicillin | Vancomycin | Cephalothin | Neomycin | Tetracycline | Oxytetracycline | Streptomycin | Chloramphenicol | Trimethoprim |
---|---|---|---|---|---|---|---|---|---|---|
C. aquafrigidense | 50.000 l | 50.000 j | 50.000 p | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. aquaticum | 14.320 c | 15.127 de | 17.233 cdefg | 13.713 d | 10.267 efgh | 28.377 j | 24.337 kl | 13.117 defg | 25.123 h | 41.127 mn |
C. hominis | 40.880 jk | 41.650 i | 23.903 kl | 49.030 j | 15.977 i | 46.640 p | 6.170 a | 26.520 no | 6.170 a | 6.170 a |
C. balustinum | 24.663 de | 24.177 f | 23.800 kl | 28.767 h | 14.623 i | 32.427 kl | 30.630 m | 19.830 m | 23.287 g | 38.087 lmn |
C. bovis | 50.000 l | 50.000 j | 50.000 p | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. caeni | 50.000 l | 50.000 j | 50.000 p | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 27.620 p | 50.000 j | 50.000 o |
C. carnipullorum | 6.170 a | 6.170 a | 21.067 ijk | 6.170 a | 6.170 a | 6.170 a | 15.397 cde | 13.410 efgh | 6.170 a | 12.230 ab |
C. daecheongense | 6.170 a | 6.170 a | 17.910 efgh | 6.170 a | 6.170 a | 6.170 a | 21.010 hijk | 12.553 def | 17.140 f | 36.843 jklmn |
C. daeguense | 6.170 a | 6.170 a | 17.933 efgh | 6.170 a | 6.170 a | 6.170 a | 22.010 ijkl | 16.743 ijk | 10.373 cd | 39.983 mn |
C. defluvii | 50.000 l | 50.000 j | 29.380 m | 6.170 a | 40.143 m | 6.170 a | 6.170 a | 39.387 q | 6.170 a | 35.993 ijklmn |
C. flavum | 6.170 a | 6.170 a | 12.290 a | 6.170 a | 10.990 gh | 11.480 d | 12.733 bcd | 6.170 a | 6.170 a | 27.770 defgh |
C. formosense | 11.200 bc | 11.383 bcd | 21.607 jk | 11.097 c | 6.170 a | 24.580 i | 22.533 jkl | 11.237 bcd | 9.300 bc | 36.330 ijklmn |
C. gambrini | 50.000 l | 50.000 j | 50.000 p | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. gleum | 6.170 a | 6.170 a | 18.050 efgh | 6.170 a | 9.833 defgh | 15.627 e | 15.780 cdef | 17.107 jk | 8.277 b | 32.163 ghijkl |
C. gregarium | 11.627 bc | 10.170 abc | 18.933 fghij | 10.993 c | 9.327 cdefg | 28.430 j | 25.357 l | 15.197 hij | 8.257 b | 30.870 fghijk |
C. hispanicum | 31.670 fg | 33.950 g | 16.030 cde | 25.450 g | 19.000 j | 38.600 n | 33.340 mn | 30.483 p | 30.193 i | 39.037 mn |
C. hungaricum | 37.193 ij | 39.747 hi | 33.150 n | 45.270 i | 8.397 bcd | 43.527 o | 40.567 o | 13.987 fgh | 22.477 g | 37.340 klmn |
C. indologenes | 6.170 a | 6.170 a | 18.037 efgh | 6.170 a | 6.170 a | 8.047 ab | 9.483 ab | 6.170 a | 9.533 bcd | 16.623 bc |
C. indotheticum | 8.787 ab | 7.607 ab | 20.183 hij | 7.778 ab | 7.378 ab | 21.887 gh | 19.067 fghi | 9.333 b | 10.830 d | 25.117 def |
C. jeonii | 32.870 gh | 35.247 g | 14.790 abcd | 26.997 gh | 18.060 j | 35.160 m | 32.063 mn | 25.133 n | 26.427 h | 38.187 lmn |
C. joostei | 6.170 a | 6.170 a | 16.207 cdef | 6.170 a | 6.170 a | 9.237 bc | 10.527 b | 9.833 bc | 6.170 a | 29.673 efghi |
C. koreense | 41.660 k | 46.433 j | 34.810 no | 46.130 i | 33.533 k | 47.700 p | 18.410 efgh | 50.000 r | 50.000 j | 10.907 ab |
C. luteum | 12.953 c | 12.283 cd | 13.013 ab | 9.987 bc | 10.057 defgh | 27.283 j | 22.953 jkl | 9.783 bc | 6.170 a | 34.297 hijklm |
“C. massiliense” | 28.217 ef | 50.000 j | 36.747 o | 27.307 gh | 50.000 m | 43.253 o | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. molle | 36.170 hi | 37.500 gh | 20.263 hij | 18.203 e | 17.810 j | 34.150 lm | 34.493 n | 19.917 m | 25.820 h | 42.747 n |
C. oranimense | 6.170 a | 6.170 a | 12.890 abc | 6.170 a | 7.770 bc | 14.430 e | 16.350 cde | 11.910 def | 6.170 a | 23.410 de |
C. piscium | 13.843 c | 13.003 cd | 17.453 cdefg | 10.210 c | 8.730 bcde | 22.293 h | 20.543 ghij | 11.717 cde | 8.540 b | 22.167 cd |
C. scophthalmum | 11.877 bc | 9.467 abc | 19.580 ghij | 10.030 bc | 7.990 bc | 22.727 hi | 21.187 hijk | 10.383 bc | 9.013 bc | 27.663 defgh |
C. shigense | 6.170 a | 6.170 a | 21.247 ijk | 6.170 a | 8.610 bcde | 19.343 f | 16.420 ef | 14.473 fgh | 6.170 a | 24.947 def |
C. soldanellicola | 8.237 ab | 6.170 a | 15.803 bcde | 9.913 bc | 11.363 h | 24.490 i | 23.397 jkl | 11.620 cde | 8.543 b | 30.313 fghij |
C. soli | 6.170 a | 6.170 a | 24.897 l | 6.170 a | 14.787 i | 19.903 fg | 16.167 def | 17.747 kl | 6.170 a | 26.240 defg |
C. taeanense | 21.187 d | 17.533 e | 18.470 efghi | 22.273 f | 8.963 bcdef | 30.830 k | 30.300 m | 19.697 lm | 6.170 a | 15.527 bc |
C. taichungense | 50.000 l | 50.000 j | 50.000 p | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. taiwanense | 50.000 l | 50.000 j | 26.007 l | 50.000 j | 50.000 m | 50.000 q | 50.000 p | 50.000 r | 50.000 j | 50.000 o |
C. ureilyticum | 6.170 a | 6.170 a | 16.907 cdefg | 6.170 a | 9.917 defgh | 10.427 cd | 10.647 b | 12.573 def | 6.170 a | 14.563 b |
C. vrystaatense | 6.170 a | 6.170 a | 18.177 efgh | 6.170 a | 10.570 fgh | 17.143 e | 17.540 efg | 11.323 bcd | 6.170 a | 14.590 b |
C. wanjuense | 6.170 a | 6.170 a | 17.540 defgh | 7.437 a | 6.170 a | 23.397 hi | 25.110 l | 15.040 ghi | 8.500 b | 15.593 bc |
E. meningoseptica | 50.000 l | 50.000 j | 24.867 l | 50.000 j | 50.000 m | 9.527 bcd | 12.610 bc | 50.000 r | 13.347 e | 50.000 o |
Significance p < | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Antimicrobial | Resistant (%) | Intermediate (%) | Susceptible (%) |
---|---|---|---|
Ampicillin (10 μg) | 50.00 (19/38) | 5.26 (2/38) | 44.74 (17/38) |
Amoxicillin (10 μg) | 52.63 (20/38) | 2.60 (1/38) | 44.77 (17/38) |
Vancomycin (30 μg) | 7.89 (3/38) | 15.79 (6/38) | 76.32 (29/38) |
Cephalothin (30 μg) | 57.89 (22/38) | 0.00 (0/38) | 42.11 (16/38) |
Neomycin (30 μg) | 57.89 (22/38) | 0.00 (0/38) | 42.11 (16/38) |
Tetracycline (30 μg) | 21.00 (8/38) | 5.26 (2/38) | 73.74 (28/38) |
Oxytetracycline (30 μg) | 13.16 (5/38) | 5.26 (2/38) | 81.58 (31/38) |
Streptomycin (25 μg) | 21.00 (8/38) | 23.68 (9/38) | 55.32 (21/38) |
Chloramphenicol (30 μg) | 57.89 (22/38) | 5.26 (2/38) | 36.85 (14/38) |
Trimethoprim (2.5 μg) | 2.60 (1/38) | 10.53 (4/38) | 86.87 (33/38) |
Minimum Inhibitory Concentration (%) | ||||
---|---|---|---|---|
Species | Disinfectant 1 (Chloroxylenol) | Disinfectant 2 (Benzalkonium Chloride) | Disinfectant 3 (Chlorhexidine Gluconate) | Disinfectant 4 (Poly-Dimethyl Ammonium Chloride) |
C. balustinum | 0.125 | ≤ 0.0625 | 0.25 | ≤ 0.0625 |
C. daecheongense | 0.25 | 0.25 | 0.25 | ≤ 0.0625 |
C. formosense | 0.125 | ≤ 0.0625 | 0.125 | ≤ 0.0625 |
C. gleum | 0.25 | 0.25 | 1.0 | ≤ 0.0625 |
C. indologenes | 0.25 | 0.125 | 1.0 | ≤ 0.0625 |
C. indoltheticum | 0.125 | ≤ 0.0625 | ≤ 0.0625 | ≤ 0.0625 |
C. joostei | 0.25 | 0.5 | 0.5 | ≤ 0.0625 |
C. piscium | 0.125 | ≤ 0.0625 | 0.5 | ≤ 0.0625 |
C. scophthalmum | 0.25 | ≤ 0.0625 | 0.5 | ≤ 0.0625 |
C. shigense | 0.25 | 0.125 | 0.25 | ≤ 0.0625 |
C. soldanellicola | 0.25 | ≤ 0.0625 | 0.125 | ≤ 0.0625 |
C. taeanense | 0.125 | ≤ 0.0625 | 0.125 | ≤ 0.0625 |
C. taichungense | 0.25 | ≤ 0.0625 | 0.125 | ≤ 0.0625 |
C. vrystaatense | 0.25 | 0.125 | 0.5 | ≤ 0.0625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwanza, E.P.; Hugo, A.; Charimba, G.; Hugo, C.J. Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms 2022, 10, 895. https://doi.org/10.3390/microorganisms10050895
Mwanza EP, Hugo A, Charimba G, Hugo CJ. Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms. 2022; 10(5):895. https://doi.org/10.3390/microorganisms10050895
Chicago/Turabian StyleMwanza, Elebert Pauline, Arno Hugo, George Charimba, and Celia J. Hugo. 2022. "Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources" Microorganisms 10, no. 5: 895. https://doi.org/10.3390/microorganisms10050895
APA StyleMwanza, E. P., Hugo, A., Charimba, G., & Hugo, C. J. (2022). Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms, 10(5), 895. https://doi.org/10.3390/microorganisms10050895