Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli
Abstract
:1. Introduction
2. Material and Methods
2.1. UPEC Isolates
2.2. Virulence Factor-Encoding Genes Detection
2.3. Serotyping
2.4. E. coli Phylogroup Classification
2.5. Antimicrobial Resistance Profile and Detection of ESBL-Producing E. coli
2.6. Detection of Beta-Lactamase-Encoding Genes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burland, V.; Shao, Y.; Perna, N.T.; Plunkett, G.; Sofia, H.J.; Blattner, F.R. The Complete DNA Sequence and Analysis of the Large Virulence Plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 1998, 26, 4196–4204. [Google Scholar] [CrossRef] [Green Version]
- Perna, N.T.; Plunkett, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; et al. Genome Sequence of Enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.A.; Burland, V.; Plunkett, G.; Redford, P.; Roesch, P.; Rasko, D.; Buckles, E.L.; Liou, S.R.; Boutin, A.; Hackett, J.; et al. Extensive Mosaic Structure Revealed by the Complete Genome Sequence of Uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 17020–17024. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, A.; Thomson, N.R.; Ogura, Y.; Saunders, D.; Ooka, T.; Henderson, I.R.; Harris, D.; Asadulghani, M.; Kurokawa, K.; Dean, P.; et al. Complete Genome Sequence and Comparative Genome Analysis of Enteropathogenic Escherichia coli O127:H6 Strain E2348/69. J. Bacteriol. 2009, 191, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, R.R.; Sebaihia, M.; Hobman, J.L.; Webber, M.A.; Leyton, D.L.; Goldberg, M.D.; Cunningham, A.F.; Scott-Tucker, A.; Ferguson, P.R.; Thomas, C.M.; et al. Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE 2010, 5, e8801. [Google Scholar] [CrossRef]
- Cointe, A.; Birgy, A.; Mariani-Kurkdjian, P.; Liguori, S.; Courroux, C.; Blanco, J.; Delannoy, S.; Fach, P.; Loukiadis, E.; Bidet, P.; et al. Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin–Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Emerg. Infect. Dis. 2018, 24, 2262–2269. [Google Scholar] [CrossRef] [Green Version]
- Russo, T.A.; Johnson, J.R. Proposal for a New Inclusive Designation for Extraintestinal Pathogenic Isolates of Escherichia coli: ExPEC. J. Infect. Dis. 2000, 181, 1753–1754. [Google Scholar] [CrossRef] [Green Version]
- Hernandes, R.T.; Elias, W.P.; Vieira, M.A.M.; Gomes, T.A.T. An Overview of Atypical Enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 2009, 297, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ori, E.L.; Takagi, E.H.; Andrade, T.S.; Miguel, B.T.; Cergole-Novella, M.C.; Guth, B.E.C.; Hernandes, R.T.; Dias, R.C.B.; Pinheiro, S.R.S.; Camargo, C.H.; et al. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: Pathotypes and Serotypes over a 6-Year Period of Surveillance. Epidemiol. Infect. 2019, 147, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.A.M.; Oliveira, D.B.; Quetz, J.S.; Havt, A.; Prata, M.M.G.; Lima, I.F.N.; Soares, A.M.; Filho, J.Q.; Lima, N.L.; Medeiros, P.H.Q.S.; et al. Etiology and Severity of Diarrheal Diseases in Infants at the Semiarid Region of Brazil: A Case-Control Study. PLoS Negl. Trop. Dis. 2019, 13, e0007154. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and Aetiology of Diarrhoeal Disease in Infants and Young Children in Developing Countries (the Global Enteric Multicenter Study, GEMS): A Prospective, Case-Control Study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Araujo, J.M.; Tabarelli, G.F.; Aranda, K.R.S.; Fabbricotti, S.H.; Fagundes-Neto, U.; Mendes, C.M.F.; Scaletsky, I.C.A. Typical Enteroaggregative and Atypical Enteropathogenic Types of Escherichia coli Are the Most Prevalent Diarrhea-Associated Pathotypes among Brazilian Children. J. Clin. Microbiol. 2007, 45, 3396–3399. [Google Scholar] [CrossRef] [Green Version]
- Bueris, V.; Sircili, M.P.; Taddei, C.R.; dos Santos, M.F.; Franzolin, M.R.; Martinez, M.B.; Ferrer, S.R.; Barreto, M.L.; Trabulsi, L.R. Detection of Diarrheagenic Escherichia coli from Children with and without Diarrhea in Salvador, Bahia, Brazil. Mem. Inst. Oswaldo Cruz 2007, 102, 839–844. [Google Scholar] [CrossRef]
- Dias, R.C.B.; Dos Santos, B.C.; Dos Santos, L.F.; Vieira, M.A.; Yamatogi, R.S.; Mondelli, A.L.; Sadatsune, T.; Sforcin, J.M.; Gomes, T.A.T.; Hernandes, R.T. Diarrheagenic Escherichia coli Pathotypes Investigation Revealed Atypical Enteropathogenic E. coli as Putative Emerging Diarrheal Agents in Children Living in Botucatu, São Paulo State, Brazil. APMIS 2016, 124, 299–308. [Google Scholar] [CrossRef]
- Abe, C.M.; Salvador, F.A.; Falsetti, I.N.; Vieira, M.A.M.; Blanco, J.; Blanco, J.E.; Blanco, M.; Machado, A.M.O.; Elias, W.P.; Hernandes, R.T.; et al. Uropathogenic Escherichia coli (UPEC) Strains May Carry Virulence Properties of Diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 2008, 52, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Olesen, B.; Scheutz, F.; Andersen, R.L.; Menard, M.; Boisen, N.; Johnston, B.; Hansen, D.S.; Krogfelt, K.A.; Nataro, J.P.; Johnson, J.R. Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection. J. Clin. Microbiol. 2012, 50, 3703–3711. [Google Scholar] [CrossRef] [Green Version]
- Lara, F.B.M.; Nery, D.R.; de Oliveira, P.M.; Araujo, M.L.; Carvalho, F.R.Q.; Messias-Silva, L.C.F.; Ferreira, L.B.; Faria-Junior, C.; Pereira, A.L. Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Front. Microbiol. 2017, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Boll, E.J.; Overballe-Petersen, S.; Hasman, H.; Roer, L.; Ng, K.; Scheutz, F.; Hammerum, A.M.; Dungu, A.; Hansen, F.; Johannesen, T.B.; et al. Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. MBio 2020, 11, e00353-20. [Google Scholar] [CrossRef] [PubMed]
- Mandomando, I.; Vubil, D.; Boisen, N.; Quintó, L.; Ruiz, J.; Sigaúque, B.; Nhampossa, T.; Garrine, M.; Massora, S.; Aide, P.; et al. Escherichia coli ST131 Clones Harbouring AggR and AAF/V Fimbriae Causing Bacteremia in Mozambican Children: Emergence of New Variant of fimH27 Subclone. PLoS Negl. Trop. Dis. 2020, 14, e0008274. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The Epidemiology of Urinary Tract Infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef]
- Nielubowicz, G.R.; Mobley, H.L.T. Host–Pathogen Interactions in Urinary Tract Infection. Nat. Rev. Urol. 2010, 7, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.; Mobley, H.L.T. Virulence and Fitness Determinants of Uropathogenic Escherichia coli. Microbiol. Spectr. 2015, 3, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Dobrindt, U.; Blum-Oehler, G.; Nagy, G.; Schneider, G.; Johann, A.; Gottschalk, G.; Hacker, J. Genetic Structure and Distribution of Four Pathogenicity Islands (PAI I536 to PAI IV536) of Uropathogenic Escherichia coli Strain 536. Infect. Immun. 2002, 70, 6365–6372. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.L.; Rasko, D.A.; Mobley, H.L.T. Defining Genomic Islands and Uropathogen-Specific Genes in Uropathogenic Escherichia coli. J. Bacteriol. 2007, 189, 3532–3546. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Clermont, O.; Dixit, O.V.A.; Vangchhia, B.; Condamine, B.; Dion, S.; Bridier-Nahmias, A.; Denamur, E.; Gordon, D. Characterization and Rapid Identification of Phylogroup G in Escherichia coli, a Lineage with High Virulence and Antibiotic Resistance Potential. Environ. Microbiol. 2019, 21, 3107–3117. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The Population Genetics of Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef]
- Campos, A.C.C.; Andrade, N.L.; Ferdous, M.; Chlebowicz, M.A.; Santos, C.C.; Correal, J.C.D.; Lo Ten Foe, J.R.; Rosa, A.C.P.; Damasco, P.V.; Friedrich, A.W.; et al. Comprehensive Molecular Characterization of Escherichia coli Isolates from Urine Samples of Hospitalized Patients in Rio de Janeiro, Brazil. Front. Microbiol. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Flament-Simon, S.-C.; Nicolas-Chanoine, M.-H.; García, V.; Duprilot, M.; Mayer, N.; Alonso, M.P.; García-Meniño, I.; Blanco, J.E.; Blanco, M.; Blanco, J. Clonal Structure, Virulence Factor-Encoding Genes and Antibiotic Resistance of Escherichia coli, Causing Urinary Tract Infections and Other Extraintestinal Infections in Humans in Spain and France during 2016. Antibiotics 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamadonfar, K.O.; Omattage, N.S.; Spaulding, C.N.; Hultgren, S.J. Reaching the End of the Line: Urinary Tract Infections. Microbiol. Spectr. 2019, 7, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.F.; de Oliveira Martins-Júnior, P.; de Melo, A.B.F.; da Silva, R.C.R.M.; de Paulo Martins, V.; Pitondo-Silva, A.; de Campos, T.A. Multidrug Resistance Dissemination by Extended-Spectrum β-Lactamase-Producing Escherichia coli Causing Community-Acquired Urinary Tract Infection in the Central-Western Region, Brazil. J. Glob. Antimicrob. Resist. 2016, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva, A.P.d.S.; de Sousa, V.S.; Longo, L.G.d.A.; Caldera, S.; Baltazar, I.C.L.; Bonelli, R.R.; Santoro-Lopes, G.; Riley, L.W.; Moreira, B.M. Prevalence of Fluoroquinolone-Resistant and Broad-Spectrum Cephalosporin-Resistant Community-Acquired Urinary Tract Infections in Rio de Janeiro: Impact of Escherichia coli Genotypes ST69 and ST131. Infect. Genet. Evol. 2020, 85, 104452. [Google Scholar] [CrossRef]
- Dias, R.C.B.; Vieira, M.A.; Moro, A.C.; Ribolli, D.F.M.; Monteiro, A.C.M.; Camargo, C.H.; Tiba-Casas, M.R.; Soares, F.B.; dos Santos, L.F.; Montelli, A.C.; et al. Characterization of Escherichia coli Obtained from Patients Undergoing Peritoneal Dialysis and Diagnosed with Peritonitis in a Brazilian Centre. J. Med. Microbiol. 2019, 68, 1330–1340. [Google Scholar] [CrossRef]
- Ewing, W.H. Edwards and Ewing’s Identification of Enterobacteriaceae, 4th ed.; Elsevier Science Publishing: New York, NY, USA, 1986. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 25th ed.; CLSI Supplement M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Chattaway, M.A.; Day, M.; Mtwale, J.; White, E.; Rogers, J.; Day, M.; Powell, D.; Ahmad, M.; Harris, R.; Talukder, K.A.; et al. Clonality, Virulence and Antimicrobial Resistance of Enteroaggregative Escherichia coli from Mirzapur, Bangladesh. J. Med. Microbiol. 2017, 66, 1429–1435. [Google Scholar] [CrossRef] [Green Version]
- Nüesch-Inderbinen, M.T.; Baschera, M.; Zurfluh, K.; Hächler, H.; Nüesch, H.; Stephan, R. Clonal Diversity, Virulence Potential and Antimicrobial Resistance of Escherichia coli Causing Community Acquired Urinary Tract Infection in Switzerland. Front. Microbiol. 2017, 8, 2334. [Google Scholar] [CrossRef] [Green Version]
- Dadi, B.R.; Abebe, T.; Zhang, L.; Mihret, A.; Abebe, W.; Amogne, W. Distribution of Virulence Genes and Phylogenetics of Uropathogenic Escherichia coli among Urinary Tract Infection Patients in Addis Ababa, Ethiopia. BMC Infect. Dis. 2020, 20, 108. [Google Scholar] [CrossRef] [Green Version]
- Nazemi, A.; Mirinargasi, M.; Merikhi, N.; Sharifi, S.H. Distribution of Pathogenic Genes aatA, aap, aggR, among Uropathogenic Escherichia coli (UPEC) and Their Linkage with StbA Gene. Indian J. Microbiol. 2011, 51, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toval, F.; Köhler, C.-D.; Vogel, U.; Wagenlehner, F.; Mellmann, A.; Fruth, A.; Schmidt, M.A.; Karch, H.; Bielaszewska, M.; Dobrindt, U. Characterization of Escherichia coli Isolates from Hospital Inpatients or Outpatients with Urinary Tract Infection. J. Clin. Microbiol. 2014, 52, 407–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gati, N.S.; Middendorf-Bauchart, B.; Bletz, S.; Dobrindt, U.; Mellmann, A. Origin and Evolution of Hybrid Shiga Toxin-Producing and Uropathogenic Escherichia coli Strains of Sequence Type 141. J. Clin. Microbiol. 2019, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.A.S.; Santos, F.F.; Valiatti, T.B.; Santos-Neto, J.F.; Santos, A.C.M.; Cayô, R.; Gales, A.C.; Gomes, T.A.T. Frequency and Diversity of Hybrid Escherichia coli Strains Isolated from Urinary Tract Infections. Microorganisms 2021, 9, 693. [Google Scholar] [CrossRef]
- Karch, H.; Tarr, P.I.; Bielaszewska, M. Enterohaemorrhagic Escherichia coli in Human Medicine. Int. J. Med. Microbiol. 2005, 295, 405–418. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Schiller, R.; Lammers, L.; Bauwens, A.; Fruth, A.; Middendorf, B.; Schmidt, M.A.; Tarr, P.I.; Dobrindt, U.; Karch, H.; et al. Heteropathogenic Virulence and Phylogeny Reveal Phased Pathogenic Metamorphosis in Escherichia coli O2:H6. EMBO Mol. Med. 2014, 6, 347–357. [Google Scholar] [CrossRef]
- Toval, F.; Schiller, R.; Meisen, I.; Putze, J.; Kouzel, I.U.; Zhang, W.; Karch, H.; Bielaszewska, M.; Mormann, M.; Müthing, J.; et al. Characterization of Urinary Tract Infection-Associated Shiga Toxin-Producing Escherichia coli. Infect. Immun. 2014, 82, 4631–4642. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, T.K.; Jarvis, K.G.; Donnenberg, M.S.; Kaper, J.B. A Genetic Locus of Enterocyte Effacement Conserved among Diverse Enterobacterial Pathogens. Proc. Natl. Acad. Sci. USA 1995, 92, 1664–1668. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.W.; Whipp, S.C.; Argenzio, R.A.; Levine, M.M.; Giannella, R.A. Attaching and Effacing Activities of Rabbit and Human Enteropathogenic Escherichia coli in Pig and Rabbit Intestines. Infect. Immun. 1983, 41, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Knutton, S.; Baldwin, T.; Williams, P.H.; McNeish, A.S. Actin Accumulation at Sites of Bacterial Adhesion to Tissue Culture Cells: Basis of a New Diagnostic Test for Enteropathogenic and Enterohemorrhagic Escherichia coli. Infect. Immun. 1989, 57, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Valiatti, T.B.; Santos, F.F.; Santos, A.C.M.; Nascimento, J.A.S.; Silva, R.M.; Carvalho, E.; Sinigaglia, R.; Gomes, T.A.T. Genetic and Virulence Characteristics of a Hybrid Atypical Enteropathogenic and Uropathogenic Escherichia coli (aEPEC/UPEC) Strain. Front. Cell. Infect. Microbiol. 2020, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Chen, Y.-H.; Kong, G.; Chen, S.H.M.; Besemer, J.; Borodovsky, M.; Jong, A. A Novel Genetic Island of Meningitic Escherichia coli K1 Containing the ibeA Invasion Gene (GimA): Functional Annotation and Carbon-Source-Regulated Invasion of Human Brain Microvascular Endothelial Cells. Funct. Integr. Genom. 2001, 1, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.M.; Santos, F.F.; Silva, R.M.; Gomes, T.A.T. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front. Cell. Infect. Microbiol. 2020, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.A.; dos Santos, L.F.; Dias, R.C.B.; Camargo, C.H.; Pinheiro, S.R.S.; Gomes, T.A.T.; Hernandes, R.T. Atypical Enteropathogenic Escherichia coli as Aetiologic Agents of Sporadic and Outbreak-Associated Diarrhoea in Brazil. J. Med. Microbiol. 2016, 65, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, R.T.; Hazen, T.H.; dos Santos, L.F.; Richter, T.K.S.; Michalski, J.M.; Rasko, D.A. Comparative Genomic Analysis Provides Insight into the Phylogeny and Virulence of Atypical Enteropathogenic Escherichia coli Strains from Brazil. PLoS Negl. Trop. Dis. 2020, 14, e0008373. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B.; Robins-Browne, R.; Prado, V.; Vial, P.; Levine, M.M. Patterns of Adherence of Diarrheagenic Escherichia coli to HEp-2 Cells. Pediatr. Infect. Dis. J. 1987, 6, 829–831. [Google Scholar] [CrossRef]
- Jønsson, R.; Liu, B.; Struve, C.; Yang, Y.; Jørgensen, R.; Xu, Y.; Jenssen, H.; Krogfelt, K.A.; Matthews, S. Structural and Functional Studies of Escherichia coli Aggregative Adherence Fimbriae (AAF/V) Reveal a Deficiency in Extracellular Matrix Binding. Biochim. Biophys. Acta. Proteins Proteom. 2017, 1865, 304–311. [Google Scholar] [CrossRef]
- Boisen, N.; Østerlund, M.T.; Joensen, K.G.; Santiago, A.E.; Mandomando, I.; Cravioto, A.; Chattaway, M.A.; Gonyar, L.A.; Overballe-Petersen, S.; Stine, O.C.; et al. Redefining Enteroaggregative Escherichia coli (EAEC): Genomic Characterization of Epidemiological EAEC Strains. PLoS Negl. Trop. Dis. 2020, 14, e0008613. [Google Scholar] [CrossRef]
- Hebbelstrup Jensen, B.; Olsen, K.E.P.P.; Struve, C.; Krogfelt, K.A.; Petersen, A.M. Epidemiology and Clinical Manifestations of Enteroaggregative Escherichia coli. Clin. Microbiol. Rev. 2014, 27, 614–630. [Google Scholar] [CrossRef] [Green Version]
- Boll, E.J.; Struve, C.; Boisen, N.; Olesen, B.; Stahlhut, S.G.; Krogfelt, K.A. Role of Enteroaggregative Escherichia coli Virulence Factors in Uropathogenesis. Infect. Immun. 2013, 81, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Herzog, K.; Engeler Dusel, J.; Hugentobler, M.; Beutin, L.; Sägesser, G.; Stephan, R.; Hächler, H.; Nüesch-Inderbinen, M. Diarrheagenic Enteroaggregative Escherichia coli Causing Urinary Tract Infection and Bacteremia Leading to Sepsis. Infection 2014, 42, 441–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, K.O.; Santos, A.C.P.; Bando, S.Y.; Silva, R.M.; Gomes, T.A.T.; Elias, W.P. Enteroaggregative Escherichia coli with Uropathogenic Characteristics Are Present in Feces of Diarrheic and Healthy Children. Pathog. Dis. 2017, 75, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, A.; Fabbricotti, S.H.; Fagundes-Neto, U.; Scaletsky, I.C.A. Enteroaggregative Escherichia coli Virulence Factors Are Found To Be Associated with Infantile Diarrhea in Brazil. J. Clin. Microbiol. 2004, 42, 1058–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- França, F.L.S.S.; Wells, T.J.; Browning, D.F.; Nogueira, R.T.; Sarges, F.S.; Pereira, A.C.; Cunningham, A.F.; Lucheze, K.; Rosa, A.C.P.; Henderson, I.R.; et al. Genotypic and Phenotypic Characterisation of Enteroaggregative Escherichia coli from Children in Rio de Janeiro, Brazil. PLoS ONE 2013, 8, e69971. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.C.B.; Tanabe, R.H.S.; Vieira, M.A.; Cergole-Novella, M.C.; dos Santos, L.F.; Gomes, T.A.T.; Elias, W.P.; Hernandes, R.T. Analysis of the Virulence Profile and Phenotypic Features of Typical and Atypical Enteroaggregative Escherichia coli (EAEC) Isolated From Diarrheal Patients in Brazil. Front. Cell. Infect. Microbiol. 2020, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- de Lira, D.R.P.; Cavalcanti, A.M.F.; Pinheiro, S.R.S.; Orsi, H.; dos Santos, L.F.; Hernandes, R.T. Identification of a Hybrid Atypical Enteropathogenic and Enteroaggregative Escherichia coli (aEPEC/EAEC) Clone of Serotype O3:H2 Associated with a Diarrheal Outbreak in Brazil. Braz. J. Microbiol. 2021, 52, 2075–2079. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Shaw, E.; Padilla, B.; Pintado, V.; Calbo, E.; Benito, N.; Gamallo, R.; Gozalo, M.; Rodríguez-Baño, J. Healthcare-Associated, Community-Acquired and Hospital-Acquired Bacteraemic Urinary Tract Infections in Hospitalized Patients: A Prospective Multicentre Cohort Study in the Era of Antimicrobial Resistance. Clin. Microbiol. Infect. 2013, 19, 962–968. [Google Scholar] [CrossRef] [Green Version]
- de Rossi, P.; Cimerman, S.; Truzzi, J.C.; Cunha, C.A.d.; Mattar, R.; Martino, M.D.V.; Hachul, M.; Andriolo, A.; Vasconcelos Neto, J.A.; Pereira-Correia, J.A.; et al. Joint Report of SBI (Brazilian Society of Infectious Diseases), FEBRASGO (Brazilian Federation of Gynecology and Obstetrics Associations), SBU (Brazilian Society of Urology) and SBPC/ML (Brazilian Society of Clinical Pathology/Laboratory Medicine): Recommendations for the clinical management of lower urinary tract infections in pregnant and non-pregnant women. Braz. J. Infect. Dis. 2020, 24, 110–119. [Google Scholar] [CrossRef]
- Botelho, L.A.B.; Kraychete, G.B.; Costa e Silva, J.L.; Regis, D.V.V.; Picão, R.C.; Moreira, B.M.; Bonelli, R.R. Widespread Distribution of CTX-M and Plasmid-Mediated AmpC β-Lactamases in Escherichia coli from Brazilian Chicken Meat. Mem. Inst. Oswaldo Cruz 2015, 110, 249–254. [Google Scholar] [CrossRef]
- Martínez-Santos, V.I.; Ruíz-Rosas, M.; Ramirez-Peralta, A.; Zaragoza García, O.; Resendiz-Reyes, L.A.; Romero-Pineda, O.J.; Castro-Alarcón, N. Enteroaggregative Escherichia coli Is Associated with Antibiotic Resistance and Urinary Tract Infection Symptomatology. PeerJ 2021, 9, e11726. [Google Scholar] [CrossRef]
- Johnson, J.R.; Stell, A.L. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and Specific Detection of the pap, afa, and sfa Adhesin-Encoding Operons in Uropathogenic Escherichia coli Strains by Polymerase Chain Reaction. J. Clin. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandes, R.T.; Velsko, I.; Sampaio, S.C.F.; Elias, W.P.; Robins-Browne, R.M.; Gomes, T.A.T.; Girón, J.A. Fimbrial Adhesins Produced by Atypical Enteropathogenic Escherichia coli Strains. Appl. Environ. Microbiol. 2011, 77, 8391–8399. [Google Scholar] [CrossRef] [Green Version]
- Szalo, I.M.; Goffaux, F.; Pirson, V.; Piérard, D.; Ball, H.; Mainil, J. Presence in Bovine Enteropathogenic (EPEC) and Enterohaemorrhagic (EHEC) Escherichia coli of Genes Encoding for Putative Adhesins of Human EHEC Strains. Res. Microbiol. 2002, 153, 653–658. [Google Scholar] [CrossRef]
- Ewers, C.; Li, G.; Wilking, H.; Kießling, S.; Alt, K.; Antáo, E.M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T.; et al. Avian Pathogenic, Uropathogenic, and Newborn Meningitis-Causing Escherichia coli: How Closely Related Are They? Int. J. Med. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of Urovirulence Factors in Escherichia coli by Multiplex Polymerase Chain Reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef]
- Tennant, S.M.; Tauschek, M.; Azzopardi, K.; Bigham, A.; Bennett-Wood, V.; Hartland, E.L.; Qi, W.; Whittam, T.S.; Robins-Browne, R.M. Characterisation of Atypical Enteropathogenic E. coli Strains of Clinical Origin. BMC Microbiol. 2009, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Boisen, N.; Ruiz-Perez, F.; Scheutz, F.; Krogfelt, K.A.; Nataro, J.P. High Prevalence of Serine Protease Autotransporter Cytotoxins among Strains of Enteroaggregative Escherichia coli. Am. J. Trop. Med. Hyg. 2009, 80, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Momtaz, H.; Karimian, A.; Madani, M.; Safarpoor Dehkordi, F.; Ranjbar, R.; Sarshar, M.; Souod, N. Uropathogenic Escherichia coli in Iran: Serogroup Distributions, Virulence Factors and Antimicrobial Resistance Properties. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Parham, N.J.; Srinivasan, U.; Desvaux, M.; Foxman, B.; Marrs, C.F.; Henderson, I.R. PicU, a Second Serine Protease Autotransporter of Uropathogenic Escherichia coli. FEMS Microbiol. Lett. 2004, 230, 73–83. [Google Scholar] [CrossRef]
- Ewers, C.; Janßen, T.; Kießling, S.; Philipp, H.C.; Wieler, L.H. Molecular Epidemiology of Avian Pathogenic Escherichia coli (APEC) Isolated from Colisepticemia in Poultry. Vet. Microbiol. 2004, 104, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Siek, K.E.; Johnson, S.J.; Nolan, L.K. DNA Sequence of a ColV Plasmid and Prevalence of Selected Plasmid-Encoded Virulence Genes among Avian Escherichia coli Strains. J. Bacteriol. 2006, 188, 745–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Russo, T.A.; Tarr, P.I.; Carlino, U.; Bilge, S.S.; Vary, J.C.; Stell, A.L. Molecular Epidemiological and Phylogenetic Associations of Two Novel Putative Virulence Genes, iha and iroNE. coli, among Escherichia coli Isolates from Patients with Urosepsis. Infect. Immun. 2000, 68, 3040–3047. [Google Scholar] [CrossRef] [Green Version]
- Czeczulin, J.R.; Whittam, T.S.; Henderson, I.R.; Navarro-Garcia, F.; Nataro, J.P. Phylogenetic Analysis of Enteroaggregative and Diffusely Adherent Escherichia coli. Infect. Immun. 1999, 67, 2692–2699. [Google Scholar] [CrossRef] [Green Version]
- Dezfulian, H.; Batisson, I.; Fairbrother, J.M.; Lau, P.C.K.; Nassar, A.; Szatmari, G.; Harel, J. Presence and Characterization of Extraintestinal Pathogenic Escherichia coli Virulence Genes in F165-Positive E. coli Strains Isolated from Diseased Calves and Pigs. J. Clin. Microbiol. 2003, 41, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Nolan, L.K. Characterizing the APEC Pathotype. Vet. Res. 2005, 36, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; O’Bryan, T.T.; Low, D.A.; Ling, G.; Delavari, P.; Fasching, C.; Russo, T.A.; Carlino, U.; Stell, A.L. Evidence of Commonality between Canine and Human Extraintestinal Pathogenic Escherichia coli Strains That Express PapG Allele III. Infect. Immun. 2000, 68, 3327–3336. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Janßen, T.; Kießling, S.; Philipp, H.C.; Wieler, L.H. Rapid Detection of Virulence-Associated Genes in Avian Pathogenic Escherichia coli by Multiplex Polymerase Chain Reaction. Avian Dis. 2005, 49, 269–273. [Google Scholar] [CrossRef]
- Hernandes, R.T.; De la Cruz, M.A.; Yamamoto, D.; Girón, J.A.; Gomes, T.A.T. Dissection of the Role of Pili and Type 2 and 3 Secretion Systems in Adherence and Biofilm Formation of an Atypical Enteropathogenic Escherichia coli Strain. Infect. Immun. 2013, 81, 3793–3802. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschäpe, H.; Schmidt, M.A. Identification of Unconventional Intestinal Pathogenic Escherichia coli Isolates Expressing Intermediate Virulence Factor Profiles by Using a Novel Single-Step Multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Lin, Z.; Shirai, H.; Terai, A.; Oku, Y.; Ito, H.; Ohmura, M.; Karasawa, T.; Tsukamoto, T.; Kurazono, H.; et al. Typing of Verotoxins by DNA Colony Hybridization with Poly- and Oligonucleotide Probes, a Bead-Enzyme-Linked Immunosorbent Assay, and Polymerase Chain Reaction. Microbiol. Immunol. 1996, 40, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Knop, C.; Franke, S.; Aleksic, S.; Heesemann, J.; Schmidt, H.; Knop, C.; Franke, S.; Aleksic, S.; Heesemann, R.; et al. Development of PCR for Screening of Enteroaggregative Escherichia coli. J. Clin. Microbiol. 1995, 33, 701–705. [Google Scholar] [CrossRef] [Green Version]
- Ratchtrachenchai, O.-A.; Subpasu, S.; Ito, K. Investigation on Enteroaggregative Escherichia coli Infection by Multiplex PCR. Bull. Dep. Med. Sci. 1997, 39, 211–220. [Google Scholar]
- Yagi, T.; Kurokawa, H.; Shibata, N.; Shibayama, K.; Arakawa, Y. A Preliminary Survey of Extended-Spectrum β-Lactamases (ESBLs) in Clinical Isolates of Klebsiella Pneumoniae and Escherichia coli in Japan. FEMS Microbiol. Lett. 2000, 184, 53–56. [Google Scholar] [CrossRef]
- Kruger, T.; Szabo, D.; Keddy, K.H.; Deeley, K.; Marsh, J.W.; Hujer, A.M.; Bonomo, R.A.; Paterson, D.L. Infections with Nontyphoidal Salmonella Species Producing TEM-63 or a Novel TEM Enzyme, TEM-131, in South Africa. Antimicrob. Agents Chemother. 2004, 48, 4263–4270. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Garcia, D.; Doi, Y.; Szabo, D.; Adams-Haduch, J.M.; Vaz, T.M.I.; Leite, D.; Padoveze, M.C.; Freire, M.P.; Silveira, F.P.; Paterson, D.L. Multiclonal Outbreak of Klebsiella Pneumoniae Producing Extended-Spectrum β-Lactamase CTX-M-2 and Novel Variant CTX-M-59 in a Neonatal Intensive Care Unit in Brazil. Antimicrob. Agents Chemother. 2008, 52, 1790–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.A.; Camargo, C.H.; Francisco, G.R.; Bueno, M.F.C.; Garcia, D.O.; Doi, Y.; Casas, M.R.T. Prevalence of Extended-Spectrum β-Lactamases CTX-M-8 and CTX-M-2-Producing Salmonella Serotypes from Clinical and Nonhuman Isolates in Brazil. Microb. Drug Resist. 2017, 23, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Hossain, A.; Hanson, N.D. Phenotypic and Molecular Detection of CTX-M-β-Lactamases Produced by Escherichia coli and Klebsiella Spp. J. Clin. Microbiol. 2004, 42, 5715–5721. [Google Scholar] [CrossRef] [Green Version]
- Cejas, D.; Fernández Canigia, L.; Quinteros, M.; Giovanakis, M.; Vay, C.; Lascialandare, S.; Mutti, D.; Pagniez, G.; Almuzara, M.; Gutkind, G.; et al. Plasmid-Encoded AmpC (pAmpC) in Enterobacteriaceae: Epidemiology of Microorganisms and Resistance Markers. Rev. Argent. Microbiol. 2012, 44, 182–186. [Google Scholar] [PubMed]
Genes Investigated a | No. (%) of UPEC Isolates Identified in the Distinct Phylogroups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A (n = 18) | B1 (n = 16) | B2 (n = 46) | C (n = 2) | D (n = 14) | E (n = 2) | F (n = 8) | G (n = 4) | E. Clades (n = 2) | Total (n = 112) | |
Adhesins | ||||||||||
fimH | 16 (88.9) | 16 (100) | 46 (100) | 2 (100) | 14 (100) | 2 (100) | 8 (100) | 4 (100) | 2 (100) | 110 (98.2) |
ecpA | 11 (61.1) | 14 (87.5) | 36 (78.3) | 2 (100) | 12 (85.7) | 2 (100) | 6 (75) | 4 (100) | 0 | 87 (77.7) |
papC | 1 (5.6) | 2 (12.5) | 18 (39.1) | 0 | 10 (71.4) | 0 | 2 (25) | 1 (25) | 1 (50) | 35 (31.3) |
iha | 2 (11.1) | 1 (6.3) | 13 (28.3) | 0 | 8 (57.1) | 0 | 1 (12.5) | 1 (25) | 0 (0) | 26 (23.2) |
papA | 1 (5.6) | 1 (6.3) | 10 (21.7) | 0 | 8 (57.1) | 0 | 3 (37.5) | 1 (25) | 1 (50) | 25 (22.3) |
sfa/focDE | 0 | 0 | 19 (41.3) | 0 | 0 | 0 | 0 | 0 | 0 | 19 (17) |
afaBC | 1 (5.6) | 0 | 3 (6.5) | 0 | 0 | 0 | 0 | 1 (25) | 0 | 5 (4.5) |
hra | 0 | 0 | 0 | 0 | 1 (7.1) | 0 | 1 (12.5) | 0 | 0 | 2 (1.8) |
Invasin | ||||||||||
ibeA | 0 | 0 | 16 (34.8) | 0 | 0 | 0 | 1 (12.5) | 0 | 0 | 17 (15.2) |
Toxins | ||||||||||
usp | 0 | 0 | 33 (71.7) | 0 | 1 (7.1) | 0 | 2 (25) | 0 | 0 | 36 (32.1) |
sat | 1 (5.6) | 1 (6.3) | 11 (23.9) | 0 | 9 (64.3) | 0 | 3 (37.5) | 1 (25) | 0 | 26 (23.2) |
vat | 0 | 0 | 24 (52.2) | 0 | 0 | 0 | 0 | 1 (25) | 0 | 25 (22.3) |
hlyA | 1 (5.6) | 0 | 8 (17.4) | 0 | 1 (7.1) | 0 | 0 | 0 | 0 | 10 (8.9) |
picU | 1 (5.6) | 0 | 6 (13) | 0 | 1 (7.1) | 0 | 1 (12.5) | 1 (25) | 0 | 10 (8.9) |
hlyF | 0 | 3 (18.8) | 3 (6.5) | 1 (50) | 0 | 0 | 0 | 1 (25) | 0 | 8 (7.1) |
cnf1 | 0 | 0 | 6 (13) | 0 | 0 | 0 | 0 | 0 | 0 | 6 (5.4) |
cdt | 0 | 0 | 2 (4.3) | 0 | 0 | 0 | 0 | 0 | 0 | 2 (1.8) |
Iron Acquisition | ||||||||||
irp2 | 4 (22.2) | 3 (18.8) | 35 (76.1) | 1 (50) | 9 (64.3) | 0 | 3 (37.5) | 4 (100) | 0 | 59 (52.7) |
sitA | 4 (22.2) | 5 (31.3) | 34 (73.9) | 2 (100) | 9 (64.3) | 0 | 3 (37.5) | 1 (25) | 0 | 58 (51.8) |
iucD | 1 (5.6) | 7 (43.8) | 20 (43.5) | 1 (50) | 6 (42.9) | 0 | 4 (50) | 2 (50) | 0 | 41 (36.6) |
ireA | 0 | 0 | 8 (17.4) | 0 | 1 (7.1) | 0 | 0 | 1 (25) | 0 | 10 (8.9) |
iroN | 0 | 1 (6.3) | 4 (8.7) | 0 | 0 | 0 | 0 | 0 | 0 | 5 (4.5) |
Serum Resistance | ||||||||||
traT | 11 (61.1) | 13 (81.3) | 38 (82.6) | 2 (100) | 14 (100) | 2 (100) | 6 (75) | 4 (100) | 1 (50) | 91 (81.3) |
ompT | 6 (33.3) | 7 (43.8) | 38 (82.6) | 1 (50) | 11 (78.6) | 1 (50) | 4 (50) | 2 (50) | 0 | 70 (62.5) |
iss | 1 (5.6) | 2 (12.5) | 5 (10.9) | 2 (100) | 0 | 0 | 0 | 0 | 0 | 10 (8.9) |
cva | 0 | 3 (18.8) | 1 (2.2) | 0 | 0 | 0 | 0 | 1 (25) | 0 | 5 (4.5) |
kpsMTII | 0 | 0 | 2 (4.3) | 0 | 1 (7.1) | 0 | 1 (12.5) | 0 | 0 | 4 (3.6) |
Range of VFs | 0–11 | 2–9 | 3–17 | 6–8 | 4–12 | 3–4 | 2–11 | 5–11 | 2–3 | 0–17 |
Mean of VFs | 3.4 | 4.9 | 9.5 | 7.0 | 8.3 | 3.5 | 6.1 | 7.8 | 2.5 | 7.2 |
Hybrid UPEC Identification | Serotype | Phylogroup | DEC a Markers | ExPEC Related Virulence Factor-Encoding Genes | |||
---|---|---|---|---|---|---|---|
EPEC | EAEC | ||||||
escN | bfpB | aatA | aggR | ||||
34 | O3:H2 | A | - | - | + | + | fimH, ecpA, papA/papC, iha, afaBC, hlyA, sat, irp2, traT, ompT |
69 | O15:H6 | D | - | - | + | + | fimH, ecpA, papA/papC, iha, hlyA, sat, irp2, traT, ompT, picU |
85 | O126:H10 | B1 | - | - | + | + | fimH, ecpA, irp2, traT, ompT, sitA, iucD |
92 | O145:H34 | B2 | + | - | - | - | fimH, ecpA, ibeA, traT, ompT |
100 | O90:H2 | D | - | - | + | + | fimH, ecpA, papC, traT, ompT, sitA |
Hybrid UPEC/DEC Identification | Type of Hybrid a | Patient Data: | |||
---|---|---|---|---|---|
Age (Years) | Gender b | Type of UTI | Additional Information | ||
34 | UPEC/EAEC | 11 | F | Cystitis | Autistic Spectrum Disorder |
69 | UPEC/EAEC | 22 | F c | Pyelonephritis | Fever |
85 | UPEC/EAEC | 1 | M | Cystitis | Prunc Belly Syndrome |
92 | UPEC/aEPEC | 84 | F | Cystitis | Diabetes melitus, hypertension and coronary artery disease |
100 | UPEC/EAEC | 40 | F | Cystitis | Renal transplantation and use of immunosuppressants |
Antimicrobial Drugs Tested | No. (%) of UPEC Isolates Classified in Each Category: | ||
---|---|---|---|
Susceptible | Intermediate a | Resistant | |
β-lactams | |||
Ampicillin (AMP) | 60 (53.6) | 0 | 52 (46.4) |
Piperacillin/Tazobactam (PPT) | 109 (97.3) | 3 (2.7) | 0 |
Ampicillin/Sulbactam (ASB) | 95 (84.8) | 11 (9.8) | 6 (5.4) |
Amoxicillin/clavulanic acid (AMC) | 93 (83) | 15 (13.4) | 4 (3.6) |
Cephalothin (CFL) | 51 (45.5) | 40 (35.7) | 21 (18.8) |
Cefuroxime (CRX) | 100 (89.3) | 0 | 12 (10.7) |
Ceftazidime (CAZ) | 105 (93.8) | 1 (0.9) | 6 (5.4) |
Cefotaxime (CTX) | 101 (90.2) | 0 | 11 (9.8) |
Cefepime (CPM) | 100 (89.3) | 2 (1.8) a | 10 (8.9) |
Ertapenem (ETP) | 112 (100) | 0 (0) | 0 (0) |
Meropenem (MER) | 112 (100) | 0 (0) | 0 (0) |
Aminoglycosides | |||
Gentamicin (GEN) | 96 (85.7) | 11 (9.8) | 5 (4.5) |
Amikacin (AMI) | 105 (93.8) | 7 (6.3) | 0 |
Quinolones/Fluoroquinolones | |||
Nalidixic acid (NAL) | 69 (61.6) | 8 (7.1) | 35 (31.3) |
Norfloxacin (NOR) | 87 (77.7) | 2 (1.8) | 23 (20.5) |
Ciprofloxacin (CIP) | 63 (56.3) | 14 (12.5) | 35 (31.3) |
Folic acid metabolism inhibitors | |||
Trimethoprim/Sulfamethoxazole (SUT) | 73 (65.2) | 0 | 39 (34.8) |
Nitrofuran | |||
Nitrofurantoin (NIT) | 111 (99.1) | 1 (0.9) | 0 |
Phosphonic acid derivative | |||
Fosfomycin (FOS) | 111 (99.1) | 0 | 1 (0.9) |
UPEC Identification | Serotype | Phylogroup | Resistance Profile to β-Lactams: | β-Lactamase-Encoding Genes | |||||
---|---|---|---|---|---|---|---|---|---|
Penicillins a,d | Cephalosporins b,d | Cephalosporinase c | Additional Genes | ||||||
1st Gen. | 2nd Gen. | 3rd Gen. | 4th Gen. | ||||||
10 | ONT:HNM | E. clades | AMP (R) | CFL (R) | CRX (R) | CTX (R) | CPM (R) | blaCTX-M-8 | blaTEM-1 |
20 | ONT:HNM | A | AMP (R) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15 | - |
30 | ONT:HNM | A | AMP (R) | CFL (R) | CRX (R) | CAZ (I), CTX (R) | CPM (R) | blaCTX-M-15 | - |
55 | OR:H51 | B1 | AMP (R), PPT (I), AMC (R) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15, blaCMY-2 | blaTEM-1 |
60 | ONT:HNM | E. clades | AMP (R), ASB (I), AMC (R) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15 | - |
85 | O126:H10 | B1 | AMP (R), ASB (R), AMC (I) | CFL (R) | CRX (R) | CTX (R) | CPM (R) | blaCTX-M-8 | blaTEM-1 |
94 | OR:H4 | B1 | AMP (R), AMC (R) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15, blaCMY-2 | - |
109 | O101:HNM | A | AMP (R), ASB (I) | CFL (R) | CRX (R) | CTX (R) | CPM (R) | blaCTX-M-8 | blaTEM-1 |
112 | ONT:H4 | A | AMP (R), ASB (I), AMC (I) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15 | - |
114 | O25:H4 | B2 | AMP (R), ASB (I), AMC (I) | CFL (R) | CRX (R) | CAZ (R), CTX (R) | CPM (R) | blaCTX-M-15 | blaTEM-1 |
120 | OR:H6 | F | AMP (R) | CFL (R) | CRX (R) | CTX (R) | CPM (I) | blaCTX-M-15 | - |
Hybrid UPEC Identification | Type of Hybrid E. coli a | ESBL-Producing UPEC | Classes of Antimicrobial Drugs b,c: | |||
---|---|---|---|---|---|---|
β-Lactam | Aminoglycoside | Quinolone/Fluoroquinolone | Folic Acid Metabolism Inhibitor | |||
34 | UPEC/EAEC | - | AMP (R), ASB (R), AMC (I), CFL (I) | - | - | - |
69 | UPEC/EAEC | - | AMP (R), ASB (I), AMC (I) | - | - | - |
85 | UPEC/EAEC | + | AMP (R), ASB (R), AMC (I), CFL (R), CRX (R), CTX (R), CPM (R) | GEN (I) | NAL (I), CIP (R) | SUT (R) |
92 | UPEC/aEPEC | - | - | - | - | - |
100 | UPEC/EAEC | - | AMP (R), CFL (I) | GEN (I) | NAL (I) | SUT (R) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanabe, R.H.S.; Dias, R.C.B.; Orsi, H.; de Lira, D.R.P.; Vieira, M.A.; dos Santos, L.F.; Ferreira, A.M.; Rall, V.L.M.; Mondelli, A.L.; Gomes, T.A.T.; et al. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022, 10, 645. https://doi.org/10.3390/microorganisms10030645
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, et al. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms. 2022; 10(3):645. https://doi.org/10.3390/microorganisms10030645
Chicago/Turabian StyleTanabe, Rodrigo H. S., Regiane C. B. Dias, Henrique Orsi, Daiany R. P. de Lira, Melissa A. Vieira, Luís F. dos Santos, Adriano M. Ferreira, Vera L. M. Rall, Alessandro L. Mondelli, Tânia A. T. Gomes, and et al. 2022. "Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli" Microorganisms 10, no. 3: 645. https://doi.org/10.3390/microorganisms10030645
APA StyleTanabe, R. H. S., Dias, R. C. B., Orsi, H., de Lira, D. R. P., Vieira, M. A., dos Santos, L. F., Ferreira, A. M., Rall, V. L. M., Mondelli, A. L., Gomes, T. A. T., Camargo, C. H., & Hernandes, R. T. (2022). Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms, 10(3), 645. https://doi.org/10.3390/microorganisms10030645